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Mathematical models describing the behavior of hypothetical species in spatially hetero-
geneous environments are discussed and analyzed using the fibering method devised and
developed by S. I. Pohozaev.

1. Introduction

The purpose of this work is to analyze mathematical models describing the behavior of
individuals inhabiting an environment with spatial heterogeneity. The latter means that
the environment influences the reproductivity and mobility of the species. This effect is
obtained if we model the density function of these organisms by evolution partial differ-
ential equations with nonconstant coefficients. More precisely, we introduce a function
which corrects the reproductive capabilities of these species and characterizes the most
and least favorable regions for its development. With this at hand, we wish to know if
such an environment constitutes a refuge, that is, if this environment has good enough
conditions for the studied species persistence, which in mathematical terms implies the
existence of a stable nontrivial stationary solution—the limit density of these individuals
in the steady state.

Such a stationary solution is obtained by making use of the fibering method [7, 13,
14, 15, 16], introduced and developed by Pohozaev. This method implies that the funda-
mental eigenvalue of a certain spectral problem must be of a determined magnitude.

This paper is organized as follows. In the next section, we present the details of the
considered mathematical model. In Section 3, we apply the fibering method to a problem
studied by Cantrell and Cosner [3, 4, 5, 6] and discuss the relationship between their ap-
proach and the one used here. Section 4 contains concluding remarks and comments. In
the appendix, we adapt the method to a particular case considered by Ludwig et al. [10].

2. The mathematical model

We consider a species which inhabits a limited plane region Ω⊂R2. We suppose that Ω
is a domain, that is, an open and connected set. Further, we admit that the population
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dynamics is of reaction-diffusion type and movement and reproduction capacities de-
pend on the position in Ω. More precisely, let u= u(t,x, y) be a positive function which is
the density of the individuals of the population at the moment t ≥ 0 near the point with
coordinates (x, y), then the initial/boundary value problem governing the density u is:

ut =∇·
(
D(x, y)∇u)+ rγ(x, y)u− r

K
u2, (x, y)∈Ω, t ∈ (0,∞),

u= 0, (x, y)∈ ∂Ω, t > 0,

u= u0(x, y), (x, y)∈Ω, t = 0.

(2.1)

Here, the positive and bounded function D denotes the diffusion coefficient, which is
permitted to depend on the spatial variables (x, y). It is assumed that there exist posi-
tive constants c1 and c2 such that 0 < c1 ≤ D(x, y) ≤ c2. The function γ, which measures
the interference of the environment in the reproductive capacities of the studied popu-
lation u, may also depend on (x, y). We suppose that γ is a bounded function such that
|γ| ≤ 1. Moreover, we admit that γ may assume negative values elsewhere, indicating in
this way the existence of some absolutely improper subregions for the development of
the population. However we will consider the environmental saturation as a constant K
in Ω. This constant is known as the support capacity for the subregion where γ > 0. As in
the classical Verhulst model, the constant r > 0 is the rate of intrinsic growth. Finally, the
bounded and nonnegative function u0 is the initial population distribution.

The analysis of species survival via models like the problem (2.1) is based on the exis-
tence and stability of stationary solutions, that is, solutions of the following problem:

−∇· (D(x, y)∇u)= rγ(x, y)u− r

K
u2, (x, y)∈Ω, u= 0, (x, y)∈ ∂Ω. (2.2)

The existence or nonexistence of nontrivial solutions to the above stationary problem
determines the chances for success in the colonization of the environment.

In (2.2), we scale the independent variables:

x := x√|Ω| , (2.3)

y := y√|Ω| , (2.4)

t := rt; (2.5)

we also use the dimensionless unknown function

u := u

K
. (2.6)

Introducing the new functions

D(x, y) := 1
r|Ω|D

(√
|Ω|x,

√
|Ω|y

)
, γ(x, y) := γ

(√
|Ω|x,

√
|Ω|y

)
, (2.7)
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where |Ω| denotes the area of Ω, we obtain the following problem to be analyzed:

−∇· (D(x, y)∇u)= γ(x, y)u−u2, (x, y)∈U ,

u= 0, (x, y)∈ ∂U. (2.8)

Above, U denotes the image of Ω via the transformation (2.3), (2.4) with |U| = 1 (for
notation simplicity we have omitted the bars).

