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We give the existence result and the vanishing order of the solution in 0 for the follow-
ing equation: −�u(x) + (µ/|x|2)u(x) = λu(x) + u2∗−1(x), where x ∈ B1, µ > 0, and the
potential µ/|x|2− λ is positive in B1.

1. Introduction

In this paper, we consider the following problem:

−�u(x) +
µ

|x|2 u(x)= λu(x) +u2∗−1(x), x ∈ B1,

u(x)≥ 0, x ∈ B1,

u(x)= 0, x ∈ ∂B1,

(1.1)

where B1 = {x ∈RN | |x| < 1} is the unit ball in RN (N ≥ 3), λ, µ > 0, 2∗ := 2N/(N − 2).
When µ < 0, this problem has been considered by many authors recently (cf. [5, 6, 7,
8]). But when µ > 0, this problem has not been considered as far as we know. In fact,
the existence of nontrivial solution for (1.1) when µ > 0 is an open problem which was
imposed in [7]. In this paper, we get the following results.

Theorem 1.1. If N = 3 and 3/4 < λ≤ µ or if N ≥ 4 and 0 < λ≤ µ, then for (1.1) there exists
a nontrivial radially symmetric solution.

Remark 1.2. Condition 0 < λ ≤ µ shows that the potential µ/|x|2 − λ is positive in B1.
Thus the Brézis-Nirenberg method (cf. [1]) cannot be used.

Theorem 1.3. If µ > 0 and u∈H1
0 (B1) is a solution of (1.1), then there are C1,C2 > 0 and

δ > 0 such that C2|x|α ≥ u(x) ≥ C1|x|α, for x ∈ Bδ , where α = (1/2)(
√

(N − 2)2 + 4µ2 −
(N − 2)) > 0.

Remark 1.4. One can easily deduce that if u ∈ H1
0 (B1) is a solution of (1.1), then u ∈

C2(B1 \ {θ}) and u > 0 in B1 \ {θ}. Theorem 1.3 shows that u(θ)= 0. It is greatly different
from the case of µ≤ 0 (see [6]).
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2. Proof of Theorem 1.1

Lemma 2.1. Every radially symmetric nonnegative solution u of the equation

−�u+
µ

|x|2 u(x)= u2∗−1(x), u∈�1,2(
R

N
)
, (2.1)

can be represented by u(x)= ρ(N−2)/2U(ρx) for some positive number ρ, where

U(x)= C0|x|τ−(N−2)/2(
1 + |x|4τ/(N−2)

)(N−2)/2 , (2.2)

τ =
√

((N − 2)/2)2 +µ, and C0 is a constant.

Proof. Let t =− ln|x|, θ = x/|x|, and v(t,θ) := e−((N−2)/2)tu(e−tθ). Then by [3], we know
that v satisfies the equation

−vtt −�θv+ τ2v = v2∗−1 in R×S
N−1. (2.3)

Since u is radially symmetric, v depends only on t and satisfies −vtt + τ2v = v2∗−1, v > 0
in R. By [3], we know that the only positive solutions of the equation are translation of

v(t)=
(
τ22∗

2

)1/(2∗−1)(
cosh

(
2∗ − 2

2
τt
))−2/(2∗−2)

. (2.4)

Thus, every radially symmetric nonnegative solution u of (2.1) can be represented by
u(x)= ρ(N−2)/2U(ρx) for some positive number ρ. �

Define �1,2
r (RN ) := {u ∈ �1,2(RN ) | u is radially symmetric} and H1

0,r(B1) := {u ∈
H1

0 (B1) | u is radially symmetric}. Let

Sµ := inf
u∈�1,2

r (RN ),u�=0

∫
RN |∇u|2 +µ

∫
RN

(
u2/|x|2)(∫

RN |u|2∗)2/2∗ . (2.5)

It follows from Lemma 2.1 that Sµ = (
∫
RN |∇U|2 +µ

∫
RN (U2/|x|2))/(

∫
RN U2∗)2/2∗ . Let Σ=

{u∈H1
0,r(B1) | ‖u‖2∗ = 1}. For u∈ Σ, define

Sλ,µ(u)=
∫
B1

|∇u|2 +µ
∫
B1

u2

|x|2 − λ
∫
B1

u2. (2.6)

Lemma 2.2. IfN = 3 and 3/4 < λ≤ µ or ifN ≥ 4 and 0 < λ≤ µ, then Sλ,µ := infu∈Σ Sλ,µ(u) <
Sµ.
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Proof. Let η ∈ C∞0 (RN ) be a cut function which satisfies 0 ≤ η(x) ≤ 1, |∇η| ≤ 2 in RN ,
η(x)≡1 in B1/2, and η(x)≡0 in RN \B1. LetUρ(x) := ρ(N−2)/2U(ρx) and uρ(x)=η(x)Uρ(x).
By (2.2), we know that when |x| is big enough, there are constants C1,C2 > 0 such that

