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Using variational arguments, we prove some nonexistence and multiplicity results for
positive solutions of a system of p-Laplace equations of gradient form. Then we study a
p-Laplace-type problem with nonlinear boundary conditions.

1. Introduction

In a recent paper, [7], the authors studied the existence, multiplicity, and nonexistence of
positive classical solutions of the semilinear elliptic boundary value problem

−∆u= λ f (u) in Ω,

u= 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in RN , N ≥ 1, λ > 0 is a parameter, and f is a C1

sign-changing sublinear function.
They showed using sub-super solutions arguments and recent results from semiposi-

tone problems that there are λ and λ such that (1.1) has no positive solution for λ < λ and
at least two positive solutions for λ≥ λ.

More recently, in [8], the author extends these results to the quasilinear problem

−∆pu= λ f (x,u) in Ω,

u= 0 on ∂Ω,
(1.2)

where∆pu=div(|∇u|p−2∇u) is the p-Laplacian, 1< p<∞, λ > 0, and f is a sign-changing
Carathéodory function on Ω× [0,∞).

The method in [8] is variational and allowed the author to substantially relax the as-
sumptions on f . More precisely, these assumptions are

(H1) f (x,0)= 0, | f (x, t)| ≤ C|t|p−1,
(H2) there exists δ > 0 such that F(x, t)≤ 0 for 0≤ t ≤ δ,
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(H3) there exists t0 > 0 such that F(x, t0) > 0,
(H4) limsupt→∞F(x, t)/tp ≤ 0 uniformly in x,

where F(x, t)= ∫ t0 f (x,s)ds.
The purpose of this article is twofold. Applying variational methods, we first extend

the results in [8] to quasilinear elliptic systems of the form

−∆pu= λFu(x,u,v) in Ω,

−∆qv = λFv(x,u,v) in Ω,

u= v = 0 on ∂Ω,
(1.3)

where (Fu,Fv) stands for the gradient of a given potential F, and second, we want to see
to what extent these variational techniques can be adapted to deal with the nonlinear
boundary condition case

−∆pu+ |u|p−2u= 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λg(x,u) on ∂Ω,

(1.4)

where ∂/∂ν is the outer unit normal derivative.
Systems of the form (1.3) are usually called gradient systems and have been widely stud-

ied in the past. See, for example, [2] for a comprehensive analysis of such systems. This
gradient structure allows us to treat (1.3) variationally. Other kinds of elliptic systems
that can be treated variationally are the so-called Hamiltonian systems, see [3].

However, as far as we know, all the results for (1.3) assume, to begin with, that Fu,Fv≥0
for u,v ≥ 0.

For problem (1.4), in a previous paper, [4], the authors studied the problem where
the nonlinearity g was assumed to be of power type, that is, essentially the case g(x, t)=
|t|q−2t was considered, so again g(x, t)≥ 0 for t ≥ 0.

The main results of this paper can be formulated as follows.

Under hypotheses similar to (H1)–(H4), there exists 0 < λ < λ̄ such that if 0 < λ < λ
problem (1.3) (or problem (1.4)) has no positive solution and if λ > λ̄ problem (1.3) (or
problem (1.4)) has, at least, two positive solutions.

The rest of the paper is organized as follows: in Section 2 we deal with problem (1.3)
and in Section 3 with (1.4).

2. Gradient systems

In this section, we deal with problem (1.3). First, we prove the nonexistence result. To this
end, we assume that F(x,u,v) is a Carathéodory function on Ω× [0,∞)× [0,∞), F(x,·,·)
is C1 for a.e. x ∈Ω, and Fu, Fv are also Carathéodory functions satisfying

F(x,0,0)= Fu(x,0,0)= Fv(x,0,0)= 0,∣∣uFu(x,u,v) + vFv(x,u,v)
∣∣≤ C

(
up + vq

)
,∣∣F(x,u,v)

∣∣≤ C
(
up + vq

)
,

(2.1)

for some constant C > 0.
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We have the following theorem.

Theorem 2.1. Assume (2.1) holds. Then, there is a λ such that (1.3) has no positive solution
for λ < λ.