We also introduce a control parameter α > 0 in order to modulate the reproductivity
differences in the environment quality without changing its saturation and sign. There-
fore, we will study the following variant of our problem (2.8):

−∇· (D(x, y)∇u)= αγ(x, y)u−u2, (x, y)∈U ,

u= 0, (x, y)∈ ∂U. (2.9)

Since (2.9) is of divergence form without first-order terms, we will use variational tech-
niques.

To begin with, let the Sobolev space W :=H1
0 (Ω) be considered with the norm

‖u‖ :=
(∫∫

U
D(x, y)|∇u|2dxdy

)1/2

. (2.10)

This norm is equivalent to the usual norm of H1
0 (U). Indeed, this follows from the as-

sumptions on D and from the Poincaré inequality. Then, u∈W is called a weak solution
of (2.9) if for all v ∈W ,∫∫

U
D(x, y)∇u ·∇vdxdy = α

∫∫
U
γ(x, y)uvdxdy−

∫∫
U
u2vdxdy. (2.11)

The solutions of the variational problem will be identified with the critical points of the
following Euler functional:

�α(u) := 1
2

∫∫
U
D(x, y)|∇u|2dxdy− α

2

∫∫
U
γ(x, y)u2dxdy +

1
3

∫∫
U
|u|3dxdy

= 1
2
‖u‖2− α

2
G(u)− 1

3
F(u),

(2.12)

where

F(u) :=−
∫∫
U
|u|3dxdy, G(u) :=

∫∫
U
γ(x, y)u2dxdy. (2.13)

Biological models in the terms of reaction-diffusion equations are well known for a
long time (see for instance [9, 11, 12]). The present model was proposed by Cantrell and
Cosner [2, 3, 4, 6] (see also [8]). However in the cited works, these authors emphasize its
importance for the study of species persistence in heterogeneous environments. More-
over, they admit negative values of some of the parameters. Motivated by these papers,
we obtain here similar results using other methods, namely, the fibering method of S. I.
Pohozaev. This will be done in the next section.
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3. The fibering method

In the study of the stationary problem (2.9), we will use the fibering method introduced
and developed by Pohozaev in [13, 14, 15, 16]. This method provides a powerful tool
for proving existence theorems, in particular for problems which obey certain kinds of
homogeneity. In [7], Drábek and Pohozaev have applied the method to an equation in-
volving the p-Laplacian operator. We will describe here an adapted version of the fibering
method to our specific problem. The exposition will follow [7, 16] closely. We present
enough details of the results in order to compare with those obtained in [2, 3, 4, 6] and
discuss the relationship between them, in particular their importance to biology.

To begin with, we consider the Euler functional defined in (2.12). Clearly, �α(u)∈ C1.
Critical points of �α(u) are then weak solutions of the problem. Later we will associate to
�α(u) another functional with additional properties. For this purpose, the magnitude α
will be compared with the fundamental eigenvalue λ1 of the problem

∫∫
U
D(x, y)∇φ ·∇ψdxdy = λ

∫∫
U
γ(x, y)φψ dxdy, φ= 0 in ∂U , (3.1)

for any ψ ∈W . We recall that the fundamental eigenvalue λ1 of the problem (3.1) can be
characterized as follows:

λ1 = min
φ∈W ,

∫∫
U γ(x,y)φ2dxdy>0

∫∫
U D(x, y)|∇φ|2dxdy∫∫

U γ(x, y)φ2dxdy
, (3.2)

where λ1 is simple and positive (see [1] and the references therein).
Further, following [13, 14, 15, 16], for u∈W , we set

u= tv, (3.3)

where t �= 0 is a real number and v ∈W (since we look for nontrivial solutions, the as-
sumption t �= 0 is natural). Substituting (3.3) into (2.12), we obtain

