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We present sharp lower bounds for eigenvalues of the one-dimensional p-Laplace oper-
ator. The method of proof is rather elementary, based on a suitable generalization of the
Lyapunov inequality.

1. Introduction

In [9], Krein obtained sharp lower bounds for eigenvalues of weighted second-order
Sturm-Liouville differential operators with zero Dirichlet boundary conditions. In this
paper, we give a new proof of this result and we extend it to the one-dimensional p-
Laplacian

−
(∣∣u′(x)

∣∣p−2
u′(x)

)′ = λr(x)
∣∣u(x)

∣∣p−2
u(x), x ∈ (a,b),

u(a)= 0, u(b)= 0,
(1.1)

where λ is a real parameter, p > 1, and r is a bounded positive function. The method of
proof is based on a suitable generalization of the Lyapunov inequality to the nonlinear
case, and on some elementary inequalities. Our main result is the following theorem.

Theorem 1.1. Let λn be the nth eigenvalue of problem (1.1). Then,

2pnp

(b− a)p−1
∫ b
a r(x)dx

≤ λn. (1.2)

We also prove that the lower bound is sharp.
Eigenvalue problems for quasilinear operators of p-Laplace type like (1.1) have re-

ceived considerable attention in the last years (see, e.g., [1, 2, 3, 5, 8, 13]). The asymptotic
behavior of eigenvalues was obtained in [6, 7].

Lyapunov inequalities have proved to be useful tools in the study of qualitative nature
of solutions of ordinary linear differential equations. We recall the classical Lyapunov’s
inequality.
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Theorem 1.2 (Lyapunov). Let r : [a,b]→ R be a positive continuous function. Let u be a
solution of

−u′′(x)= r(x)u(x), x ∈ (a,b),

u(a)= 0, u(b)= 0.
(1.3)

Then, the following inequality holds:

∫ b

a
r(x)dx ≥ 4

b− a
. (1.4)

For the proof, we refer the interested reader to [10, 11, 12]. We wish to stress the fact
that those proofs are based on the linearity of (1.3), by direct integration of the differential
equation. Also, in [12], the special role played by the Green function g(s, t) of a linear
differential operator L(u) was noted, by reformulating the Lyapunov inequality for

L(u)(x)− r(x)u(x)= 0 (1.5)

as

∫ b

a
r(x)dx ≥ 1

Max
{
g(s,s) : s∈ (b− a)

} . (1.6)

The paper is organized as follows. Section 2 is devoted to the Lyapunov inequality
for the one-dimensional p-Laplace equation. In Section 3, we focus on the eigenvalue
problem and we prove Theorem 1.1.

2. The Lyapunov inequality

We consider the following quasilinear two-point boundary value problem:

−(|u′|p−2u′
)′ = r|u|p−2u, u(a)= 0= u(b), (2.1)

where r is a bounded positive function and p > 1. By a solution of problem (2.1), we

understand a real-valued function u∈W
1,p
0 (a,b), such that

∫ b

a
|u′|p−2u′v′ =

∫ b

a
r|u|p−2uv for each v ∈W

1,p
0 (a,b). (2.2)

The regularity results of [4] imply that the solutions u are at least of class C1,α
loc and satisfy

the differential equation almost everywhere in (a,b).
Our first result provides an estimation of the location of the maxima of a solution in

(a,b). We need the following lemma.
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Lemma 2.1. Let r : [a,b]→R be a bounded positive function, let u be a solution of problem
(2.1), and let c be a point in (a,b) where |u(x)| is maximized. Then, the following inequali-
ties hold:

∫ c

a
r(x)dx ≥

(
1

c− a

)p/q

,
∫ b

c
r(x)dx ≥

(
1

b− c

)p/q

, (2.3)

where q is the conjugate exponent of p, that is, 1/p+ 1/q = 1.

