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We give an abstract interpretation of initial boundary value problems for hyperbolic
equations such that a part of initial boundary value conditions contains also a differ-
entiation on the time t of the same order as equations. The case of stable solutions of
abstract hyperbolic equations is treated. Then we show applications of obtained abstract
results to hyperbolic differential equations which, in particular, may represent the lon-
gitudinal displacements of an inhomogeneous rod under the action of forces at the two
ends which are proportional to the acceleration.

1. Introduction

The first attempt to give an abstract interpretation of hyperbolic problems such that a
part of boundary value conditions may contain the differentiation on the time was done
in [8] for almost periodic solutions and oscillations decay cases, and in [5] for hyperbolic
differential-operator equations on a finite interval. In this paper, we continue this study to
the case of differential-operator equations on a whole axis. In particular, we find sufficient
conditions for which the solution of the considered problems is stable.

Let H and F be Hilbert spaces. The set H ⊕ F of all vectors of the form (u,v) where
u∈H and v ∈ F, with usual coordinatewise linear operations and the norm

∥∥(u,v)
∥∥
H⊕F := (‖u‖2

H +‖v‖2
F

)1/2
(1.1)

is a Hilbert space and called the orthogonal sum of Hilbert spaces H and F.
For the operator A closed in a Hilbert space H , the domain D(A) is turned into a

Hilbert space H(A) with respect to the norm

‖u‖H(A) := (‖u‖2 +‖Au‖2)1/2
. (1.2)

If H1 and H are two Hilbert spaces where H1 ⊂H , then H1 can be represented as the
domain D(S) = H1 of a suitable positive definite selfadjoint operator S in H (see, e.g.,
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[4, Remark 1.18.10/3]). Then, by [4, Theorem 1.18.10], the interpolation space

(
H1,H

)
θ,2 =H

(
S1−θ). (1.3)

2. Hyperbolic differential-operator equations

We give, in this section, an abstract interpretation of initial boundary value problems
for hyperbolic equations such that a part of boundary value conditions contains also the
differentiation on the time t.

Let H and Hν, ν= 1, . . . ,s, be Hilbert spaces. Consider the following Cauchy problem
(abstract “initial boundary value problem”):

L
(
Dt
)
u := u′′(t) +Bu(t)= 0, (2.1a)

Lν
(
Dt
)
u := (Aν0u(t)

)′′
+Aν2u(t)= 0, ν= 1, . . . ,s, (2.1b)

u(0)= u0, u′(0)= u1, (2.1c)

where t ∈R; B is an operator in H ; Aν0 and Aν2 are operators from a subspace of H into
Hν; and u(t) from R into H is an unknown function. Note that operators B, Aν0, and Aν2

are, generally speaking, unbounded.
A function u(t) is called a solution of problem (2.1) if the function t→(u(t),A10u(t), . . . ,

As0u(t)) from R into H ⊕H1⊕···⊕Hs is twice continuously differentiable, from R into
H(B)⊕H1⊕···⊕Hs is continuous, and u(t) satisfies (2.1).

We say that problem (2.1) is stable if each of its solution u(t) with u0 ∈ H(B), u1 ∈
H(B), is bounded, that is,

∥∥u(t)
∥∥≤ C, t ∈R. (2.2)

Consider a system of operator pencils corresponding to (2.1a) and (2.1b);

L(λ) := λI +B,

Lν(λ) := λAν0 +Aν2, ν= 1, . . . ,s,
(2.3)

where λ is a complex number.

Theorem 2.1. Let the following conditions be satisfied:

(1) B is a closed operator in a Hilbert space H with a dense domain D(B); the embedding
H(B)⊂H is compact;

(2) the operators Aν0 from (H(B),H)1/2,2 into Hν act boundedly and Aν2, ν = 1, . . . ,s,
from H(B) into Hν act boundedly;

(3) the linear manifold {v | v := (u,A10u, . . . ,As0u), u ∈ D(B)} is dense in the Hilbert
space H ⊕H1⊕···⊕Hs;
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(4) for all u∈D(B), v ∈D(B),

(Bu,v)H +
(
A12u,A10v

)
H1 + ···+

(
As2u,As0v

)
Hs

= (u,Bv)H +
(
A10u,A12v

)
H1 + ···+

(
As0u,As2v

)
Hs ;

(2.4)

(5) for all u∈D(B),

0≤ (Bu,u)H +
(
A12u,A10u

)
H1 + ···+

(
As2u,As0u

)
Hs ≤ C‖u‖2

(H(B),H)1/2,2
; (2.5)

(6) some real number λ0 is a regular point for the operator pencil L(λ): u→ L(λ)u :=
(L(λ)u,L1(λ)u, . . . ,Ls(λ)u), which acts boundedly from H(B) onto H⊕H1⊕···⊕Hs;

(7) (u1,A10u1, . . . ,As0u1)∈ Im(B1/2), where

D(B) := {v | v := (u,A10u, . . . ,As0u
)
, u∈D(B)

}
,

B
(
u,A10u, . . . ,As0u

)
:= (Bu,A12u, . . . ,As2u

) (2.6)

is an operator in the Hilbert space � :=H ⊕H1⊕···⊕Hs and from condition (5),
it follows that (Bv,v)≥ 0, for all v ∈D(B);

(8) u0 ∈H(B), u1 ∈ (H(B),H)1/2,2.