�α(tv)= t2

2
‖v‖2− αt2

2
G(v)− |t|

3

3
F(v). (3.4)

We choose as fibering functional the principal part of �α, that is,

Hα(v) :=
∫∫
U
|∇v|2dxdy−α

∫∫
U
γ(x, y)|v|2dxdy = ‖v‖2−αG(v). (3.5)

If u∈W is a critical point of �α, then

∂

∂t
�α(tv)= 0. (3.6)

In our specific case, (3.6) assumes the form

tHα(v)−|t|tF(v)= 0. (3.7)
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We obtain

|t| = Hα(v)
F(v)

. (3.8)

Obviously, the following conditions are necessary for (3.8) to make sense:

F(v) �= 0,
Hα(v)
F(v)

> 0. (3.9)

Substituting (3.8) in (2.12), we obtain the induced functional

�̂α(v) :=�α
(
t(v)v

)= 1
6

(
Hα(v)
F(v)

)3

F(v). (3.10)

The induced functional �̂α obeys the following properties:

(1) for any τ ∈R \ {0} and v ∈W such that F(v) �= 0,

�̂α(τv)= �̂α(v), (3.11)

that is, the functional �̂α is homogeneous of degree 0. Moreover 〈�̂′α(v),v〉 = 0,

where 〈�̂′α(v),v〉 is the Gatêaux derivative of �̂α at v ∈W in the direction of v;
(2) if vc ∈W is a critical point of �̂α, then |vc| is also a critical point of �̂α, hence,

as in [7], one can assume that the critical points of �̂α are nonnegative. The next
two properties are direct consequences of the general fibering method described
in [13, 14, 15];

(3) let v ∈W be a critical point of �̂α such that F(v) �= 0 and Hα(v)/F(v) > 0, then
the function

u= tv, (3.12)

where t > 0 is determined by (3.8), and is a critical point of �α;
(4) we consider a constraint

�(v)= c, (3.13)

where � is a C1 functional. If

〈
�′(v),v

〉 �= 0, �(v)= c, (3.14)

then every critical point of �̂α with the constraint �(v) = c is a critical point

of �̂α.

Our first aim is to prove the existence of a critical point of �̂α with an appropriate condi-
tion �(v)= c which in turn will be an actual critical point of �̂α and hence a critical point
of the Euler functional �α—the weak solution of (2.9). See [7, 16] for further details.
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Applying the described method to the problem (2.9), one can obtain the existence of
solutions whose multiplicity depends on the magnitude of the fundamental eigenvalue λ1.
There are two cases to be considered:

(1) α≤ λ1;
(2) α > λ1.

In the first case, we get the existence of a positive nontrivial solution of (2.9) choosing the
constraint

Hα(v)= 1, (3.15)

which satisfies the nondegeneracy condition since if H(v)= 1, then〈
H′
α(v),v

〉= 2H(v)= 2 �= 0. (3.16)

However, F(v) must be positive for (3.8). Hence, the fibering method cannot be applied
immediately in this case. This is compatible with the results of Cantrell and Cosner [3]
which predict the nonexistence of positive solution if α≤ λ1.

With regard to the case α > λ1, the fibering method should give, in principle, two crit-
ical points for the functional (2.12) which are positive functions. However, in order to
obtain one of these, we need the positivity of the functional F. Therefore, we cannot get
it in this case. Why this occurs is commented in the next section.

Now, we will obtain the “other” positive solution of (2.9) with α > λ1. Let

F(v)=−1 (3.17)

be a constraint. The nondegeneracy condition is satisfied since〈
F′(v),v

〉=−3F(v)= 3 �= 0. (3.18)

Then the induced functional �̂α becomes

�̂α(v)= 1
6

(
Hα(v)

)3
. (3.19)

With t determined by (3.8), we look for a critical point v of �̂α such that

Hα(v) < 0. (3.20)

For this purpose, we look for a function which attains the minimum mα of the problem

mα = inf
v∈W

(
Hα(v) | F(v)=−1

)
. (3.21)

First, we must prove that

W− := {v ∈W | F(v)=−1
} �= ∅. (3.22)