Proof. Clearly, by using Hölder’s inequality,

u(c)=
∫ c

a
u′(x)dx ≤ (c− a)1/q

(∫ c

a

∣∣u′(x)
∣∣pdx)1/p

. (2.4)

We note that u′(c)= 0. So, integrating by parts in (2.1) after multiplying by u gives

∫ c

a

∣∣u′(x)
∣∣pdx =

∫ c

a
r(x)

∣∣u(x)
∣∣pdx. (2.5)

Thus,

u(c)≤ (c− a)1/q
(∫ c

a
r(x)

∣∣u(x)
∣∣pdx)1/p

≤ (c− a)1/q
∣∣u(c)

∣∣(∫ c

a
r(x)dx

)1/p

.

(2.6)

Then, the first inequality follows after cancelling u(c) in both sides while the second is
proved in a similar fashion. �

Remark 2.2. The sum of both inequalities shows that c cannot be too close to a or b. We

have
∫ b
a r(x)dx <∞, but

lim
c→a+

[(
1

c− a

)p/q

+
(

1
b− c

)p/q
]
= lim

c→b−

[(
1

c− a

)p/q

+
(

1
b− c

)p/q
]
=∞. (2.7)

Our next result restates the Lyapunov inequality.

Theorem 2.3. Let r : [a,b]→R be a bounded positive function, let u be a solution of prob-
lem (2.1), and let q be the conjugate exponent of p ∈ (1,+∞). The following inequality holds:

2p

(b− a)p/q
≤
∫ b

a
r(x)dx. (2.8)

Proof. For every c ∈ (a,b), we have

2
∣∣u(c)

∣∣=
∣∣∣∣
∫ c

a
u′(x)dx

∣∣∣∣+
∣∣∣∣
∫ b

c
u′(x)dx

∣∣∣∣≤
∫ b

a

∣∣u′(x)
∣∣dx. (2.9)
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By using Hölder’s inequality,

2
∣∣u(c)

∣∣≤ (b− a)1/q
(∫ b

a

∣∣u′(x)
∣∣pdx)1/p

= (b− a)1/q
(∫ b

a
r(x)

∣∣u(x)
∣∣pdx)1/p

.

(2.10)

We now choose c in (a,b) such that |u(x)| is maximized. Then,

2
∣∣u(c)

∣∣≤ (b− a)1/q
∣∣u(c)

∣∣(∫ b

a
r(x)dx

)1/p

. (2.11)

After cancelling, we obtain

2p

(b− a)p/q
≤
∫ b

a
r(x)dx, (2.12)

and the theorem is proved. �

Remark 2.4. We note that, for p = 2= q, inequality (2.8) coincides with inequality (1.4).

3. Eigenvalues bounds

In this section, we focus on the following eigenvalue problem:

−(|u′|p−2u′
)′ = λr|u|p−2u, u(a)= 0= u(b), (3.1)

where r ∈ L∞(a,b) is a positive function, λ is a real parameter, and p > 1.

Remark 3.1. The eigenvalues could be characterized variationally:

λk(Ω)= inf
F∈CΩ

k

sup
u∈F

∫
Ω |u′|p∫
Ω r|u|p

, (3.2)

where

CΩ
k =

{
C ⊂MΩ : C compact, C =−C, γ(C)≥ k

}
,

MΩ =
{
u∈W

1,p
0 (Ω) :

∫
Ω
|u′|p = 1

}
,

(3.3)

and γ : Σ→N∪{∞} is the Krasnoselskii genus,

γ(A)=min
{
k ∈N, there exist f ∈ C

(
A,Rk \ {0}), f (x)=− f (−x)

}
. (3.4)

The spectrum of problem (1.1) consists of a countable sequence of nonnegative eigen-
values λ1 < λ2 < ··· < λk < ··· , and coincides with the eigenvalues obtained by
Ljusternik-Schnirelmann theory.
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Now, we prove the lower bound for the eigenvalues of problem (3.1) for every p ∈
(1,+∞). We now prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Let λn be the nth eigenvalue of problem (3.1) and let un be an as-
sociate eigenfunction. As in the linear case, un has n nodal domains in [a,b] (see [2, 13]).

