
CONTRACTIVE PROJECTIONS IN ORLICZ
SEQUENCE SPACES

BEATA RANDRIANANTOANINA

Received 23 June 2003

We characterize norm-one complemented subspaces of Orlicz sequence spaces �M equip-
ped with either Luxemburg or Orlicz norm, provided that the Orlicz function M is suffi-
ciently smooth and sufficiently different from the square function. We measure smooth-
ness of M using AC1 and AC2 classes introduced by Maleev and Troyanski in 1991, and
the condition for M to be different from a square function is essentially a requirement
that the second derivative M′′ of M cannot have a finite nonzero limit at zero. This paper
treats the real case; the complex case follows from previously known results.

1. Introduction

The study of norm-one projections and their ranges (one-complemented subspaces) has
been an important topic of the isometric Banach space theory since the inception of the
field. Contractive projections were also investigated from the approximation theory point
of view, as part of the study of minimal projections, that is, projections onto the given
subspace with the smallest possible norm (cf. [5, 14]). They are also closely related to
the metric projections or nearest point mappings, and they are a natural extension of the
notion of orthogonal projections from Hilbert spaces to general Banach spaces. Despite a
great amount of work on contractive projections (cf. the survey [19]), not much is known
about them in Orlicz spaces.

In Lebesgue spaces Lp and �p, 1 ≤ p <∞, a subspace Y is one-complemented if and
only if Y is isometrically isomorphic to an Lp-space of appropriate dimension (see [1, 6]).
This result has no analogue in other spaces. Lindberg [10] demonstrated that there exist
classes of Orlicz sequence spaces �M containing one-complemented subspaces which are
not even isomorphic to �M . He showed that for all 1 < a≤ b <∞, there exists a reflexive
Orlicz sequence space �M so that for all p ∈ [a,b], there is a contractive projection from
�M onto a subspace isomorphic to �p. This implies, in particular, that Orlicz sequence
spaces can have continuum isomorphic types of one-complemented subspaces.

On the other hand, one-complemented subspaces of �p are also characterized as sub-
spaces which are spanned by a family of mutually disjoint elements of �p (see [2, 11]).
Moreover, all known examples of one-complemented subspaces in symmetric Banach
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spaces with one-unconditional bases and sufficiently different from Hilbert spaces are
spanned by a family of mutually disjoint vectors. (Note that, since in Hilbert spaces ev-
ery subspace is one-complemented, it is necessary to include in this context some kind
of an assumption about the space being different from Hilbert space.) In particular, the
above-mentioned examples of Lindberg of one-complemented subspaces of Orlicz se-
quence spaces are spanned by mutually disjoint vectors and the norm-one projection
is an averaging projection. It was shown in [16] that indeed every one-complemented
subspace Y in any complex Banach space X , with a one-unconditional basis (not nec-
essarily symmetric) which does not contain a one-complemented isometric copy of a
two-dimensional Hilbert space �2

2 , has to be spanned by a family of disjointly supported
elements of X and the norm-one projection from X onto Y has to be the averaging pro-
jection. In particular, this holds in complex Orlicz sequence spaces �M equipped with
either the Luxemburg or the Orlicz norm whenM is sufficiently different from the square
function (cf. Remark 3.5).

In the real case, this statement in its full generality is false (cf. [16]). For real spaces, we
only had the following much less satisfactory result describing special one-complemented
subspaces of finite codimension in Orlicz sequence spaces �M .

Theorem 1.1 [17, Theorem 7]. Let M be an Orlicz function such that M satisfies condition
∆2 at zero, M(t) > 0 for all t > 0 and M is not similar to t2 (it is said that M is similar to
t2 if there exist constants C, t0 so that M(t)= Ct2 for all t < t0). Let �M be the Orlicz space
equipped with either the Luxemburg or the Orlicz norm and F ⊂ �M a subspace of finite
codimension. If F contains at least one basis vector and F is one-complemented in �M , then
F is spanned by a family of disjointly supported vectors.

In the present paper, we prove a much stronger result—we eliminate all additional as-
sumptions on F. We show that when M is a sufficiently smooth Orlicz function which
satisfies condition ∆2 and is sufficiently different from the square function, then every
one-complemented subspace of the real Orlicz space �M is spanned by a family of mutu-
ally disjoint vectors and every norm-one projection in �M is an averaging projection (see
Theorem 3.3 and Corollary 3.4). Here we measure smoothness of M using AC1 and AC2

classes introduced by Maleev and Troyanski [12], and the condition for M to be different
from a square function is essentially a requirement that the second derivative M′′ of M
cannot have a finite nonzero limit at zero.