Let e1 be the positive eigenfunction associated to the fundamental eigenvalue (it satisfies
(3.1) for any ψ ∈W—see [1]). Then

F
(
e1
)
< 0, (3.23)
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and hence it is easy to see that we can find a constant t1 such that F(t1e1)=−1. Therefore
W− is not empty. Moreover, by the variational characterization of λ1,

H
(
t1e1

)= ∣∣t1∣∣2(
λ1−α

)
G
(
e1
)
< 0, (3.24)

which implies that the infimum mα is negative.
We are going to prove the existence of a positive solution to (2.9) for α∈ (λ1,λ1 + L),

where L > 0 is a constant by a contradiction argument. Suppose that this is not true,
and that there exists a sequence εk → 0 such that for any αk := λ1 + εk, the minimization
problem (3.21) does not have a solution. For any integer k, let (vkn)∞n=1 be a minimizing
sequence for the problem (3.21), that is,

F
(
vkn
)=−1, Hαk

(
vkn
)−→mαk , where n−→∞. (3.25)

If (vkn)∞n=1 would be bounded for an integer number k, we may assume without loss of
generality that it converges weakly in W to some vk when n→∞. By the weak continuity
of the functionals F and G and the weak lower semicontinuity of the principal part Hα,
one can deduce, letting n→∞, that

F
(
vk
)=−1, Hαk

(
vk
)≤mαk . (3.26)

By the definition of mαk in (3.21), the opposite inequality holds, which is a contradiction.
Thus we may consider (vkn)∞n=1 to be unbounded:

∥∥vkn∥∥−→∞ if n−→∞. (3.27)

Let

wk
n := vkn

rkn
, (3.28)

where

∣∣rkn∣∣ := ∥∥vkn∥∥. (3.29)

Since ‖wk
n‖ = 1, we may assume that wk

n converges weakly in W to a function wk ∈W as
n→∞. By ‖wk‖ ≤ 1, passing to a subsequence of wk converging weakly to w ∈W when
k→∞, we have

‖w‖ ≤ 1. (3.30)

By the definitions of vkn and wk
n, we get the inequality

∣∣rkn∣∣2(
1−αkG(wk

n

))= ∣∣rkn∣∣2−∣∣rkn∣∣2
αkG

(
wk
n

)
= ∥∥vkn∥∥−αk(vkn)
=Hαk

(
vkn
)−→mαk < 0.

(3.31)
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Hence and by (3.30), letting n→∞ and k→∞, we obtain

‖w‖− λ1G(w)≤ 1− λ1G(w)≤ 0. (3.32)

However the variational nature of λ1 (see the Rayleigh quotient (3.2)) implies that the
opposite inequality holds. Therefore, we can find a constant k1 ∈R such that

w = k1e1. (3.33)

By the 3-homogeneity of the functional F we conclude that

F
(
wk
n

)= 1∣∣rkn∣∣3 F
(
vkn
)=− 1∣∣rkn∣∣3 . (3.34)

Letting n→∞ and k→∞, we obtain by the weak continuity of F

F(w)= 0, (3.35)

and, by (3.33),

∣∣k1
∣∣3
F
(
e1
)= 0, (3.36)

which contradicts (3.23). Therefore, with α = 1, we obtain a solution u of the problem
(2.9) if λ < 1. Indeed, let v be the minimizer of the problem (3.21). Introduce u by

u= t(v)v, (3.37)

where t(v) is defined in (3.8). Then by the properties (3) and (4) of the functional �̂α, u
is a weak solution of (2.9). The references in [7, 16] ensure the positivity and differentia-
bility of the solution u. In this way we have proved the following theorem.

Theorem 3.1. The boundary value problem (2.9) has at least one positive solution u ∈
H1

0 (Ω)∩L∞(Ω)∩C1,σ
loc (Ω).

4. Comments and concluding remarks

In [7], Drábek and Pohozaev investigated the existence of positive solutions of the fol-
lowing quasilinear problem:

−∆pu= λa(x)|u|p−2u+ b(x)|u|s−2u in Ω,

u= 0 in ∂Ω,

u > 0 in Ω.