For the proof we need the following observation. We denote by λr the best constant in
the Sobolev embedding W1,r

0 (Ω)↩Lr(Ω). We have

λp

∫
Ω
|u|pdx ≤

∫
Ω
|∇u|pdx for u∈W

1,p
0 (Ω),

λq

∫
Ω
|v|qdx ≤

∫
Ω
|∇v|qdx for v ∈W

1,q
0 (Ω),

(2.2)

so if we denote λp,q =min{λp,λq}, we obtain

0 < λp,q ≤
∫
Ω |∇u|p + |∇v|qdx∫

Ω |u|p + |v|qdx for u∈W
1,p
0 (Ω), v ∈W

1,q
0 (Ω) (2.3)

and, moreover, one can easily see that λp,q is optimal.

Proof of Theorem 2.1. If (1.3) has a positive solution (u,v), multiplying the first equation
of (1.3) by u, the second by v, and integrating by parts and adding up, we get

∫
Ω
|∇u|p + |∇v|qdx = λ

∫
Ω
Fu(x,u,v)u+Fv(x,u,v)vdx. (2.4)

Thus, using (2.1), we obtain

∫
Ω
|∇u|p + |∇v|qdx ≤ λC

∫
Ω
|u|p + |v|qdx (2.5)

and hence λ≥ λp,q/C by (2.3), proving Theorem 2.1. �

Now, we prove the multiplicity result. To this end, along with (2.1), we also have to
assume that

(F1) there exists δ > 0 such that F(x,u,v)≤ 0 for |u|p + |v|q ≤ δ,
(F2) there exists t0,s0 > 0 such that F(x, t0,s0) > 0,
(F3) limsup|(u,v)|→∞F(x,u,v)/(up + vq)≤ 0 uniformly in x.

Under these assumptions, we have the following theorem.

Theorem 2.2. Under the assumptions (2.1), (F1), (F2), and (F3), there is a λ such that (1.3)
has at least two positive solutions (u1,v1), (u2,v2) for λ≥ λ.

For the proof of Theorem 2.2, we use critical point theory. Set F(x,u,v)= 0 for u,v < 0,
and consider the C1 functional

�λ(u,v)=
∫
Ω

|∇u|p
p

+
|∇v|q
q

− λF(x,u,v)dx, (u,v)∈W
1,p
0 (Ω)×W

1,q
0 (Ω). (2.6)
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Observe that if (u,v) is a critical point of �λ, denoting by u− and v− the negative parts of
u and v, respectively,

0= (�′
λ(u,v),(u−,v−)

)
=
∫
Ω
|∇u|p−2∇u ·∇u− + |∇v|q−2∇v · v−

− λ
(
Fu(x,u,v)u− +Fv(x,u,v)v−

)
dx

= ‖u−‖p
W

1,p
0 (Ω)

+‖v−‖q
W

1,q
0 (Ω)

,

(2.7)

hence we have that u,v ≥ 0. Furthermore, by [10], u,v ∈ C1,α(Ω) and so, by Harnack
inequality (see [11]), it follows that either u,v > 0 or u ≡ v ≡ 0. Therefore, nontrivial
critical points of �λ are positive solutions of (1.4).

By (F3) and (2.1), there is a constant Cλ > 0 such that

λF(x,u,v)≤ λp,q

2

(
|u|p
p

+
|v|q
q

)
+Cλ (2.8)

and hence

�λ(u)≥
∫
Ω

|∇u|p
p

+
|∇v|q
q

− λp,q

2

(
|u|p
p

+
|v|q
q

)
−Cλdx

≥ 1
2p
‖u‖p

W
1,p
0 (Ω)

+
1

2q
‖v‖q

W
1,q
0 (Ω)

−Cλ|Ω|N ,

(2.9)

where | · |d denotes the d-dimensional Lebesgue measure in RN , so �λ is bounded from
below and coercive.

Therefore, as �λ is weakly lower semicontinuous, we obtain a global minimizer (u1,
v1). We show that, if λ is big enough, this minimizer is nontrivial.

Lemma 2.3. There is a λ such that inf �λ < 0, and hence (u1,v1) 
= (0,0), for λ≥ λ.