Moreover, using [16, Theorem 6.1], it follows that if, in addition, �M is not isomorphic
to �p for any p ∈ [1,∞), then every one-complemented subspace of �M is spanned by
a block basis with constant coefficients, that is, by mutually disjoint finitely supported
elements vj in �M of the form vj =

∑
i∈suppvj εiei, where εi = ±1 and (ei)i is the standard

basis of �M .
Our results are valid in Orlicz spaces equipped with either the Luxemburg or the Orlicz

norm. Our method of proof is different from that of [17]; it relies on new results charac-
terizing averaging projections through properties related to and generalizing disjointness-
preserving operators [15].

Recently, Jamison et al. [7] obtained (using different techniques) a generalization of
Theorem 1.1 in another direction—they characterized one-complemented subspaces of
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finite codimension in sufficiently smooth Musielak-Orlicz sequence spaces, whose Orlicz
function is sufficiently different from the square function.

We follow standard definitions and notations as may be found in [8, 11]. Throughout
the paper, unless otherwise noted, all spaces are over R.

2. Preliminary definitions

Below we recall the basic definitions and facts about Orlicz spaces that will be important
for the present paper, as may be found, for example, in [3, 8, 20].

We say that a function M : R→ [0,∞) is an Orlicz function if M is even, continu-
ous, convex,M(0)= 0,M(1)= 1, limu→0M(u)/u= 0, and limu→∞M(u)/u=∞. Note that
since the Orlicz function M is convex, it has the right derivative M′. Let q be the right in-
verse of M′ (i.e., q(s) = sup{t : M′(t) ≤ s}). Then we define the complementary function
of M by

M∗(v)=
∫ |v|

0
q(s)ds. (2.1)

Function M∗ is also an Orlicz function.
We say that the Orlicz function M satisfies the ∆2 condition near zero (M ∈ ∆2) if there

exist constants k > 0 and u0 ≥ 0 such that M(u0) > 0 and for all u with |u| ≤ u0,

M(2u)≤ kM(u). (2.2)

Note that M ∈ ∆2 does not imply that M∗ ∈ ∆2.
The Orlicz function M generates the modular defined for scalar sequences x = (xj) j∈N

by

ρM(x)=
∞∑
j=1

M
(
xj
)
. (2.3)

The Orlicz sequence space �M is the space of sequences x such that there exists λ > 0 with
ρM(λx) <∞. If M ∈ ∆2, then �M = {x : ρM(λx) <∞ for all λ ∈ R}. The Orlicz sequence
space �M is usually equipped with one of the following two equivalent norms:

(1) the Luxemburg norm defined by

‖x‖M = inf
{
λ : ρM

(
x

λ

)
≤ 1
}

, (2.4)

(2) the Orlicz norm defined by

‖x‖OM = sup

{ ∞∑
j=1

xj y j : ρM∗(y)≤ 1

}
. (2.5)

If M ∈ ∆2, then these norms are dual to each other in the following sense:(
�M ,‖ · ‖M

)∗ = (�M∗ ,‖ · ‖OM∗
)
, (2.6)(

�M ,‖ · ‖OM
)∗ = (�M∗ ,‖ · ‖M∗

)
. (2.7)
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We say that two Orlicz functions M1 and M2 are equivalent at zero if there exist u0 > 0,
k, l > 0, and C > 0 such that M1(u0) > 0 and for all u with |u| ≤ u0,

C−1M2(ku)≤M1(u)≤ CM2(lu). (2.8)

Recall that M1 and M2 are equivalent at zero if and only if �M1 = �M2 (as sets) and
the identity mapping is an isomorphism (in either norm) [11]. We note that if M ∈ ∆2,
then every Orlicz function M1 equivalent to M also satisfies M1 ∈ ∆2. Krasnosel’skiı̆ and
Rutickiı̆ proved the following characterization of the ∆2-condition at zero in terms of the
right derivative M′ of M.

Proposition 2.1 [8, Theorem 4.1]. Let M be an Orlicz function. Then M ∈ ∆2 if and only
if there exist constants α and u0 ≥ 0 such that for 0≤ u≤ u0,

uM′(u)
M(u)

< α, (2.9)

where M′ is the right derivative of M. Moreover, if (2.9) is satisfied, then M(2u)≤ 2αM(u)
for 0≤ u≤ u0/2.