(4.1)

Here λ, p, q are real numbers, a(x), b(x) are given functions of x ∈ Rn, and ∆p is the
p-Laplace operator which for p = 2 coincides with the usual Laplacian. The p-Laplacian
for p �= 2 is much less important for biological modelling (if any) than the classical p = 2
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which embodies the ubiquitous Fickian/random diffusion process. For this reason, we let
p = 2 and obtain the semilinear boundary value problem

−∆u= λa(x)u+ b(x)|u|s−2u in Ω,

u= 0 in ∂Ω,

u > 0 in Ω.

(4.2)

We recall some of the assumptions on the parameters used in [7].
The functions a(x) and b(x) are supposed to be bounded in Ω;

a,b ∈ L∞(Ω), (4.3)

a(x)= a1(x)− a2(x); a1,a2 ≥ 0, a1(x) �≡ 0, (4.4)

b(x)= b1(x)− b2(x); b1,b2 ≥ 0, b1(x) �≡ 0, (4.5)∫
Ω
b(x)

∣∣u1(x)
∣∣sdx < 0, (4.6)

where u1(x) is the first positive eigenfunction of the p-Laplace operator. For the Cantrell-
Cosner problem (2.9), we have α= λ, a= γ, b =−1, and s= 3. Obviously, the conditions
(4.3), (4.4), and (4.6) are fulfilled, but the condition (4.5) is not satisfied since

b =−b2 =−1, b1 ≡ 0. (4.7)

That is the reason why it was not possible to get a second solution in the previous section.
However, if we consider the model (4.2) with (4.3), (4.4), (4.5), and (4.6), which is in the
spirit of the already cited works of Cantrell and Cosner, it is clear that a straightforward
application of the fibering method will give at least two different positive solutions, a
result which begs for further biological interpretations.

Appendix

Application of the fibering method to a simple boundary value problem

In this section, we apply the fibering method to a simple boundary value problem in
dimension one. This example serves as an elementary introduction to the essential points
of the method, which is a powerful tool to be used in more complicated situations.

The fibering method, due to S. I. Pohozaev, gives us information about existence and
multiplicity of nonnegative and nontrivial solutions to several types of boundary value
problems, where the partial differential equation is generally non linear. The presence
of nonlinearity comes from problems of biological nature: for instance, in the study of
generation of spatial patterns and persistence of species in regions explored by these
species [11].

The introductory example chosen concerns the existence and multiplicity of solutions
to the stationary Fisher/KPP equation under Dirichlet boundary condition:

−u′′ = 
2u(1−u) in (0,1), u(0)= u(1)= 0. (A.1)
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The problem (A.1) has been studied by Ludwig et al. [10] using the first integral method.
This model, which is appropriately dimensionless, serves to describe the steady state dis-
tribution of individuals which spread out randomly in a one-dimensional medium with
a lethal boundary (extremal points of the interval (0,1)) condition of the Dirichlet type.
It is also assumed that reproduction of these species obeys the Verhulst model of logistic
growth.

In order to use the fibering method, we need to reformulate the problem (A.1) in its
equivalent variational form, that is, we need to consider the function which solves (A.1)
by minimizing the following Euler functional:

f (u)= 1
2

∫ 1

0
|u′|2dx− 
2

2

∫ 1

0
|u|2dx+


2

3

∫ 1

0
|u|3dx

= 1
2
‖u‖2− 
2

2
G(u)− 
2

3
F(u),

(A.2)

where

G(u) :=
∫ 1

0
|u|2dx, (A.3)

F(u) :=−
∫ 1

0
|u|3dx, (A.4)

which are both weakly continuous functionals. There exists an equivalence among weak
solutions of (A.1) and critical points of (A.2), for when we compute the Gâteaux deriva-
tive of (A.2), we have

〈
f ′(u),v

〉= lim
ε→0

d

dε
f (u+ εv)

= lim
ε→0

(∫ 1

0
u′v′ + εv′2dx− 
2

∫ 1

0
uv+ εv2dx+ 
2

∫ 1

0
u2v+ 2εuv+ ε2|v|3dx

)

=
∫ 1

0

(−u′′ − 
2u+ 
2u2)vdx = 0, ∀v ∈H1
0 (0,1).