Proof. We consider a sufficiently large compact subset Ω′ of Ω and take functions u0 ∈
W

1,p
0 (Ω), v0 ∈W

1,q
0 (Ω) such that u0(x) = t0 on Ω′, 0 ≤ u0(x) ≤ t0 on Ω \Ω′, v0(x) = s0

on Ω′, 0≤ v0(x)≤ s0 on Ω \Ω′, where t0, s0 are as in (F2).
Then, we obtain

∫
Ω
F
(
x,u0,v0

)
dx ≥

∫
Ω′
F
(
x, t0,s0

)
dx−C

(
t
p
0 + s

q
0

)|Ω \Ω′|N > 0, (2.10)

if Ω′ is big enough. Hence, �λ(u0,v0) < 0 for λ large enough. �

We will obtain a critical point (u2,v2) with �λ(u2,v2) > 0 via the mountain pass lemma,
which would complete the proof since �λ(u2,v2) > 0 > �λ(u1,v1).
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Lemma 2.4. The origin is a strict local minimizer of �λ.

Proof. Let U(u,v) = {x ∈ Ω : |u(x)|p + |v(x)|q > δ}. By (F1), F(x,u(x),v(x)) ≤ 0 on Ω \
U(u,v), so

�λ(u,v)≥ 1
p
‖u‖p

W
1,p
0 (Ω)

+
1
q
‖v‖q

W
1,q
0 (Ω)

− λ
∫
U(u,v)

F(x,u,v)dx. (2.11)

By (2.1), Hölder’s inequality, and Sobolev embedding,∫
U(u,v)

F(x,u,v)dx ≤ C
∫
U(u,v)

up + vqdx

≤ C
(∣∣U(u,v)

∣∣1−p/r
N ‖u‖p

W
1,p
0 (Ω)

+
∣∣U(u,v)

∣∣1−q/s
N ‖v‖q

W
1,q
0 (Ω)

)
,

(2.12)

where r = Np/(N − p) if p < N and r > p if p ≥ N , and s = Nq/(N − q) if q < N and
s > q if q ≥ N . So, in order to finish the proof we need to show that |U(u,v)|N → 0 as
‖u‖W1,p

0 (Ω) +‖v‖W1,q
0 (Ω) → 0.

Now,

‖u‖p
W

1,p
0 (Ω)

+‖v‖q
W

1,q
0 (Ω)

≥ λp,q

∫
Ω
up + vqdx ≥ λp,q

∫
U(u,v)

up + vqdx ≥ λp,qδ
∣∣U(u,v)

∣∣
N ,

(2.13)

as we wanted to show. �

Now, we are in position to finish the proof of Theorem 2.2.

Proof of Theorem 2.2. As �λ is coercive, every Palais-Smale sequence is bounded and
hence contains a convergent subsequence as usual. Now, the mountain pass lemma gives
a critical point (u2,v2) of �λ at the level

c := inf
γ∈Γ

max
(u,v)∈γ([0,1])

�λ(u,v) > 0, (2.14)

where Γ = {γ ∈ C([0,1], W
1,p
0 (Ω)×W

1,q
0 (Ω)) : γ(0) = 0, γ(1) = (u1,v1)} is the class of

paths joining the origin to (u1,v1) (see [9]). �

3. The nonlinear boundary condition case

In this section, we deal with the nonlinear boundary condition case, problem (1.4). The
main ideas and structures of the proofs are the same as in the previous section, so we only
sketch them and stress the differences between the two cases.

We begin with the nonexistence result. To this end, we assume that g is a Carathéodory
function on ∂Ω× [0,∞) satisfying

g(x,0)= 0, −ctr−1 ≤ g(x, t)≤ Ctp−1 (3.1)

for some 1≤ r ≤ p and some constants C,c > 0.
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We have the following theorem.

Theorem 3.1. There is a λ such that (1.4) has no positive solution for λ < λ.

For the proof, we need some knowledge on the following eigenvalue problem:

−∆pu+ |u|p−2u= 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω.

(3.2)

This problem was studied in [4, 6] (see also [5]). It was proved there that problem (3.2)
has a first positive eigenvalue λ1 given by

λ1 = min
u∈W1,p(Ω)\W1,p

0 (Ω)

∫
Ω |∇u|p + |u|pdx∫

∂Ω |u|pdσ
, (3.3)

where dσ is the boundary measure. In the linear case, p = 2, problem (3.2) is known as
the Steklov problem (see [1]).