Then there exists a unique solution u(t) of problem (2.1) such that the function t →
(u(t),A10u(t), . . . ,As0u(t)) from R into H ⊕H1 ⊕ ··· ⊕Hs is twice continuously differen-
tiable, and from R into H(B)⊕H1 ⊕ ···⊕Hs is continuous, and for t ∈ R, the following
estimate holds:

∥∥u(t)
∥∥+

∥∥u′′(t)∥∥+
s∑

ν=1

∥∥(Aν0u(t)
)′′∥∥

Hν +
∥∥Bu(t)

∥∥
≤ C

(∥∥Bu0
∥∥+

∥∥u0
∥∥+

∥∥u1
∥∥

(H(B),H)1/2,2

)
,

(2.7)

consequently, problem (2.1) is stable.

Proof. Consider, in the Hilbert space � :=H ⊕H1⊕···⊕Hs, the above-mentioned op-
erator B. Then the Cauchy problem

v′′(t) + Bv(t)= 0,

v(0)= v0, v′(0)= v1,
(2.8)

is equivalent to the Cauchy problem (2.1), where v0 := (u0,A10u0, . . . ,As0u0), v1 := (u1,
A10u1, . . . ,As0u1). Indeed, let u(t) be a solution of problem (2.1). Then, v(t)=(u(t),A10u(t),
. . . ,As0u(t)) is a solution of problem (2.8). Conversely, let v(t) be a solution of problem
(2.8). Since v(t) ∈ D(B), then v(t) := (u(t),A10u(t), . . . ,As0u(t)), where u(t) ∈ D(B), for
all t ∈R. Substituting v(t) into (2.8), we get that u(t) satisfies (2.1).
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By virtue of condition (3), D(B) is dense in �. By virtue of condition (4), for ṽ1 =
(ũ1,A10ũ1, . . . ,As0ũ1)∈D(B), ṽ2 = (ũ2,A10ũ2, . . . ,As0ũ2)∈D(B),

(
Bṽ1, ṽ2

)
� =

(
Bũ1, ũ2

)
H +

(
A12ũ1,A10ũ2

)
H1 + ···+

(
As2ũ1,As0ũ2

)
Hs

= (ũ1,Bũ2
)
H +

(
A10ũ1,A12ũ2

)
H1 + ···+

(
As0ũ1,As2ũ2

)
Hs

= (ṽ1,Bṽ2
)

�.

(2.9)

Consequently, the operator B is symmetric. In turn, equation

λ0v+ Bv = F, F := ( f , f1, . . . , fs
)
, (2.10)

where v = (u,A10u, . . . ,As0u), is equivalent to the system

L
(
λ0
)
u= λ0u+Bu= f ,

Lν
(
λ0
)
u= λ0Aν0u+Aν2u= fν, ν= 1, . . . ,s.

(2.11)

By virtue of condition (6), problem (2.11) has a unique solution

u= L
(
λ0
)−1(

f , f1, . . . , fs
)
. (2.12)

So, a solution of (2.10) has the following form:

v =
(
L
(
λ0
)−1(

f , f1, . . . , fs
)
,A10L

(
λ0
)−1(

f , f1, . . . , fs
)
, . . . ,As0L

(
λ0
)−1(

f , f1, . . . , fs
))
.

(2.13)

Hence, the operator B is closed and the image Im(λ0I + B) =�, where I is the identity
operator in �. By virtue of [3, Chapter Y, Section 3], the operator B is selfadjoint. From
condition (5), it follows that (Bv,v)≥ 0, v ∈D(B). Consequently, the operator B is self-
adjoint and nonnegative. By condition (7), B−1/2v1 is well defined. Then, problem (2.8)
has a unique solution v(t)∈ C2(R;�(B),�) and

v(t)= cos
(
tB1/2)v0 + sin

(
tB1/2)

B
−1/2v1, (2.14)

where cos(tB1/2)v = ∫∞0 cos(tλ1/2)dE(λ)v, sin(tB1/2)v = ∫∞0 sin(tλ1/2)dE(λ)v, and E(λ) is
the spectral decomposition of the selfadjoint operator B.

Obviously, v0 ∈�(B). Show now that v1 ∈�(B1/2). From the definition of the op-
erator B, it follows that �(B) ⊂ H(B)⊕H1 ⊕ ··· ⊕Hs. By Section 1, (�(B),�)1/2,2 =
�(B1/2). Then,

�
(
B

1/2)= (�(B),�)1/2,2 ⊂
(
H(B),H

)
1/2,2⊕H1⊕···⊕Hs. (2.15)
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Assume, first, that v = (u,A10u, . . . ,As0u) ∈ D(B), that is, u ∈ D(B). Then, by virtue of
conditions (2) and (5) and the property of interpolation spaces: �(B)⊂ (�(B),�)1/2,2 ⊂
�, we get

‖v‖2
�(B1/2) =

∥∥B1/2v
∥∥2

� +‖v‖2
� =

(
B

1/2v,B1/2v
)

� + (v,v)� = (Bv,v)� + (v,v)�

= (Bu,u)H +
s∑

ν=1

(
Aν2u,Aν0u

)
Hν + (u,u)H +

s∑
ν=1

(
Aν0u,Aν0u

)
Hν

≤ C‖u‖2
(H(B),H)1/2,2

.