(A.5)

Hence, the expression inside the parentheses in the last integral must vanish if and only
if u solves the differential equation in problem (A.1). We naturally choose as the function
space the Sobolev space H1

0 (0,1) which consists of functions belonging to L2(0,1) having
a generalized derivative also in L2(0,1) and vanishing for x = 0 and x = 1. We use for
simplicity the following norm:

‖u‖2 :=
∫ 1

0
|u′|2dx, (A.6)

which is equivalent to the usual norm in H1
0 (0,1) by Poincaré’s inequality. It is useful to

note here that, by the embedding W2
1 (0,1)↩C0,σ(0,1) for some positive σ , the solution

of (A.1) is a continuous function.
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The aim of the fibering method is to associate the minimization problem of the func-
tional f (u) defined in (A.2) with another equivalent minimization problem with con-
straint(s) chosen appropriately. Once we find a critical point of the problem with con-
straint(s), we readily encounter a critical point of f (u), as we will see hereafter.

Let t be a real number, which will be a posteriori determined, and we consider another
class of functions v ∈H1

0 (0,1), which are related to the functions u from the domain of
the functional f (u) by the equality

u= tv. (A.7)

The aim is to associate critical points u of f (u) with critical points of another functional
which will be obtained by the relation (A.7). Substituting (A.7) in (A.2), we have

f̃ (t,v) := f (tv)=
∣∣t2∣∣

2
‖v‖2− 
2

∣∣t2∣∣
2

G(v)− 
2|t|3
3

F(v). (A.8)

We choose as a fibering functional the main part of f (u), that is,

H
(v) :=
∫ 1

0
v′2dx− 
2

∫ 1

0
v2dx = ‖v‖2− 
2G(v). (A.9)

Since u is a minimizer of the Euler Functional defined in (A.2), the following equality
holds:

∂

∂t
f̃ (t,v)= 0. (A.10)

Following Pohozaev, (A.10) is called the bifurcation equation. Applying (A.7) to our par-
ticular problem and noting that t �= 0, we have

H
(v)−|t|F(v)= 0, (A.11)

which gives

|t| = ∣∣t(v)
∣∣= H
(v)

F(v)
. (A.12)

We need to impose at this point that the denominator in the expression defined above
does not vanish, which is a natural restriction, since we look for nontrivial solutions of
the problem (A.1). We also need to know that the fibering functionalH
(v) and the func-
tional F(v) should have the same sign, if we want (A.12) to make sense. Hence, we obtain
the induced functional minimized by v once we substitute (A.12) in (A.8):

f̂
(v) := f̃
(
t(v),v

)= 1
6

(
H
(v)
F(v)

)3

F(v). (A.13)

It is worth noting some facts concerning f̂
(v), which are consequences of the process we
used above to obtain this functional.
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(i) Considering any 0 �= t ∈R, we have

f̂
(tv)= 1
6

( |t|2H
(v)
|t|3F(v)

)3

|t|3F(v)= 1
6
|t|6|t|3
|t|9

(
H
(v)
F(v)

)3

F(v)= f̂
(v), (A.14)

which implies the 0-homogeneity of this induced functional.
(ii) As a corollary of the above remark (i), the Gâteaux derivative of f̂ (v) in the direc-

tion v is equal to zero because

〈
f̂ ′
 (v),v

〉= lim
ε→0

d

dε
f̂
(v+ εv)= lim

ε→0

d

dε
f̂

(
(1 + ε)v

)= lim
ε→0

d

dε
f̂
(v)= 0. (A.15)

(iii) From the above construction the following property holds:

f̂
(v)= f̂

(|v|). (A.16)

This result comes from the definitions ofH
(v) and F(v) (see (A.3) and (A.4)). Therefore,
if vc is a critical point of f̂
(v), then |vc| is also a critical point of the same functional and
we can consider the critical point(s) of the induced functional f̂
(v) as positive functions
in (0,1).