In [18], we introduced another condition which on one hand is very similar to (2.9),
but on the other hand is in its nature of “smoothness type,” as we explain below.

Definition 2.2. Let M ∈ ∆2 be a twice differentiable Orlicz function. Function M satisfies
condition ∆2+ near zero if there exist constants β > 0 and u0 ≥ 0 such that for all u≤ u0,

uM′′(u)
M′(u)

< β. (2.10)

As proved in [18], condition ∆2+ is of “smoothness type” in the following sense:

(i) for every Orlicz functionM ∈ ∆2, there exists an equivalent Orlicz functionM1 ∈
∆2+; (however, we do not know whether for every ε > 0, it is possible to choose
M1 so that it is (1 + ε)-equivalent with M),

(ii) for every Orlicz function M ∈ ∆2+, there exists an equivalent (even up to an
arbitrary ε > 0) Orlicz function M1 
∈ ∆2+.

We say that a Banach space X is smooth if every element x ∈ X has a unique norm-
ing functional x∗ ∈ X∗, that is, the functional with the property that ‖x∗‖2

X∗ = ‖x‖2
X =

x∗(x). If M ∈ ∆2, then an Orlicz space �M (with either norm) is smooth whenever M is
differentiable everywhere (cf. [3, 4]). Maleev and Troyanski [12] considered a stronger
notion of smoothness in Orlicz spaces which guarantees the differentiability of the norm.
We recall the relevant definitions and results.

Definition 2.3 (see [13], cf. [11, page 143]). To every Orlicz function M, the following
Matuszewska-Orlicz index is associated:

α0
M = sup

{
p : sup

{
M(λt)
tpM(λ)

: λ, t ∈ (0,1]
}
<∞

}
. (2.11)
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Definition 2.4 [12]. An Orlicz function M belongs to the class ACk at zero (M ∈ACk) if

(i) α0
M > k,

(ii) M(k) is absolutely continuous in every finite interval,
(iii) tk+1|M(k+1)(t)| ≤ cM(ct) a.e. in [0,∞) for some c > 0.

Definition 2.5. Let X , Y be Banach spaces. The function ϕ : X → Y is said to be k-times
differentiable at x ∈ X if for every j, 1 ≤ j ≤ k, there exists a continuous symmetric

j-linear form T
j
x : X ×···×X = X ( j) → Y so that

ϕ(x+αy)= ϕ(x) +
k∑
j=1

αjT
j
x(y, . . . , y) + σx

(|α|k) (2.12)

uniformly on y from the unit sphere S(X) of X .
For an open set V ⊂ X , ϕ ∈ Fk(V ,Y) means that ϕ is k-times differentiable at every

point of V . If (2.12) is fulfilled uniformly on x over a set W ⊂ V , we will say that ϕ is
k-times uniformly differentiable over W and will write ϕ ∈ UFk(W ,Y). We say that X is
UFk-smooth if the norm in X belongs to UFk(S(X),R).

Maleev and Troyanski proved the following results.

Theorem 2.6 [12, Theorem 6]. Let M be an Orlicz function such that M ∈ ∆2 and M ∈
ACk. Then �M equipped with the Luxemburg norm is UFk-smooth.

Theorem 2.7 [12, Corollary 10]. Let M be an Orlicz function with M ∈ ∆2. Then for every
k ∈N such that k < α0

M , there exists an Orlicz function M̃ equivalent to M at zero so that �M̃
(with the Luxemburg norm) is UFk-smooth. (In particular, �M̃ is isomorphic to �M .)

It is well known (see, e.g., [3]) that any Orlicz function M can be “smoothed out,”
that is, for any M, there exists an equivalent Orlicz function M1 such that M1 is twice
differentiable everywhere,M′′

1 is continuous on R, andM′′
1 (u) > 0 for all u > 0. Moreover,

given any ε > 0, it is possible to choose M1 so that �M and �M1 are (1 + ε)-isomorphic to
each other [3]. However, we do not know whether in Theorem 2.7, it is possible for any
ε > 0 to select M̃ so that �M and �M̃ are (1 + ε)-isomorphic or not.