(2.16)

Now, v1 := (u1,A10u1, . . . ,As0u1), where u1 ∈ (H(B),H)1/2,2. Then, there exists a se-
quence un ∈H(B) such that

lim
n→∞

∥∥un−u1
∥∥

(H(B),H)1/2,2
= 0, (2.17)

since the space H(B) is dense in (H(B),H)1/2,2. Moreover, un is a fundamental sequence,
that is, limn→∞‖un−um‖(H(B),H)1/2,2 = 0. By (2.16), we get

∥∥vn− vm
∥∥

�(B1/2) ≤ C
∥∥un−um

∥∥
(H(B),H)1/2,2

, (2.18)

where vn = (un,A10un, . . . ,As0un). Therefore, the sequence vn is a fundamental in the Hil-
bert space �(B1/2). Hence, vn converges in �(B1/2), that is, there exists v = (u,A10u, . . . ,
As0u)∈�(B1/2) such that limn→∞‖vn− v‖�(B1/2) = 0. In particular,

lim
n→∞

∥∥un−u
∥∥

(H(B),H)1/2,2
= 0. (2.19)

Then, by virtue of (2.17), u= u1 and, therefore, v = v1. Hence, v1 ∈�(B1/2). Moreover,
writing (2.16) for vn and passing to the limit when n→∞, we get that

‖v‖�(B1/2) ≤ C‖u‖(H(B),H)1/2,2 (2.20)

is also true for v = (u,A10u, . . . ,As0u), for all u∈ (H(B),H)1/2,2.
Since

v′(t)=−B
1/2 sin

(
tB1/2)v0 + cos

(
tB1/2)v1,

v′′(t)=−Bcos
(
tB1/2)v0−B

1/2 sin
(
tB1/2)v1,

(2.21)

then

∥∥v(t)
∥∥+

∥∥v′′(t)∥∥+
∥∥Bv(t)

∥∥≤ C
(∥∥v0

∥∥+
∥∥v1

∥∥+
∥∥Bv0

∥∥+
∥∥B1/2v1

∥∥)
≤ C

(∥∥v0
∥∥+

∥∥v1
∥∥

�(B1/2) +
∥∥Bv0

∥∥), t ∈R.
(2.22)

From this, by (2.20) and condition (2), the statement of the theorem follows. �
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Consider now such a formulation of problem (2.1), which allows us to insert the first-
order derivative into (2.1a). Let H and Hν, ν = 1, . . . ,s, be Hilbert spaces. Consider the
following Cauchy problem (abstract initial boundary value problem):

L
(
Dt
)
u := u′′(t) +Au′(t) +Bu(t)= h(t),

Lν
(
Dt
)
u := (Aν0u(t)

)′′
+Aν2u(t)= hν(t), ν= 1, . . . ,s,

u(0)= u0, u′(0)= u1,

(2.23)

where t ≥ 0; A and B are operators in H ; Aν0 and Aν2 are operators from a subspace of H
into Hν; u(t) from [0,∞) into H is an unknown function; h(t) and hν(t) from [0,∞) into
H and Hν, respectively, are given functions. Note that operators A, B, Aν0, and Aν2 are,
generally speaking, unbounded.

Consider, in the Hilbert space � :=H ⊕H1 ⊕ ··· ⊕Hs, operators A and B given by
the equalities

D(A) :=D(A)⊕H1⊕···⊕Hs,

A
(
u,v1, . . . ,vs

)
:= (Au,0, . . . ,0),

D(B) := {v | v := (u,A10u, . . . ,As0u
)
, u∈D(B)

}
,

B
(
u,A10u, . . . ,As0u

)
:= (Bu,A12u, . . . ,As2u

)
.

(2.24)

Theorem 2.2. Let the following conditions be satisfied:

(1) B is an operator in a Hilbert space H with a dense domain D(B); A is an operator in
H with D(A)⊃ (H(B),H)1/2,2; the embedding H(B)⊂H is compact;

(2) the operators Aν0, ν = 1, . . . ,s, from (H(B),H)1/2,2 into Hν act compactly, and the
operators Aν2, ν= 1, . . . ,s, from H(B) into Hν act boundedly;

(3) the linear manifold {v | v := (u,A10u, . . . ,As0u), u ∈ D(B)} is dense in the Hilbert
space H ⊕H1⊕···⊕Hs;

(4) for all u∈D(B), v ∈D(B),

(Bu,v)H +
(
A12u,A10v

)
H1 + ···+

(
As2u,As0v

)
Hs

= (u,Bv)H +
(
A10u,A12v

)
H1 + ···+

(
As0u,As2v

)
Hs ;