(iv) The critical points of the induced functional f̂
(v) are also critical points of the
same functional but with a specific type of constraint, that is, if v is a critical point of
f̂ (v) then, it is also a critical point of f̂
(v) subject to the fibering constraint H(v) = c,
where H(v) is any differentiable functional satisfying

〈
H′(v),v

〉 �= 0 always when H(v)= c, (A.17)

which is named the nondegeneracy condition.
The existence and multiplicity of solutions of the induced functional f̂
(v) is intimately

related to the magnitude of the constant 
. We should consider the following two cases:

(i) l ≤ π;
(ii) l > π.

Describing the first case with brevity, the fibering method indicates the existence of at
least one positive weak solution of problem (A.1) under the restriction

H
(v)= 1, (A.18)

which satisfies the nondegeneracy condition in this case, because

〈
H′

(v),v

〉= 2H
(v)= 2 �= 0. (A.19)

We should have, by (A.12) and (A.18), the positivity of the functional F(v). But this is in
contradiction to its own definition (cf. (A.4)). The method does not give us information
about this case, which was expected since it is known that there are no positive solutions
in this case [10]. According to Ludwig et al. [10], the interval (0,1) is not a refuge in this
case.
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In the second case where 
 > π, the fibering method should provide the existence of at
least two critical points of the same functional f̂
(v). These critical points are character-
ized as being solutions of the following variational problems with constraints:

(i) find a maximizer v1 ∈H1
0 (0,1) of the problem

M
 = sup
v∈H1

0 (0,1)

[
F(v) |H
(v)= 1

]
; (A.20)

(ii) find a minimizer v2 ∈H1
0 (0,1) of the problem

m
 = inf
v∈H1

0 (0,1)

[
H
(v) | F(v)=−1

]
. (A.21)

The proof of the existence of solutions to the problem (i) above makes use of the hy-
pothesis F(v) > 0. Therefore, (i) does not give information about positive weak solutions
of problem (A.1).

Henceforth, we concentrate on the variational problem (ii). Note that in this case the
fibering constraint, which is

F(v)=−1, (A.22)

satisfies the nondegeneracy condition since

〈
F′(v),v

〉= lim
ε→0

d

dε
F(v+ εv)= lim

ε→0
3(1 + ε)2F(v)= 3F(v)=−3 �= 0. (A.23)

By (A.4), we have that the fibering functional f̂
(v) with the constraint (A.12) assumes
the following form:

f̂
(v)=−1
6

(−H
(v)
)3
. (A.24)

We should have, according to (A.12), that

H
(v) < 0. (A.25)

We will show below that there exists a weak solution of the problem (ii). We will as-
sume, by contradiction, the nonexistence of an ε > 0 such that problem (ii) has a positive
solution for a determined interval to the right of π/2 with length not exceeding ε. Prop-
erties of eigenvalues and eigenfunctions from −u′′ will be fundamental for us to get the
desired contradiction.

Note that the set

W := {v ∈H1
0 (0,1) | F(v)=−1

}
(A.26)

is nonempty. In order to conclude this, it is enough to take the first eigenfunction of the
following problem:

−u′′ = λu, u(0)= u(1)= 0, (A.27)
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which is e1 = sin(πx). We have

F
(
e1
)= 2

3π
− 2 < 0, (A.28)

thus, once we take

t1 =
(

2− 2
3π

)−1/3

, (A.29)

we have, by the 3-homogeneity of the functional F(v), that F(t1e1) = −1. We also have
that

H

(
t1e1

)= t21
(
π2− 
2

2

)
< 0, (A.30)

always when 
 > π. So we conclude that mλ is negative.
We will prove that the minimization problem given in (ii) has a nonnegative minimizer

provided π2 < 
2 < π2 + ε, for some ε > 0.
We suppose, by absurd, that there exists a sequence εk → 0+ such that for any 
2

k :=
π2 + εk, problem (ii) has no nonnegative solution. For an arbitrary natural number k, let
(vkn)∞n=1 be a minimizing sequence of (ii)k, that is,