Recall that a Banach lattice X is called strictly monotone if ‖x+ y‖ > ‖x‖ for all x, y ≥ 0,
y 
= 0, in X . An Orlicz space �M with the Luxemburg norm is strictly monotone whenever
M ∈ ∆2 (cf. [9]).

Next, we recall some facts about contractive projections and about disjointness in Or-
licz spaces that we will need.

If X is a Banach space with a one-unconditional basis {en}n∈N and x =∑n∈N xnen ∈ X ,
then the support of x is defined as suppx = {n∈N : xn 
= 0}. We say that elements x, y ∈ X
are disjoint if suppx∩ supp y =∅. We say that a projection P on a Banach space with a
one-unconditional basis is an averaging projection if there exist mutually disjoint elements
{uj} j∈J in X and functionals {u∗j } j∈J in X∗ so that u∗j (uk)= 0 if j 
= k, u∗j (uj)= 1 for all
j ∈ J , and for each f ∈ X ,

P f =
∑
j∈J
u∗j ( f )uj . (2.13)



138 Contractive projections in Orlicz sequence spaces

In [15], we introduced two abstract conditions relevant for the study of averaging
projections. Namely, if X is a Banach space with a one-unconditional basis and P : X → X
is a linear operator on X , we say that the operator P is semi-band preserving if for all
f ,g ∈ X ,

supp(P f )∩ supp(g)=∅=⇒ supp(P f )∩ supp(Pg)=∅, (2.14)

and we say that P is semi-containment preserving if for all f ,g ∈ X ,

suppg ⊂ suppP f =⇒ suppPg ⊂ suppP f . (2.15)

It is clear that all averaging projections are both semi-band preserving and semi-
containment preserving. In [15], we proved that in certain situations, these conditions
characterize averaging projections among contractive projections. Namely, we have the
following theorem.

Theorem 2.8 [15]. Let X be a purely atomic strictly monotone Banach lattice and let
P : X → X be a norm-one projection which is semi-band preserving or semi-containment
preserving. Then P is an averaging projection.

Next, we recall conditions which partially describe disjointness and containment of
supports of elements in Orlicz spaces.

Proposition 2.9 [18, Proposition 3.1]. Let M be an Orlicz function with M ∈ ∆2+ and
such that M′′ is continuous on [0,∞), M′′(0)= 0, and M′′(t) > 0 for all t > 0. Let f ,g ∈ �M
and N(α)= ‖ f +αg‖M . Then

(a) if f , g are disjoint and card(suppg) <∞, then N ′(0)= 0 and N ′′(α)→ 0, as α→ 0
along a subset of [0,1] of full measure;

(b) if N ′(0)= 0 and N ′′(α)→ 0, as α→ 0 along a subset of [0,1] of full measure, then f ,
g are disjoint.

Proposition 2.10 [18, Proposition 4.1]. Let M be an Orlicz function with M ∈ ∆2+ and
such that M′′ is continuous on (0,∞) with limt→0M′′(t) =∞. Let f ,g ∈ �M with f ,g 
= 0
and N(α)= ‖ f +αg‖M . Then

(a) if card(suppg \ supp f ) > 0, then N ′′(α)→∞, as α→ 0 along a subset of [0,1] of full
measure;

(b) if g is simple (i.e., card(suppg) <∞) and suppg ⊂ supp f , then there exist a subset
E of [0,1] of full measure and C > 0 such that for all α∈ E, N ′′(α)≤ C.

Remark 2.11. We stress that the theorems in [18] are proven for Orlicz spaces equipped
with the Luxemburg norm, and the analogs of most of the results from [18] are false in
Orlicz spaces equipped with the Orlicz norm.

Remark 2.12. We note here that all the theorems in [18] were formulated and proved for
Orlicz function spaces LM , whereM is an Orlicz function satisfying conditions∆2 and∆2+

near infinity. However, to adapt to the case of Orlicz sequence spaces �M , where M is an
Orlicz function satisfying conditions ∆2 and ∆2+ near zero, the proofs require only very
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minor changes, if any. We omit the details, which are routine but require cumbersome
notation.

Finally we recall a result from [16] which describes the form of two-dimensional one-
complemented subspaces of Orlicz sequence spaces when the two spanning elements have
disjoint supports. This result will allow us to give a very detailed description of one-
complemented subspaces of any dimension of Orlicz sequence spaces.