(2.25)

(5) for all u∈D(B) and some C, c �= 0,

C‖u‖2
(H(B),H)1/2,2

≥ (Bu,u)H +
(
A12u,A10u

)
H1 + ···+

(
As2u,As0u

)
Hs

≥ c2(‖u‖2
H +

∥∥A10u
∥∥2
H1 + ···+

∥∥As0u
∥∥2
Hs

)
;

(2.26)

(6) some real number λ0 is a regular point for the operator pencil L(λ): u→ L(λ)u :=
((λI +B)u, (λA10 +A12)u, . . . , (λAs0 +As2)u), which acts boundedly from H(B) onto
H ⊕H1⊕···⊕Hs;

(7) A is a skew-symmetric operator in H , that is, A∗u = −Au, u ∈ D(A), and A from
(H(B),H)1/2,2 into H is bounded;
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(8) h ∈W1
p((0,∞);H)∩ L1((0,∞);H), hν ∈W1

p((0,∞);Hν)∩ L1((0,∞);Hν), ν = 1,2,
for some p > 1;

(9) u0 ∈H(B), u1 ∈ (H(B),H)1/2,2.

Then there exists a unique solution u(t) of problem (2.23) such that the function t →
(u(t),A10u(t), . . . ,As0u(t)) from [0,∞) into H ⊕H1⊕···⊕Hs is twice continuously differ-
entiable and from [0,∞) into H(B)⊕H1⊕···⊕Hs is continuous, and for the solution the
following estimate holds:

∥∥u(t)
∥∥

(H(B),H)1/2,2
+
∥∥u′(t)∥∥+

s∑
ν=1

∥∥(Aν0u(t)
)′∥∥

Hν

≤ C

(∥∥u0
∥∥

(H(B),H)1/2,2
+
∥∥u1

∥∥
(H(B),H)1/2,2

+‖h‖L1((0,∞);H) +
2∑

ν=1

∥∥hν

∥∥
L1((0,∞);Hν)

)
, ∀t ≥ 0,

(2.27)

consequently (since H(B)⊂ (H(B),H)1/2,2 ⊂H), problem (2.23) is stable.

Note that substituting t = −τ, τ ≥ 0, one can consider problem (2.23) for t ≤ 0 too.
Therefore, in fact, Theorem 2.2 is true for t ∈R.

Proof. Consider, in the Hilbert space � :=H ⊕H1⊕···⊕Hs, the above-mentioned op-
erators A and B. Then the Cauchy problem

v′′(t) + Av′(t) + Bv(t)= f (t),

v(0)= v0, v′(0)= v1,
(2.28)

is equivalent to the Cauchy problem (2.23), where v0 := (u0,A10u0, . . . ,As0u0), v1 := (u1,
A10u1, . . . ,As0u1), f (t) := (h(t),h1(t), . . . ,hs(t)), and v(t) := (u(t),A10u(t), . . . ,As0u(t)) (for
the proof, see the proof of Theorem 2.1).

Apply Theorem A.1 (see the appendix) to problem (2.28), where Ã :=A, B̃ := B. It was
proved in Theorem 2.1 that the operator B is selfadjoint.

From condition (5), it follows that (Bv,v)≥ c2(v,v), v ∈D(B). Consequently, the op-
erator B is selfadjoint and positive-definite. So, by conditions (1), (2), and (3), conditions
(1) and (2) of Theorem A.1 are fulfilled.

From the proof of Theorem 2.1, it follows that �(B1/2)⊂ (H(B),H)1/2,2⊕H1⊕···⊕
Hs. This implies, by conditions (1) and (7), D(A)⊃D(B1/2), the operator A from �(B1/2)
into � is bounded and is skew-symmetric. Hence, condition (3) of Theorem A.1 is sat-
isfied. From condition (8), it follows condition (4) of Theorem A.1. Similar arguments
to those in the proof of Theorem 2.1 gives us that v0 ∈�(B), v1 ∈�(B1/2), that is, the
last condition (5) of Theorem A.1 is satisfied too. So, on each interval [0,T], we have a
unique solution v(t)∈ C2([0,T];�(B),�(B1/2),�) of problem (2.28). In order to get the
estimate of Theorem 2.2, one should use the proof of Theorem A.1 from the appendix.
In particular, it follows from the proof that

(
v(t)
v′(t)

)
= et�

(
v0

v1

)
+
∫ t

0
e(t−τ)�

(
0

f (τ)

)
dτ, (2.29)
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where �=
(

0 I
−B −A

)
. Moreover,

∥∥v(t)
∥∥

�(B1/2) +
∥∥v′(t)∥∥� ≤

∥∥v0
∥∥

�(B1/2) +
∥∥v1

∥∥
� +

∫ t

0

∥∥ f (τ)
∥∥

�dτ. (2.30)

Using conditions (2), (8), and (9), and the inequality (2.20), we get the estimate of the
theorem. �

3. Initial boundary value problems for hyperbolic equations

Consider, in the domain R× [0,1], an initial boundary value problem for the hyperbolic
equation

L
(
Dt
)
u :=D2

ttu(t,x)−Dx
(
b(x)Dxu(t,x)

)= 0, (t,x)∈R× [0,1],

L1
(
Dt
)
u := αD2

tt

[
u(t,0)

]
+Dxu(t,0)= 0, t ∈R,

L2
(
Dt
)
u := βD2

tt

[
u(t,1)

]
+Dxu(t,1)= 0, t ∈R,

u(0,x)= u0(x), Dtu(0,x)= u1(x), x ∈ [0,1],

(3.1)

where α, β are real numbers, Dt := ∂/∂t and Dx := ∂/∂x.
This problem was considered, by a different approach, in [1]. As it was mentioned

in [1], “physically, such a problem may represent the longitudinal displacements of an
inhomogeneous rod under the action of forces at the two ends which are proportional
to the acceleration. In particular, this situation is realized if there are massive loads at the
ends (see, e.g., [2, Chapter 12]) and in this case we have α < 0 and β > 0.”

Theorem 3.1. Let the following conditions be satisfied:

(1) b ∈ C1[0,1]; b(x) > 0 for x ∈ [0,1];
(2) α < 0, β > 0;
(3) u0 ∈W2

2 (0,1), u1 ∈W1
2 (0,1);

(4)
∫ 1

0 u1(x)dx−αb(0)u1(0) +βb(1)u1(1)= 0.

Then there exists a unique solution u(t,x) of problem (3.1) such that the function t →
(u(t,x),u(t,0),u(t,1)) from R into L2(0,1)⊕C⊕C is twice continuously differentiable, and
from R into W2

2 (0,1)⊕C⊕C is continuous, and for t ∈R the following estimate holds:

∥∥u(t,·)∥∥L2(0,1) +
∥∥D2

ttu(t,·)∥∥L2(0,1) +
∣∣D2

tt

[
u(t,0)

]∣∣+
∣∣D2

tt

[
u(t,1)

]∣∣
+
∥∥D2

xxu(t,·)∥∥L2(0,1) ≤ C
(∥∥u0

∥∥
W2

2 (0,1) +
∥∥u1

∥∥
W1

2 (0,1)

)
,

(3.2)

consequently, problem (3.1) is stable.

Proof. Apply Theorem 2.1. Consider, in the Hilbert space H := L2(0,1), an operator B
given by the equalities

D(B) :=W2
2 (0,1), Bu :=−(b(x)u′(x)

)′
. (3.3)
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Taking H1 :=−(b(0)/α)C, H2 := (b(1)/β)C, and

A10u := αu(0), A20u := βu(1),

A12u := u′(0), A22u := u′(1),
(3.4)

problem (3.1) can be rewritten in the form (2.1), where u(t) := u(t,·) is a function with
values in the Hilbert space H := L2(0,1), and u0 := u0(·), u1 := u1(·).

From [4, Section 3.2.5], it follows that condition (1) of Theorem 2.1 is satisfied. From
[4, Section 4.3.1], it follows that (W2

2 (0,1),L2(0,1))1/2,2 =W1
2 (0,1). Then condition (2)

of Theorem 2.1 is satisfied too. Condition (3) of Theorem 2.1 follows from Theorem A.2
(see the appendix). We prove conditions (4) and (5) of Theorem 2.1. For u1 ∈W2

2 (0,1),
u2 ∈W2

2 (0,1), we have

(
Bu1,u2

)
L2(0,1) +

(
A12u1,A10u2

)
−(b(0)/α)C +

(
A22u1,A20u2

)
(b(1)/β)C

=−
∫ 1

0

d

dx

(
b(x)

du1(x)
dx

)
u2(x)dx− b(0)

α
u′1(0) ·αu2(0) +

b(1)
β

u′1(1)βu2(1)

=−
∫ 1

0
u1(x)

d

dx

(
b(x)

du2(x)
dx

)
dx− b(x)u′1(x)u2(x)

∣∣1
0

+u1(x)
(
b(x)u′2(x)

)∣∣1
0− b(0)u′1(0)u2(0) + b(1)u′1(1)u2(1)

= (u1,Bu2
)
L2(0,1) +

(
A10u1,A12u2

)
−(b(0)/α)C +

(
A20u1,A22u2

)
(b(1)/β)C,

(3.5)

that is, condition (4) of Theorem 2.1 is satisfied. For u∈W2
2 (0,1), we have

(Bu,u)L2(0,1) +
(
A12u,A10u

)
−(b(0)/α)C +

(
A22u,A20u

)
(b(1)/β)C

=
∫ 1

0
b(x)

∣∣u′(x)
∣∣2
dx− b(x)u′(x)u(x)

∣∣1
0− b(0)u′(0)u(0) + b(1)u′(1)u(1)

=
∫ 1

0
b(x)

∣∣u′(x)
∣∣2
dx ≥ 0.