∣∣U(x)
∣∣≤ C1

|x|τ+N/2−1
,

∣∣∇U(x)
∣∣≤ C2

|x|τ+N/2
, (2.7)

since

∫
B1

∣∣∇uρ∣∣2 =
∫
B1

η2
∣∣∇uρ∣∣2

+
∫
B1

u2
ρ|∇η|2 + 2

∫
B1

uρ ·η ·∇uρ ·∇η

≤
∫
B1

∣∣∇uρ∣∣2
+ 4

∫
B1\B1/2

u2
ρ + 4

(∫
B1\B1/2

u2
ρ

)1/2(∫
B1\B1/2

∣∣∇uρ∣∣2
)1/2

=
∫

RN
|∇U|2 +

∫
RN\Bρ

|∇U|2 +
4
ρ2

∫
Bρ\Bρ/2

U2

+
4
ρ

(∫
Bρ\Bρ/2

U2
)1/2(∫

Bρ\Bρ/2

|∇U|2
)1/2

.

(2.8)

By (2.7), when N = 3 and 3/4 < λ≤ µ or when N ≥ 4 and 0 < λ≤ µ, for ρ big enough,

∫
Bρ\Bρ/2

U2 ≤
∫
Bρ\Bρ/2

C1

|x|2τ+N−2
dx = C3

ρ2τ−2
,

∫
RN\Bρ

|∇U|2 ≤
∫

RN\Bρ

C2

|x|2τ+N
dx =

∫ +∞

ρ

C2

r2τ+1
dr = C4

ρ2τ
,

(2.9)

∫
B1

∣∣∇uρ∣∣2 ≤
∫

RN
|∇U|2 +

C5

ρ2τ
, (2.10)

∫
B1

u2
ρ

|x|2 ≤
∫

RN

U2

|x|2 +
C6

ρ2τ
,

∫
B1

|uρ|2∗ ≥
∫

RN
U2∗ − C7

ρ2∗τ ,

∫
B1

u2
ρ ≥

C8

ρ2
.

(2.11)

When N = 3 and 3/4 < λ≤ µ or when N ≥ 4 and 0 < λ≤ µ, we have 2τ > 2. Thus by (2.10)
and (2.11), we get

Sλ,µ
uρ∥∥uρ∥∥2∗

≤ Sµ− C9

ρ2
+ o

(
1
ρ2

)
, as ρ−→∞. (2.12)

It proves the lemma. �

Proof of Theorem 1.1. By Lemma 2.2 and [10, Theorem 8.8], we deduce that Sλ,µ can be

achieved by some 0 ≤ u ∈ H1
0,r(B1), then S−1/(2∗−2)

λ,µ u is a nontrivial radially symmetric
solution of (1.1). �
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3. Proof of Theorem 1.3

Let E be the space which is the completion of C∞0 (B1) under the norm ‖u‖E =
(
∫
B1
|x|2α|∇u|2dx)1/2.

Lemma 3.1 (see [2]). For all u∈ C∞0 (RN ) (N ≥ 3),

(∫
RN
|x|−bp|u|pdx

)2/p

≤ Ca,b

∫
RN
|x|−2a|∇u|2dx, (3.1)

where −∞ < a < (N − 2)/2, a≤ b ≤ a+ 1, and p = 2N/(N − 2 + 2(b− a)).

Choosing a=−α, p = 2 and 2∗, respectively, in (3.1), we get the following lemma.

Lemma 3.2. There is a constant C > 0 such that, for any u∈ C∞0 (RN ),

(∫
RN
|x|2∗α|u|2∗dx

)2/2∗

≤ C
∫

RN
|x|2α|∇u|2dx,∫

RN
|x|2α−2|u|2dx ≤ C

∫
RN
|x|2α|∇u|2dx.

(3.2)

Proof of Theorem 1.3. If v ∈H1
0 (B1) is a solution of (1.1), then by the standard regularity

theory, one can easily deduce that v ∈ C2(B1 \ {θ}). Let u(x) = |x|−αv(x) (this kind of
transform has been used in [9]). Direct calculation shows that, for any x ∈ B1 \ {θ},

−div
(|x|2α∇u)= |x|2∗αu2∗−1 + λ|x|2αu. (3.3)

Since v ∈ E, then by Lemma 3.1 we know that v is a weak solution of (3.3), that is, for any
ζ ∈ C∞0 (B1),

∫
B1

|x|2α∇u∇ζ =
∫
B1

|x|2∗αu2∗−1ζ +
∫
B1

|x|2αuζ. (3.4)