Applying inequality (2.8) in each nodal domain, we obtain

n∑
k=1

2p(
xk − xk−1

)p/q ≤ λn

n∑
k=1

(∫ xk

xk−1

r(x)dx
)
≤ λn

∫ b

a
r(x)dx, (3.5)

where a= x0 < x1 < ··· < xn = b are the zeros of un in [a,b].
Now, the sum on the left-hand side is minimized when all the summands are the same,

which gives the lower bound

2pn
(

n

b− a

)p/q

≤ λn

∫ b

a
r(x)dx. (3.6)

The theorem is proved. �

Finally, we prove that the lower bound is sharp.

Theorem 3.2. Let ε ∈R be a positive number. There exist a family of weight functions rn,ε

such that

lim
ε→0+


λn,ε− 2pnp

(b− a)p−1
∫ b
a rn,ε


= 0, (3.7)

where λn,ε is the nth eigenvalue of

−(|u′|p−2u′
)′ = λrn,ε|u|p−2u, u(a)= 0= u(b). (3.8)

Proof. We begin with the first eigenvalue λ1. We fix
∫ b
a r(x)dx =M, and let c be the mid-

point of the interval (a,b).
Let r1 be the delta function Mδc(x). We obtain

λ1 = min
u∈W1,p

0

∫ b
a |u′|p∫ b
a δcu

p
= min

u∈W1,p
0

2
∫ c
a |u′|p

Mup(c)
= 2µ1

M
, (3.9)

where µ1 is the first Steklov eigenvalue in [a,c],

−
(∣∣u′(x)

∣∣p−2
u′(x)

)′ = 0,∣∣u′(c)∣∣p−2
u′(c)= µ

∣∣u(c)
∣∣p−2

u(c), u(a)= 0.
(3.10)

A direct computation gives

µ1 = 2p−1

(b− a)p−1 . (3.11)
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Now, we define the functions r1,ε:

r1,ε =




0 for x ∈
[
a,
a+ b

2
− ε
]

,

M

2ε
for x ∈

[
a+ b

2
− ε,

a+ b

2
+ ε
]

,

0 for x ∈
[
a+ b

2
+ ε,b

]
,

(3.12)

and the result follows by testing, in the variational formulation (3.2), the first Steklov
eigenfunction

u(x)=



x− a if x ∈

[
a,
a+ b

2

]
,

b− x if x ∈
[
a+ b

2
,b
]
.

(3.13)

Thus, the inequality is sharp for n= 1.
We now consider the case n ≥ 2. We divide the interval [a,b] in n subintervals Ii of

equal length, and let ci be the midpoint of the ith subinterval.
By using a symmetry argument, the nth eigenvalue corresponding to the weight

rn(x)= M

n

n∑
i=1

δci(x), (3.14)

restricted to Ii, is the first eigenvalue in this interval, that is,

λn = 2nµ1

M
= 2pnp

M(b− a)p−1 . (3.15)

The proof is now completed. �
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[8] M. Guedda and L. Véron, Bifurcation phenomena associated to the p-Laplace operator, Trans.
Amer. Math. Soc. 310 (1988), no. 1, 419–431.

[9] M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on
the Lyapunov zones of stability, Amer. Math. Soc. Transl. Ser. 2 1 (1955), 163–187.

[10] A. Liapounoff, Problème Général de la Stabilité du Mouvement, Annals of Mathematics Studies,
no. 17, Princeton University Press, New Jersey, 1947 (French).

[11] W. T. Patula, On the distance between zeroes, Proc. Amer. Math. Soc. 52 (1975), 247–251.
[12] W. T. Reid, A generalized Liapunov inequality, J. Differential Equations 13 (1973), 182–196.
[13] W. Walter, Sturm-Liouville theory for the radial ∆p-operator, Math. Z. 227 (1998), no. 1, 175–

185.
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