Theorem 2.13 [16, Theorem 6.1]. Let M be an Orlicz function with M ∈ ∆2, let �M be
a (real or complex) Orlicz sequence space equipped with either the Luxemburg or the Or-
licz norm, and let x, y ∈ �M be disjoint norm-one elements such that span{x, y} is one-
complemented in �M . Then one of the following three possibilities holds:

(1) card(suppx) <∞ and |xi| = |xj| for all i, j ∈ suppx;
(2) there exists p ∈ [1,∞) such that M(t)= Ctp for all t ≤ ‖x‖∞; or
(3) there exists p ∈ [1,∞) and constants C1,C2 ≥ 0 such that C2tp ≤M(t)≤ C1tp for all

t ≤ ‖x‖∞ and there exists γ > 0 such that, for all j ∈ suppx,

∣∣xj∣∣∈ {γm · ‖x‖∞ :m∈ Z
}
. (2.16)

We note that it follows from Theorem 2.13 that if the Orlicz space �M is not isomor-
phic to �p for any p ∈ [1,∞), then the possibility (1) has to hold. Hence every one-
complemented disjointly supported subspace of any dimension of �M needs to be spanned
by mutually disjoint finitely supported elements vj in �M of the form vj =

∑
i∈suppvj εiei,

where εi =±1 and (ei)i is the standard basis of �M .

3. Main results

We start from a key technical lemma which will allow us to apply Propositions 2.9 and
2.10 to study whether contractive projections in Orlicz sequence spaces are semi-band
preserving or semi-containment preserving.

Lemma 3.1. Let ϕ,ψ : R→ [0,∞) be convex functions, differentiable everywhere, and such
that ϕ(0)= ψ(0) and ϕ(α)≤ ψ(α) for all α∈R. Then

(i) ψ′(0)= ϕ′(0);
(ii) if ϕ′′(0), ψ′′(0) exist and ψ′′(0)= 0, then ϕ′′(0)= 0;

(iii) suppose that ϕ′ and ψ′ are absolutely continuous on [0,1] and that ϕ′′(α)→∞, as
α→ 0 along a subset of [0,1] of full measure. Then for every C > 0,

µ
({
α∈ [0,1] : ψ′′(α) exists and ψ′′(α)≤ C}) < 1. (3.1)

Proof. To prove (i), observe that, since ϕ(0)= ψ(0), we have for all α∈R, ϕ(α)−ϕ(0)≤
ψ(α)−ψ(0). Thus for α > 0,

ϕ(α)−ϕ(0)
α

≤ ψ(α)−ψ(0)
α

, (3.2)
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and for α < 0,

ϕ(α)−ϕ(0)
α

≥ ψ(α)−ψ(0)
α

. (3.3)

Since ϕ′(0) and ψ′(0) exist, we have, by (3.2),

ϕ′(0)= lim
α→0+

ϕ(α)−ϕ(0)
α

≤ lim
α→0+

ψ(α)−ψ(0)
α

= ψ′(0), (3.4)

and, by (3.3),

ϕ′(0)= lim
α→0−

ϕ(α)−ϕ(0)
α

≥ lim
α→0−

ψ(α)−ψ(0)
α

= ψ′(0). (3.5)

Thus ϕ′(0)= ψ′(0) and (i) is proved.
To prove (ii), we consider the set A= {α > 0 : ϕ′(α)= ψ′(α)}.
If inf{α ∈ A} = 0, then there exists a sequence {αn}∞n=1 ⊂ A so that limn→∞αn = 0.

Since ϕ′′(0) and ψ′′(0) exist, and by (i), we obtain

ϕ′′(0)= lim
n→∞

ϕ′
(
αn
)−ϕ′(0)
αn

= lim
n→∞

ψ′(αn)−ψ′(0)
αn

= ψ′′(0)= 0, (3.6)

so (ii) is proved.
If inf{α∈A} > 0 (this includes the case that A=∅ and then we say inf{α∈A} =∞ >

0), then there exists ε, 0 < ε < inf{α∈ A}, so that ϕ′(α) 
= ψ′(α) for all α∈ (0,ε).
Let h = ψ −ϕ. Then h(α) ≥ 0 for all α ∈ R, h(0) = 0, and h′(α) 
= 0 for all α ∈ (0,ε).