(3.6)

On the other hand,
∫ 1

0 b(x)|u′(x)|2dx ≤ C‖u‖2
W1

2 (0,1), that is, condition (5) of Theorem 2.1
is satisfied too. Denote

L(λ)u := (λI +B)u= λu(x)− (b(x)u′(x)
)′

,

L1(λ)u := (λA10 +A12
)
u= λαu(0) +u′(0),

L2(λ)u := (λA20 +A22
)
u= λβu(1) +u′(1).

(3.7)

From Theorem A.3 (see the appendix), it follows that for any ε > 0, there exists Rε > 0
such that for all complex numbers λ which satisfy |λ| > Rε and lying inside the angle

−π + ε < argλ < π− ε, (3.8)
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the operator L(λ) : u→ L(λ)u := (L(λ)u,L1(λ)u,L2(λ)u) from W2
2 (0,1) onto L2(0,1)⊕

−(b(0)/α)C⊕ (b(1)/β)C is an isomorphism, that is, condition (6) of Theorem 2.1 is sat-
isfied. Condition (7) of Theorem 2.1 is fulfilled in view of condition (4) (see for details
[1]). Condition (8) of Theorem 2.1 follows from condition (3). So, for problem (3.1), all
conditions of Theorem 2.1 are fulfilled and the statement of Theorem 3.1 follows. �

We present now an application of Theorem 2.2. Consider, in the domain [0,∞)×
[0,1], an initial boundary value problem for the hyperbolic equation

L
(
Dt
)
u :=D2

ttu(t,x) + ia(x)Dtu(t,x)−Dx
(
b(x)Dxu(t,x)

)
+ c(x)u(t,x)

= h(t,x), (t,x)∈ [0,∞)× [0,1],

L1
(
Dt
)
u := αD2

tt

[
u(t,0)

]
+Dxu(t,0)= h1(t), t ∈ [0,∞),

L2
(
Dt
)
u := βD2

tt

[
u(t,1)

]
+Dxu(t,1)= h2(t), t ∈ [0,∞),

u(0,x)= u0(x), Dtu(0,x)= u1(x), x ∈ [0,1],

(3.9)

where α, β are real numbers, i=√−1, Dt := ∂/∂t, Dx := ∂/∂x.

Theorem 3.2. Let the following conditions be satisfied:

(1) a∈C[0,1] and is real-valued; b∈C1[0,1], b(x) > 0 for x ∈ [0,1]; c ∈ C[0,1], c(x) >
0 for x ∈ [0,1];

(2) α < 0, β > 0;
(3) h ∈W1

p((0,∞);L2(0,1))∩ L1((0,∞);L2(0,1)), hν ∈W1
p(0,∞)∩ L1(0,∞), ν = 1,2,

for some p > 1;
(4) u0 ∈W2

2 (0,1), u1 ∈W1
2 (0,1).

Then there exists a unique solution u(t,x) of problem (3.9) such that the function t →
(u(t,x),u(t,0),u(t,1)) from [0,∞) into L2(0,1)⊕C⊕C is twice continuously differentiable,
and from [0,∞) into W2

2 (0,1)⊕C⊕C is continuous, and for the solution the following
estimate holds:

∥∥u(t,·)∥∥L2(0,1) +
∥∥Dtu(t,·)∥∥L2(0,1) +

∣∣Dt
[
u(t,0)

]∣∣+
∣∣Dt

[
u(t,1)

]∣∣
≤ C

(∥∥u0
∥∥
W1

2 (0,1) +
∥∥u1

∥∥
W1

2 (0,1) +
∫∞

0

∥∥h(t,·)∥∥L2(0,1)dt+
2∑

ν=1

∫∞
0

∣∣hν(t)
∣∣dt), ∀t ≥ 0,

(3.10)

consequently, problem (3.9) is stable.

Note that this theorem, as Theorem 2.2, is also true for t ≤ 0 and, therefore, for t ∈R.

Proof. Apply Theorem 2.2. Consider, in the Hilbert space H := L2(0,1), operators A and
B given by the equalities

D(A) := L2(0,1), Au := ia(x)u(x),

D(B) :=W2
2 (0,1), Bu :=−(b(x)u′(x)

)′
+ c(x)u(x).

(3.11)
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Taking H1 := −(b(0)/α)C, H2 := (b(1)/β)C, and A10u := αu(0), A20u := βu(1), A12u :=
u′(0), A22u := u′(1), problem (3.9) can be rewritten in the form (2.23), where u(t) :=
u(t,·) and h(t) := h(t,·) are functions with values in the Hilbert space H := L2(0,1), and
ϕ0 := ϕ0(·), ϕ1 := ϕ1(·).

From [4, Section 3.2.5], it follows that D(B) is dense in H , and the embedding H(B)⊂
H is compact, and from [4, Section 4.3.1] it follows that (W2

2 (0,1),L2(0,1))1/2,2=W1
2 (0,1).