F
(
vkn
)=−1, H
k

(
vkn
)−→m
k , when n−→∞. (A.31)

Assuming that this sequence is bounded with respect to the H1
0 (0,1), we may assume,

since we are in a reflexive Banach space, that this sequence is weakly convergent inH1
0 (0,1)

when n→∞. We call v̄k the corresponding weak limit. By the weak continuity of F(v),
we have

F
(
v̄k
)=−1. (A.32)

We also have from the lower semicontinuity of the H1
0 (0,1) norm, and from the weak

continuity of the functional G(v), that

H

(
v̄k
)≤ liminf

n→∞ H

(
vkn
)=m
k . (A.33)

But as v̄k ∈W , we should have H
(v̄k)≥m
k . Thus, one concludes that H
(v̄k)=m
k and
v̄k is a solution of (ii)k, which is a contradiction. Then, the sequence (vkn)∞n=1 must be
unbounded.

We may assume, passing to a subsequence if necessary, that

∥∥vkn∥∥−→∞ as n−→∞. (A.34)

Considering this sequence, we define another related sequence (wk
n)∞n=1 by the following

relation:

vkn = rknwk
n, (A.35)
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where |rkn| = ‖vkn‖, ‖wk
n‖ = 1. As a result, we obtain another uniformly bounded sequence

in H1
0 (0,1); thus, we may assume that the following statement holds:

wk
n⇀ w̄k in H1

0 (0,1) when n−→∞. (A.36)

Since ‖wk
n‖ = 1, we have that ‖w̄k‖ ≤ 1. Hence, we may suppose that there is a subse-

quence of w̄k which converges weakly to a w̄ ∈H1
0 (0,1), and thus

‖w̄‖ ≤ 1. (A.37)

On the other hand, by the definitions of vkn and wk
n, we obtain

∣∣rkn∣∣2(
1− l2kG

(
wk
n

))= ∣∣rkn∣∣2(∥∥wk
n

∥∥− l2kG(wk
n

))
= ∥∥rknvkn∥∥− l2kG(rknvkn)
=H
k

(
vkn
)−→m
k < 0.

(A.38)

At this point, we will let the limit k→∞ and n→∞ to obtain, by the weak continuity of
G(v) and (A.37),

‖w̄‖−π2G(w̄)≤ 1−π2G(w̄)≤ 0. (A.39)

The minimizing characterization of the eigenvalue λ1 = π2 implies that the opposite in-
equality holds. Hence, we conclude that

‖w̄‖−π2G(w̄)= 0. (A.40)

We know, by the uniqueness of the eigenfunction related to the first eigenvalue of the
operator −u′′, that w̄ must be a scalar multiple of e1 = sin(πx), that is,

w̄ = k1e1. (A.41)

As we have

F
(
wk
n

)= ∣∣rkn∣∣−3
F
(
vkn
)=−∣∣rkn∣∣−3

, (A.42)

we obtain, by passing to the limit when n,k→∞ and by the weak continuity of the func-
tional F(v),

F(w̄)= 0, (A.43)

and by (A.41) we also have

∣∣k1
∣∣3
F
(
e1
)= 0=⇒ F

(
e1
)= 0 �= 2

3π
− 2, (A.44)

which is a contradiction by (A.28). Thus one concludes that for some ε > 0, problem (ii)
has at least one nonnegative solution when π2 < 
2 < π2 + ε.
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We can finally state the following theorem.

Theorem A.1. There exists ε > 0 such that when π2 < 
2 < π2 + ε, problem (A.1) has a
positive solution u∈H1

0 (0,1)∩L∞(0,1)∩C1,α
loc (0,1).

Proof. Considering the solution v obtained by the above construction, and by obtaining
the constant t as determined in (A.12), the function

u= tv (A.45)

is a nonnegative weak solution of the considered problem. Then the corresponding argu-
ments and references in [7, 16] ensure that u∈H1

0 (0,1)∩L∞(0,1)∩C1,α
loc (0,1). See [7, 16]

for more details on these points. �
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