For t > 2, k > 0, define

h(r)=


rt/2, 0≤ r ≤ k,
t

2
kt/2−1r +

(
1− t

2

)
kt/2, r ≥ k,

(3.5)

and φ(r)= ∫ r0 |h′(s)|2ds. It is easy to verify that there exists a constant C > 0 independent
of k such that

∣∣rφ(r)
∣∣≤ t2

4(t− 1)

∣∣h(r)
∣∣2

, (3.6)
∣∣φ(r)−h(r)h′(r)

∣∣≤ Ct

∣∣h(r)h′(r)
∣∣, (3.7)

where Ct = (t− 2)/2(t− 1) < 1.
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Let 0 < r2 < r1 < 1 and η ∈ C∞0 (B(θ,r1)) satisfying 0≤ η ≤ 1, η ≡ 1 in B(θ,r2), η ≡ 0 in
RN \B(θ,r1), and |∇η| ≤ 2/(r1− r2). Notice that η2φ(u)∈ E, then

∫
B1

|x|2α∇u∇(η2φ(u)
)=

∫
B1

|x|2αη2(h′(u)
)2|∇u|2 + 2

∫
B1

|x|2αηφ(u)∇u∇η

=
∫
B1

|x|2αη2
∣∣∇(h(u)

)∣∣2
+ 2

∫
B1

|x|2αηφ(u)∇u∇η.
(3.8)

Since |∇(ηh(u))|2 = η2|∇(h(u))|2 +h2(u)|∇η|2 + 2ηh(u)∇(h(u))∇η, by (3.7), we have

∫
B1

|x|2α∇u∇(η2φ(u)
)=

∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2−

∫
B1

|x|2αh2(u)|∇η|2

− 2
∫
B1

|x|2αηh(u)h′(u)∇u∇η+ 2
∫
B1

|x|2αηφ(u)∇u∇η

≥
∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2−

∫
B1

|x|2αh2(u)|∇η|2

− 2
∫
B1

|x|2αη∣∣φ(u)−h(u)h′(u)
∣∣|∇u∇η|

≥
∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2−

∫
B1

|x|2αh2(u)|∇η|2

− 2Ct

∫
B1

|x|2α∣∣ηh(u)∇(h(u)
)∇η∣∣.

(3.9)

Since∫
B1

|x|2α∣∣ηh(u)∇(h(u)
)∇η∣∣=

∫
B1

|x|2α∣∣(∇(ηh(u)
)−h(u)∇η)∇η∣∣∣∣h(u)

∣∣

≤
∫
B1

|x|2α∣∣h(u)∇(ηh(u)
)∇η∣∣+

∫
B1

|x|2α∣∣h(u)
∣∣2|∇η|2

≤ 1
2

∫
B1

|x|2αh2(u)|∇η|2 +
1
2

∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2

+
∫
B1

|x|2α∣∣h(u)
∣∣2|∇η|2,

(3.10)

and by (3.9), we deduce that
∫
B1

|x|2α∇u∇(η2φ(u)
)

≥
∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2−

∫
B1

|x|2αh2(u)|∇η|2

− 2Ct

(
1
2

∫
B1

|x|2αh2(u)|∇η|2+
1
2

∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2

+
∫
B1

|x|2α∣∣h(u)
∣∣2|∇η|2

)
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= t

2(t− 1)

∫
B1

|x|2α∣∣∇(ηh(u)
)∣∣2− (1 + 3Ct

)∫
B1

|x|2αh2(u)|∇η|2

≥ Ct

2(t− 1)

(∫
B1

|x|2∗α∣∣ηh(u)
∣∣2∗

)2/2∗

− (1 + 3Ct
)∫

B1

|x|2αh2(u)|∇η|2.
(3.11)

By (3.6), we have

∫
B1

|x|2∗αu2∗−1η2φ(u) +
∫
B1

|x|2αuη2φ(u)

≤ t2

4(t− 1)

∫
B1

|x|2∗α|u|2∗−2
∣∣ηh(u)

∣∣2
+

t2

4(t− 1)

∫
B1

|x|2α∣∣ηh(u)
∣∣2

≤ t2

4(t− 1)

(∫
η �=0
|x|2∗α|u|2∗

)(2∗−2)/2∗(∫
B1

∣∣ηh(u)
∣∣2∗

)2/2∗

+
t2

4(t− 1)

∫
B1

|x|2α∣∣ηh(u)
∣∣2
.