Therefore, condition (1) of Theorem 2.2 is satisfied. It is well known that the embedding
Wk

2 (0,1) ⊂ Cm[0,1], k > m ≥ 0, is compact (see, e.g., [4, Section 4.10.2, formula (15)]).
Then condition (2) of Theorem 2.2 is satisfied too. Condition (3) of Theorem 2.2 follows
from Theorem A.2 (see the appendix). We prove conditions (4) and (5) of Theorem 2.2.
For u∈W2

2 (0,1), v ∈W2
2 (0,1), we have

(Bu,v)L2(0,1) +
(
A12u,A10v

)
−(b(0)/α)C +

(
A22u,A20v

)
(b(1)/β)C

=−
∫ 1

0

d

dx

(
b(x)

du(x)
dx

)
v(x)dx+

∫ 1

0
c(x)u(x)v(x)dx

− b(0)
α

u′(0)αv(0) +
b(1)
β

u′(1)βv(1)

=−
∫ 1

0
u(x)

d

dx

(
b(x)

dv(x)
dx

)
dx+

∫ 1

0
c(x)u(x)v(x)dx− b(x)u′(x)v(x)

∣∣1
0

+u(x)
(
b(x)v′(x)

)∣∣1
0− b(0)u′(0)v(0) + b(1)u′(1)v(1)

= (u,Bv)L2(0,1) +
(
A10u,A12v

)
−(b(0)/α)C +

(
A20u,A22v

)
(b(1)/β)C,

(3.12)

that is, condition (4) of Theorem 2.2 is satisfied. For u ∈W2
2 (0,1), using conditions (1)

and (2) and that W1
2 (0,1)⊂ C[0,1] is bounded, we have

(Bu,u)L2(0,1) +
(
A12u,A10u

)
−(b(0)/α)C +

(
A22u,A20u

)
(b(1)/β)C

=
∫ 1

0
b(x)

∣∣u′(x)
∣∣2
dx+

∫ 1

0
c(x)

∣∣u(x)
∣∣2
dx− b(x)u′(x)u(x)

∣∣1
0

− b(0)u′(0)u(0) + b(1)u′(1)u(1)

=
∫ 1

0
b(x)

∣∣u′(x)
∣∣2
dx+

∫ 1

0
c(x)

∣∣u(x)
∣∣2
dx

≥ 1√
2

min
{

min
x∈[0,1]

b(x), min
x∈[0,1]

c(x)
}
‖u‖2

W1
2 (0,1)

≥ c2
(
‖u‖2

L2(0,1)− b(0)α
∣∣u(0)

∣∣2
+ b(1)β

∣∣u(1)
∣∣2
)

= c2
(
‖u‖2

L2(0,1) +
∥∥A10u

∥∥2
−(b(0)/α)C +

∥∥A20u
∥∥2

(b(1)/β)C

)
, ∃c �= 0.

(3.13)

On the other hand,
∫ 1

0 b(x)|u′(x)|2dx +
∫ 1

0 c(x)|u(x)|2dx ≤ C‖u‖2
W1

2 (0,1), that is, condi-
tion (5) of Theorem 2.2 is satisfied too. Condition (6) of Theorem 2.2 is checked as in
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the proof of Theorem 3.1. We check condition (7) of Theorem 2.2. Take u,v ∈ D(A) =
L2(0,1). Then,

(Au,v)L2(0,1) =
∫ 1

0
ia(x)u(x)v(x)dx =−

∫ 1

0
u(x)ia(x)v(x)dx

= (u,−Av)L2(0,1).
(3.14)

Conditions (8) and (9) of Theorem 2.2 are trivial. So, for problem (3.9), all conditions of
Theorem 2.2 are fulfilled and the statement of Theorem 3.2 follows. �

Appendix

Consider, in a Hilbert space H , the Cauchy problem for the second-order hyperbolic
differential-operator equation

L(D)u := u′′(t) + Ãu′(t) + B̃u(t)= f (t), t ∈ [0,T],

u(0)= g0, u′(0)= g1,
(A.1)

and the characteristic operator pencil

L(λ) := λ2 + λÃ+ B̃. (A.2)

Theorem A.1 (see [7, Theorem 6.4.3]). Let the following conditions be satisfied:

(1) B̃ is a selfadjoint positive-definite operator in a Hilbert space H ;
(2) the embedding H(B̃)⊂H is compact;
(3) Ã is a skew-symmetric operator in H , that is, Ã∗u=−Ãu, u∈D(Ã); the operator Ã

from H(B̃1/2) into H is bounded;
(4) f ∈W1

p((0,T);H), where p > 1;
(5) g0 ∈D(B̃), g1 ∈D(B̃1/2).

Then, problem (A.1) has a unique solution u ∈ C2([0,T];H(B̃),H(B̃1/2),H), and the
solution can be expanded to the series

u(t)=
∞∑
k=1

eλkt∥∥B̃1/2uk
∥∥2

+
∣∣λk∣∣2∥∥uk∥∥2

×
((

B̃g0− λkg1,uk
)− λk

∫ t

0
e−λkτ

(
f (τ),uk

)
dτ
)
uk,

(A.3)

where λk are purely imaginary eigenvalues and uk are the corresponding eigenvectors of oper-
ator pencil (A.2), and the series converges in the sense of the spaceC2([0,T];H(B̃),H(B̃1/2),H).