Proof of Theorem 3.1. If (1.4) has a positive solution u, multiplying (1.4) by u, integrating
by parts, and using (3.1) gives

∫
Ω
|∇u|p + |u|pdx = λ

∫
∂Ω

f (x,u)udσ ≤ Cλ
∫
∂Ω
|u|pdσ , (3.4)

and hence λ≥ λ1/C by (3.3), proving Theorem 3.1. �

Now we prove the multiplicity result.
The assumptions in this case are as follows: let G(x, t) = ∫ t0 g(x,s)ds, and assume the

following:

(G1) there exists δ > 0 such that G(x, t)≤ 0 for 0≤ t ≤ δ,
(G2) there exists t0 > 0 such that G(x, t0) > 0,
(G3) limsupt→∞G(x, t)/tp ≤ 0 uniformly in x.

Theorem 3.2. Assume (3.1) and (G1), (G2), and (G3) hold. Then, there is a λ such that
(1.4) has at least two positive solutions u1 > u2 for λ≥ λ.

Observe that for problem (1.4) we can prove that the two solutions are ordered. We
believe that this should hold also for (1.3), but the truncation argument used in the proof
does not work because it destroys the variational structure of (1.3).

Again, set g(x, t)= 0 for t < 0, and consider the C1 functional

�λ(u)= 1
p

∫
Ω
|∇u|p + |u|pdx− λ

∫
∂Ω

G(x,u)dσ , u∈W1,p(Ω). (3.5)
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Arguing as before, if u is a critical point of �λ, denoting by u− the negative part of u,

0= (�′λ(u),u−
)

=
∫
Ω
|∇u|p−2∇u ·∇u− + |u|p−2uu−dx− λ

∫
∂Ω

g(x,u)u−dσ

= ‖u−‖pW1,p(Ω),

(3.6)

hence we have that u≥ 0. Furthermore, by [10], u∈ C1,α(Ω) and so, by the strong max-
imum principle and Hopf ’s lemma (see [12]), it follows that either u > 0 in Ω or u ≡ 0.
Therefore, nontrivial critical points of �λ are positive solutions of (1.4). Observe that in
this case, the solution u is positive up to the boundary.

By (G3) and (3.1), there is a constant Cλ > 0 such that

λG(x, t)≤ λ1

2p
|t|p +Cλ (3.7)

and hence

�λ(u)≥ 1
p

∫
Ω
|∇u|p + |u|pdx−

∫
∂Ω

λ1

2p
|u|p +Cλdσ

≥ 1
2p
‖u‖pW1,p(Ω)−Cλ|∂Ω|N−1,

(3.8)

so �λ is bounded from below and coercive.
Therefore, as �λ is weakly lower semicontinuous, we obtain a global minimizer u1.

Once again, if λ is big enough, this minimizer is nontrivial.

Lemma 3.3. There is a λ such that inf �λ < 0, and hence u1 
= 0, for λ≥ λ.

Proof. Take the constant function u0 ≡ t0, where t0 is as in (G2).
Then, we obtain ∫

∂Ω
G
(
x,u0

)
dσ =

∫
∂Ω

G
(
x, t0

)
dσ > 0. (3.9)

Hence, �λ(u0) < 0 for λ large enough. �

The main difference in the arguments arrives at this point. As we mentioned before, by
a truncation argument we can prove that the two solutions are ordered. In fact, fix λ≥ λ.
Let

g̃(x, t)=
g(x, t), t ≤ u1(x),

g
(
x,u1(x)

)
, t > u1(x),

G̃(x, t)=
∫ t

0
g̃(x,s)ds. (3.10)

Then consider

�̃λ(u)= 1
p

∫
Ω
|∇u|p + |u|pdx− λ

∫
∂Ω

G̃(x,u)dσ. (3.11)
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If u is a critical point of �̃λ, then u≥ 0 as before. Now,

0= (�̃′λ(u)−�′λ
(
u1
)
,
(
u−u1

)+)
=
∫
Ω

[(|∇u|p−2∇u−∣∣∇u1
∣∣p−2∇u1

) ·∇(u−u1
)+

+
(|u|p−2u−∣∣u1

∣∣p−2
u1
)(
u−u1

)+]
dx

− λ
∫
∂Ω

(
g̃(x,u)− g

(
x,u1

))(
u−u1

)+
dσ

=
∫
{u>u1}

[(|∇u|p−2∇u−∣∣∇u1
∣∣p−2∇u1

) · (∇u−∇u1
)