Since h′ satisfies the Darboux property, we get either

h′(α) > 0 ∀α∈ (0,ε), (3.7)

or

h′(α) < 0 ∀α∈ (0,ε). (3.8)

But h(0)= 0 and h(ε)≥ 0, so by the mean value theorem, there exists α0 ∈ (0,ε) so that
h′(α0)= h(ε)/ε ≥ 0. Thus (3.7) has to hold. This implies that since h′′(0) exists, h′′(0)≥
0. This means that 0 = ψ′′(0) ≥ ϕ′′(0). Since ϕ is convex, we also get ϕ′′(0) ≥ 0. Thus
ϕ′′(0)= 0 and (ii) is proved.

To prove (iii), we denote E1 = {α ∈ [0,1] : ϕ′′(α) exists}. Since ϕ and ψ are convex,
µ(E1)= 1. Without loss of generality, we can also assume that

ϕ′′(α)−→∞ as α−→ 0, α∈ E1. (3.9)

Suppose, for contradiction, that there exists C > 0 so that the set E2 = {α ∈ [0,1] :
ψ′′(α) exists and ψ′′(α)≤ C} has full measure. Let E = E1∩E2. By (3.9), there exists ε > 0
so that

ϕ′′(α) > C for every α∈ E∩ (0,ε). (3.10)
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Now consider the set A = {α > 0 : ϕ′(α) = ψ′(α)} similarly as we did in the proof of
(ii). If inf{α∈A} = 0, then there exist α1,α2 ∈ (0,ε) so that α1 
= α2 and

ϕ′
(
α1
)= ψ′(α1

)
, ϕ′

(
α2
)= ψ′(α2

)
. (3.11)

But, since ϕ′ is absolutely continuous on [0,1], and by (3.10), we also have

ϕ′
(
α1
)−ϕ′(α2

)= ∫ α2

α1

ϕ′′(α)dα=
∫

[α1,α2]∩E
ϕ′′(α)dα > C

(
α1−α2

)
. (3.12)

On the other hand, by the absolute continuity of ψ′ on [0,1] and the definition of E2,
we have

ψ′
(
α1
)−ψ′(α2

)= ∫ α2

α1

ψ′′(α)dα=
∫

[α1,α2]∩E
ψ′′(α)dα≤ C(α1−α2

)
. (3.13)

This is a contradiction since (3.11) implies that ϕ′(α1)−ϕ′(α2)= ψ′(α1)−ψ′(α2).
Now we consider the case that inf{α∈ A} 
= 0, that is, inf{α∈ A} > 0 (this, as in (ii),

includes the possibility thatA=∅ in which case we say that inf{α∈A} =∞). We showed
in the proof of (ii) (cf. (3.7)) that in this case, there exists ε1, 0 < ε1 < inf{α∈ A}, so that

ψ′(α) > ϕ′(α) ∀α∈ (0,ε1
)
. (3.14)

By (i), ϕ′(0) = ψ′(0). Let α0 ∈ (0,ε)∩ (0,ε1). Then, similarly as in the previous case,
since ϕ′ is absolutely continuous on [0,1], by (3.10), we obtain

ϕ′
(
α0
)−ϕ′(0)=

∫ α0

0
ϕ′′(α)dα=

∫
[0,α0]∩E

ϕ′′(α)dα > Cα0. (3.15)

On the other hand, again by the absolute continuity of ψ′ and the definition of E2,

ψ′
(
α0
)−ψ′(0)=

∫ α0

0
ψ′′(α)dα=

∫
[0,α0]∩E2

ψ′′(α)dα≤ Cα0. (3.16)

Thus ψ′(α0) < ϕ′(α0), which contradicts (3.14) and ends the proof of (iii). �

We are now ready for our main results.

Theorem 3.2. Let M be an Orlicz function with M ∈ ∆2+ and let P be a contractive pro-
jection on the real Orlicz sequence space �M equipped with the Luxemburg norm. Then the
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following hold:

(a) if M ∈AC2, M′′(0)= 0, and M′′(t) > 0 for all t > 0, then P is semi-band preserving;
(b) if M ∈ AC1 near zero, M′′ is continuous on (0,∞), and limt→0M′′(t)=∞, then P is

semi-containment preserving.

Proof. Since bounded functions with finite supports are linearly dense in �M , to show that
P is semi-band preserving or semi-containment preserving, respectively, it is enough to
verify that (2.14) or (2.15), respectively, are satisfied with the additional assumption that
g is a bounded function and card(suppg) <∞.