Denote

Aν0u := ανu
(mν)(0) +βνu

(mν)(1) +
Nν∑
j=1

δν ju
(mν)(xν j

)
+Tνu, ν= 1, . . . ,m. (A.4)
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Theorem A.2 (see [7, Theorem 3.6.2]). Let the following conditions be satisfied:

(1) m≥ 1, mν ≥ 0, 0≤ s≤m;
(2) a system of functionals (A.4) is p-regular with respect to a system of numbers ωj :=

e2πi(( j−1)/m), j = 1, . . . ,m, that is,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1ω
m1
1 ··· α1ω

m1
p β1ω

m1
p+1 ··· β1ωm1

m
...

...
...

...
...

...

...
...

...
...

...
...

αmω
mm
1 ··· αmω

mm
p βmω

mm
p+1 ··· βmω

mm
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0, (A.5)

where p =m/2 if m is even, p = [m/2] or p = [m/2] + 1 if m is odd, xν j ∈ (0,1) and,
for some q ∈ (1,∞), functionals Tν in Wmν

q (0,1) are continuous.

Then, the linear manifold

{
(u,v) | u∈ C∞[0,1], Aν0u= 0, ν= s+ 1, . . . ,m, v := (A10u, . . . ,As0u

)}
, (A.6)

is dense in the space W�
q(0,1) +̇ Cs, � ≤min{mν}.

Consider a principally boundary value problem for an ordinary differential equation
with a variable coefficient in case when the spectral parameter appears linearly in the
equation and can appear in boundary-functional conditions

L(λ)u := λu(x) + a(x)u(m)(x) +Bu|x = f (x), x ∈ (0,1), (A.7a)

Lν(λ)u := λ

(
ανu

(mν)(0) +βνu
(mν)(1) +

Nν∑
j=1

δν ju
(mν)(xν j

)
+Tνu

)

+Tν0u= gν, ν= 1, . . . ,s,

(A.7b)

Lνu := ανu
(mν)(0) +βνu

(mν)(1) +
Nν∑
j=1

δν ju
(mν)(xν j

)
+Tνu= 0, ν= s+ 1, . . . ,m, (A.7c)

where m≥ 1, mν ≤m− 1, xν j ∈ (0,1), 0≤ s≤m, B is an operator in L2(0,1), Tν and Tν0

are functionals in L2(0,1).

Theorem A.3 (see [6]). Let the following conditions be satisfied:

(1) m≥ 1; mν ≤m− 1; 0≤ s≤m;
(2) a∈ C[0,1]; a(x) �= 0; a(0)= a(1); supx∈[0,1] arga(x)− infx∈[0,1] arga(x) < 2π if m is

even; supx∈[0,1] arga(x)− infx∈[0,1] arga(x) < π if m is odd;
(3) for all ε > 0,

‖Bu‖L2(0,1) ≤ ε‖u‖Wm
2 (0,1) +C(ε)‖u‖L2(0,1), u∈Wm

2 (0,1); (A.8)
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(4) functionals Tν in Wmν
2 (0,1) and functionals Tν0 in Wm−ε

2 (0,1), for some ε > 0, are
continuous;

(5) system (A.4) is p-regular with respect to a system of numbers ωj = e2πi(( j−1)/m), j =
1, . . . ,m (see Theorem A.2).

Then for any ε > 0, there exists Rε > 0 such that for all complex numbers λ which satisfy
|λ| > Rε and for m= 2p lying inside the angle,

πm

2
−π + sup

x∈[0,1]
arga(x) + ε < argλ <

πm

2
+π + inf

x∈[0,1]
arga(x)− ε, (A.9)

for m= 2p+ 1 lying inside the angle,

πm

2
+ sup

x∈[0,1]
arga(x) + ε < argλ <

πm

2
+π + inf

x∈[0,1]
arga(x)− ε, (A.10)

and for m= 2p− 1 lying inside the angle,

πm

2
−π + sup

x∈[0,1]
arga(x) + ε < argλ <

πm

2
+ inf

x∈[0,1]
arga(x)− ε, (A.11)

the operator L(λ) : u→ L(λ)u := (L(λ)u,L1(λ)u, . . . ,Ls(λ)u) from Wm
2 ((0,1); Lνu= 0, ν=

s+ 1, . . . ,m) onto L2(0,1)+̇Cs is an isomorphism, and for these λ for a solution of problem
(A.7), the estimate

‖u‖Wm
2 (0,1) + |λ|

(
‖u‖L2(0,1) +

s∑
ν=1

∣∣Aν0u
∣∣)≤ C(ε)

(
‖ f ‖L2(0,1) +

s∑
ν=1

∣∣gν

∣∣) (A.12)

is valid, where Aν0 is defined by (A.4).

Note that if boundary-functional conditions (A.7b) and (A.7c) are principally local,
that is, αν = 0 or βν = 0 for all ν = 1, . . . ,m, then the condition a(0) = a(1) should be
omitted.
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