+
(|u|p−2u−∣∣u1

∣∣p−2
u1
)(
u−u1

)+]
dx

≥
∫
{u>u1}

[(|∇u|p−1−∣∣∇u1
∣∣p−1)(|∇u|−∣∣∇u1

∣∣)
+
(|u|p−1−∣∣u1

∣∣p−1)(|u|−∣∣u1
∣∣)]dx ≥ 0,

(3.12)

so u≤ u1. Therefore, u is a solution of (1.4).
Now, as in the previous case, we will obtain the second solution as a critical point of

�̃, u2, with �̃λ(u2) > 0 via the mountain pass lemma, which would complete the proof

since �̃λ(0)= 0 > �̃λ(u1).

Lemma 3.4. The origin is a strict local minimizer of �̃λ.

Proof. Let Γu = {x ∈ ∂Ω : u(x) > min{u1(x),δ}}. By (3.10) and (G1), G̃(x,u(x)) ≤ 0 on
∂Ω \Γu, so

�̃λ(u)≥ 1
p
‖u‖pW1,p(Ω)− λ

∫
Γu
G̃(x,u)dσ. (3.13)

By (3.1), Hölder’s inequality, and Sobolev trace theorem,

∫
Γu
G̃(x,u)dσ ≤ C

∫
Γu
updσ ≤ C

∣∣Γu∣∣1−p/q
N−1 ‖u‖

p
W1,p(Ω), (3.14)

where q = (N − 1)p/(N − p) if p < N and q > p if p ≥ N , so in order to finish the proof
we need to show that |Γu|N−1 → 0 as ‖u‖W1,p(Ω) → 0.

Let k =min{min∂Ωu1;δ}, where δ is given in (G1). Then,

‖u‖pW1,p(Ω) ≥ C
∫
∂Ω

updσ ≥ C
∫
Γu
updσ ≥ Ckp

∣∣Γu∣∣N−1, (3.15)

as we wanted to show. �

Now, we are in position to finish the proof of Theorem 3.2.
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Proof of Theorem 3.2. The same argument used for �λ shows that �̃λ is also coercive, so

every Palais-Smale sequence of �̃λ is bounded and hence contains a convergent subse-

quence as usual. Now, the mountain pass lemma gives a critical point u2 of �̃λ at the level

c := inf
γ∈Γ

max
u∈γ([0,1])

�̃λ(u) > 0, (3.16)

where Γ= {γ ∈ C([0,1], W1,p(Ω)) : γ(0)= 0, γ(1)= u1} is the class of paths joining the
origin to u1. �
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[1] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Vol. II,
North-Holland, Amsterdam, 1991, pp. 641–787.

[2] L. Boccardo and D. G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations,
NoDEA Nonlinear Differential Equations Appl. 9 (2002), no. 3, 309–323.

[3] D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math.
Soc. 343 (1994), no. 1, 99–116.

[4] J. Fernández Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear bound-
ary conditions, J. Math. Anal. Appl. 263 (2001), no. 1, 195–223.

[5] , A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace em-
bedding, Publ. Mat. 46 (2002), no. 1, 221–235.

[6] S. Martı́nez and J. D. Rossi, Isolation and simplicity for the first eigenvalue of the p-Laplacian
with a nonlinear boundary condition, Abstr. Appl. Anal. 7 (2002), no. 5, 287–293.

[7] C. Maya and R. Shivaji, Multiple positive solutions for a class of semilinear elliptic boundary value
problems, Nonlinear Anal. Ser. A: Theory Methods 38 (1999), no. 4, 497–504.

[8] K. Perera, Multiple positive solutions for a class of quasilinear elliptic boundary-value problems,
Electron. J. Differential Equations 2003 (2003), no. 7, 1–5.

[9] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential
Equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathe-
matical Society, Rhode Island, 1986.

[10] P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary
points, Comm. Partial Differential Equations 8 (1983), no. 7, 773–817.

[11] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equa-
tions, Comm. Pure Appl. Math. 20 (1967), 721–747.

[12] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math.
Optim. 12 (1984), no. 3, 191–202.

Julián Fernández Bonder: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales,
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