For any functions f ,g ∈ �M , we define

ψ(α)= ‖P f +αg‖M , ϕ(α)= ‖P f +αPg‖M (3.17)

for all α∈R. Then ϕ and ψ are convex functions and ψ(0)= ‖P f ‖ = ϕ(0). Moreover, by
Theorem 2.6, in both cases (a) and (b), ϕ and ψ are differentiable everywhere. Since P is
a contractive projection, we also get ϕ(α)≤ ψ(α) for all α∈R.

Now to prove (a), assume that card(suppg) <∞ and supp(g)∩ supp(P f )=∅. Since
M ∈ AC2, by Theorem 2.6, ϕ′′(0) and ψ′′(0) exist. By Proposition 2.9(a), we get ψ′(0)=
0 and ψ′′(0) = 0. Hence by Lemma 3.1(i) and (ii), ϕ′(0) = 0 and ϕ′′(0) = 0. Thus, by
Proposition 2.9(b), we get that P f and Pg have disjoint supports, which proves that P is
semi-band preserving.

To prove (b), assume, for contradiction, that there exist f ,g∈�M so that card(suppg) <
∞, supp(g)⊆ supp(P f ), and supp(Pg) 
⊆ supp(P f ). Note that since M ∈ AC1, by Theo-
rem 2.6, functions ϕ and ψ are differentiable everywhere, ϕ′,ψ′ are absolutely continuous,
and ϕ′′,ψ′′ exist almost everywhere. Further, by Proposition 2.10(b), there exists a subset
E of [0,1] of full measure and C0 > 0 such that for all α∈ E,

ψ′′(α)≤ C0. (3.18)

On the other hand, by Proposition 2.10(b), ψ′′(α) →∞, as α→ 0 along a subset of
[0,1] of full measure. Hence, by Lemma 3.1(iii) for every C > 0, (3.1) holds. This contra-
dicts (3.18) and ends the proof of part (b). �

As a consequence, we obtain the characterization of contractive projections in Orlicz
sequence spaces.

Theorem 3.3. LetM be an Orlicz function withM ∈ ∆2+ and satisfying one of the following
two conditions:

(i) M ∈AC2, M′′(0)= 0, and M′′(t) > 0 for all t > 0; or
(ii) M ∈AC1, M′′ is continuous on (0,∞), and limt→0M′′(t)=∞.

Let P be a contractive projection on the real Orlicz sequence space �M equipped with
the Luxemburg norm. Then P is an averaging projection, that is, there exist mutually dis-
joint elements {uj} j∈J in �M and functionals {u∗j } j∈J in (�M)∗ so that u∗j (uk)= 0 if j 
= k,
u∗j (uj) = 1 for all j ∈ J , and for each f ∈ �M , (2.13) holds. Moreover, one of the following
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three possibilities holds:

(1) card(suppuj) <∞ for each j ∈ J , and |(uj)k| = |(uj)l| for each k, l ∈ supp(uj), j ∈
J . (Here uj =

∑
k∈suppuj (uj)kek);

(2) there exist p ∈ (1,∞) \ {2} and C ∈R so thatM(t)= Ctp for all t ≤ sup j∈J ‖uj‖∞(≤
∞); or

(3) there exist p ∈ (1,∞) \ {2} and constants C1,C2,γ > 0 so that C2tp ≤M(t) ≤ C1tp

for all t ≤ sup j∈J ‖uj‖∞(≤∞), ‖uj‖∞ <∞ for all j ∈ J , and for all j ∈ J and k ∈
supp(uj), ∣∣(uj)k∣∣∈ {γm ·∥∥uj∥∥∞ :m∈ Z

}
. (3.19)

Proof. Note first that either condition (i) or (ii) implies that �M is smooth. Since M ∈ ∆2,
�M is strictly monotone. Hence the fact that P is an averaging projection follows immedi-
ately from Theorems 2.8 and 3.2.

The moreover part follows directly from Theorem 2.13. Indeed, since the elements
{uj} j∈J are mutually disjoint, for any j1, j2 ∈ J and any f ∈ �M , we have

∥∥u∗j1 ( f )uj1 +u∗j2 ( f )uj2
∥∥≤ ∥∥∥∥∥∑

j∈J
u∗j ( f )uj

∥∥∥∥∥= ‖P f ‖ ≤ ‖ f ‖. (3.20)

Thus the projection Q : �M → span{uj1 ,uj2} defined by Q f = u∗j1 ( f )uj1 + u∗j2 ( f )uj2 has
‖Q‖ = 1. Thus, by Theorem 2.13, conditions (1), (2), and (3) in the statement of Theorem
3.3 are satisfied. �

By duality, we also obtain the description of contractive projections in real Orlicz se-
quence spaces equipped with the Orlicz norm.