(3.12)

Notice that u is a solution of (3.3), by (3.11) and (3.12) we have

(∫
B1

|x|2∗α∣∣ηh(u)
∣∣2∗

)2/2∗

≤ t

2C

(∫
η �=0
|x|2∗α|u|2∗

)(2∗−2)/2∗(∫
B1

|x|2∗α∣∣ηh(u)
∣∣2∗

)2/2∗

+
2
(
1 + 3Ct

)
(t− 1)

Ct

∫
B1

|x|2αh2(u)|∇η|2 +
t

2C

∫
B1

|x|2α∣∣ηh(u)
∣∣2
.

(3.13)

Choose r1 small enough such that (t/2C)(
∫
η �=0 |x|2∗α|u|2∗)(2∗−2)/2∗ < 1/2. Notice that 2(1 +

3Ct)(t− 1)/t < 8 (since 0 < Ct < 1 and t > 2) and |∇η| < 2/(r1− r2), from (3.13) we have

(∫
B(θ,r2)

|x|2∗α∣∣h(u)
∣∣2∗

)2/2∗

≤
(

64

C
(
r1− r2

)2 +
t

C

)∫
B(θ,r1)

|x|2αh2(u). (3.14)

Choosing 2(N − 2α)/(N − 2 + 2α) > t0 > 2 and letting k→∞ in (3.14), we get

(∫
B(θ,r2)

|x|2∗α|u|2∗t0/2
)2/2∗

≤
(

64

C
(
r1− r2

)2 +
t0
C

)∫
B(θ,r1)

|x|2α|u|t0 . (3.15)

By Lemma 3.1, we know that (
∫
B1
|x|2α|u|t0 )2/t0 ≤ ∫B1

|x|2α|∇u|2 <∞. Combining (3.15),
we get that

∫
B1

|x|2∗α|u|2∗t0/2 <∞. (3.16)
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Since

∫
B1

|x|2α∇u∇(φ(u)
)=

∫
B1

|x|2α∣∣∇(h(u)
)∣∣2 ≥

(∫
B1

|x|2∗α∣∣h(u)
∣∣2∗

)2/2∗

,

∫
B1

|x|2∗αu2∗−1φ(u) +
∫
B1

|x|2αuφ(u)

≤ t2

4(t− 1)

∫
B1

|x|2∗α|u|2∗−2
∣∣h(u)

∣∣2
+

t2

4(t− 1)

∫
B1

|x|2α∣∣h(u)
∣∣2

≤ t2

4(t− 1)

(∫
B1

|x|2∗α|u|2∗t0/2
)2(2∗−2)/2∗t0(∫

B1

|x|2∗α∣∣h(u)
∣∣q)2/q

+
t2

4(t− 1)

∫
B1

|x|2α∣∣h(u)
∣∣2

≤ t2

4(t− 1)

(∫
B1

|x|2∗α|u|2∗t0/2
)2(2∗−2)/2∗t0(∫

B1

|x|2∗α∣∣h(u)
∣∣q)2/q

+
t2

4(t− 1)

(∫
B1

|x|(2α−2∗α/q)q′
)1/q′(∫

B1

|x|2∗α∣∣h(u)
∣∣q)2/q

,

(3.17)

where q = 2 · 2∗t0/((t0 − 2)2∗ + 4) and 2/q + 1/q′ = 1, we can deduce that if ε > 0 small
enough and t0 ∈ (2,2 + ε), then (2α− 2∗α/q)q′ > −2. Thus (

∫
B1
|x|(2α−2∗α/q)q′)1/q′ <∞.

Let C′ = (
∫
B1
|x|2∗α|u|2∗t0/2)2(2∗−2)/2∗t0 + (

∫
B1
|x|(2α−2∗α/q)q′)1/q′ , then by (3.17), we have

(∫
B1

|x|2∗α∣∣h(u)
∣∣2∗

)2/2∗

≤ C′t2

4(t− 1)

(∫
B1

|x|2∗α∣∣h(u)
∣∣q)2/q

. (3.18)

Letting k→∞, we get

|u|2∗t/2,2∗α ≤
(

C′t2

4(t− 1)

)1/t

|u|qt/2,2∗α, (3.19)

where |u|l,2∗α := (
∫
B1
|x|2∗α|u|l)1/l.

Choose t1 = (2∗/q)n, n= 1,2, . . . . Then by (3.19) we have

|u|2∗tn/2,2∗α ≤
n∏
i=1

(
C′t2

i

4
(
ti− 1

))1/ti

|u|2∗/2,2∗α. (3.20)

Letting n→∞, we deduce that u∈ L∞(B1). Thus there is C2 > 0 such that v(x)≤ C2|x|α.
Since div(|x|2α∇u)≤ 0, by [4, Lemma 4.2], we have u(x)≥ C′′ > 0 for x ∈ Bδ . So, there

is C1 > 0 such that u(x)≥ C1|x|α for x ∈ Bδ . �
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