Corollary 3.4. Let M be an Orlicz function with M ∈ ∆2, M∗ ∈ ∆2+, satisfying one of the
following two conditions:

(i∗) M∗ ∈ AC2,M′′ is continuous on (0,∞),M′′(t) > 0 for all t > 0, and limt→0M′′(t)=
∞; or

(ii∗) M∗ ∈ AC1, M′′ is continuous on [0,∞), M′′(t) > 0 for all t > 0, and M′′(0)= 0.

Let P be a contractive projection on the real Orlicz sequence space �M equipped with the
Orlicz norm. Then P has the form described in Theorem 3.3.

Proof. This follows from Theorem 3.3 by duality. Indeed, since M ∈ ∆2, by (2.7) we have
(�M ,‖ · ‖OM)∗ = (�M∗ ,‖ · ‖M∗) and the dual projection P∗ is contractive in �M∗ equipped
with the Luxemburg norm. Further, either of the conditions (i∗) or (ii∗) implies that M∗

is smooth, so the only thing that needs to be verified is that condition (i∗) implies that
M∗ satisfies condition (i) and condition (ii∗) implies that M∗ satisfies condition (ii) of
Theorem 3.3.

For that, note that by the definition of the complementary function M∗ and since in
either case (i∗) or (ii∗), M′′(t) > 0 for t > 0, we have, for all t > 0,

(
M∗)′′(t)= 1

M′′((M∗)′(t)) . (3.21)
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Since M′′ and (M∗)′ are both continuous on (0,∞) in either case (i∗) or (ii∗), we
conclude that also (M∗)′′ is continuous on (0,∞) and (M∗)′′(t) > 0 for all t > 0.

Moreover, since limt→0(M∗)′(t)= (M∗)′(0)= 0, we have in case (i∗)

lim
t→0

(
M∗)′′(t)= lim

t→0

1

M′′((M∗)′(t)) = lim
s→0

1
M′′(s)

= 0. (3.22)

It is not difficult to check that this implies that (M∗)′′(0)= 0. Therefore, condition (i)
is implied by (i∗).

Similarly, in case (ii∗), we have

lim
t→0

(
M∗)′′(t)= lim

t→0

1

M′′((M∗)′(t)) = lim
s→0

1
M′′(s)

=∞. (3.23)

So condition (ii) is implied by (ii∗).
Hence, by Theorem 3.3, in either case (i∗) or (ii∗), P∗, and thus also P, have the form

(2.13) and the conditions (1), (2), and (3) from Theorem 3.3 hold. �

Remark 3.5. We do not know whether the assumption about smoothness of M is neces-
sary for Theorem 3.3 and Corollary 3.4 to hold or not. We suspect that, similarly as in the
complex case, smoothness of M should not be necessary.

However it is clear that some assumption about a behavior of M′′ near zero is neces-
sary. Indeed in [16, Example 3], we showed that if a∈ (

√
2/3,1) and

Ma(t)=
t2 if 0≤ t ≤ a,

(1 + a)t− a if a≤ t ≤ 1,
(3.24)

then the real or complex four-dimensional Orlicz space �4
Ma

equipped with either the
Luxemburg or the Orlicz norm contains a two-dimensional one-complemented isometric
copy of �2

2 which cannot be spanned by a family of disjoint vectors from �4
Ma

. It is not
difficult to adjust this example so that if a is any positive number, then the real or complex
Orlicz space �Ma (of infinite dimension) contains a two-dimensional one-complemented
isometric copy of �2

2 which cannot be spanned by a family of disjoint vectors from �Ma .
It would be interesting to characterize what condition on M is equivalent to the fact

that �M (complex or real) does not contain a two-dimensional one-complemented iso-
metric copy of �2

2 (which cannot be spanned by a family of disjoint vectors from �M).
Either of the conditions (i), (ii), (i∗), or (ii∗) is clearly sufficient, but they all involve
smoothness. We conjecture that the right condition is that for all a > 0, the function
M(t)/t2 is not constant on the interval (0,a).
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