SYMMETRY AND CONCENTRATION BEHAVIOR OF GROUND STATE IN AXIALLY SYMMETRIC DOMAINS

TSUNG-FANG WU

Received 9 October 2003

We let $\Omega(r)$ be the axially symmetric bounded domains which satisfy some suitable conditions, then the ground-state solutions of the semilinear elliptic equation in $\Omega(r)$ are nonaxially symmetric and concentrative on one side. Furthermore, we prove the necessary and sufficient condition for the symmetry of ground-state solutions.

1. Introduction

Let $N \ge 2$ and $2 , where <math>2^* = 2N/(N-2)$ for $N \ge 3$ and $2^* = \infty$ for N = 2. Consider the semilinear elliptic equation

$$-\Delta u + u = |u|^{p-2}u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(1.1)

where Ω is a domain in \mathbb{R}^N . When Ω is a bounded domain in \mathbb{R}^N being convex in the z_i direction and symmetric with respect to the hyperplane $\{z_i = 0\}$, the famous theorem by Gidas, Ni, and Nirenberg [6] (or see Han and Lin [7]): if u is a positive solution of (1.1) belonging to $C^2(\Omega) \cap C(\overline{\Omega})$, then u is axial symmetric in z_i . However, the axially symmetry of positive solution generally fails if Ω is not convex in the z_i direction. For instance, Dancer [5], Byeon [2, 3], and Jimbo [8] proved that (1.1) in axially symmetric dumbbell-type domain has nonaxially symmetric positive solutions. Wang and Wu [13] and Wu [15] showed the same result in a finite strip with hole. In this paper, we want to show that the symmetry and concentration behavior of ground-state solutions in axially symmetric bounded domains $\Omega(r)$ (will be defined later), where the domains $\Omega(r)$ are different from those of Dancer [5], Byeon [2, 3], Jimbo [8], and are extensions of Wang and Wu [13] and Wu [15]. The definition of ground-state solution of (1.1) is stated as follows. Consider the energy functionals a, b, and J in $H_0^1(\Omega)$,

$$a(u) = \int_{\Omega} (|\nabla u|^2 + u^2), \qquad b(u) = \int_{\Omega} |u|^p, \qquad J(u) = \frac{1}{2}a(u) - \frac{1}{p}b(u).$$
 (1.2)

Copyright © 2004 Hindawi Publishing Corporation Abstract and Applied Analysis 2004:12 (2004) 1019–1030 2000 Mathematics Subject Classification: 35J20, 35J25, 35J60 URL: http://dx.doi.org/10.1155/S1085337504404023 It is well known that the solutions of (1.1) are the critical points of the energy functional J. Consider the minimax problem

$$\alpha_{\Gamma}(\Omega) = \inf_{\gamma \in \Gamma(\Omega)} \max_{t \in [0,1]} J(\gamma(t)), \tag{1.3}$$

where

$$\Gamma(\Omega) = \{ \gamma \in C([0,1], H_0^1(\Omega)) \mid \gamma(0) = 0, \gamma(1) = e \}, \tag{1.4}$$

J(e)=0 and $e\neq 0$. We call a non zero critical point u of J in $H^1_0(\Omega)$ with $J(u)=\alpha_\Gamma(\Omega)$ a ground-state solution. It follows easily from the mountain pass theorem of Ambrosetti and Rabinowitz [1] that such a ground-state exists. We remark that the ground-state solutions of (1.1) can also be obtained by the Nehari minimization problem

$$\alpha_0(\Omega) = \inf_{\nu \in \mathbf{M}_0(\Omega)} J(\nu),\tag{1.5}$$

where $\mathbf{M}_0(\Omega) = \{u \in H_0^1(\Omega) \setminus \{0\} | a(u) = b(u)\}$. Note that $\mathbf{M}_0(\Omega)$ contains every nonzero solution of (1.1) and $\alpha_{\Gamma}(\Omega) = \alpha_0(\Omega)$ (see Willem [14] and Wang [12]).

Now, we consider the following assumptions of an axially symmetric unbounded domain Ω . For the generic point $z = (x, y) \in \mathbb{R}^{N-1} \times \mathbb{R}$,

- $(\Omega 1)$ Ω is a *y*-symmetric (axially symmetric) domain of \mathbb{R}^N , that is, $(x, y) \in \Omega$ if and only if $(x, -y) \in \Omega$;
- $(\Omega 2)$ Ω is separated by a *y*-symmetric bounded domain *D*, that is, there exist two disjoint subdomains Ω_1 and Ω_2 of Ω such that

$$(x, y) \in \Omega_2$$
 if and only if $(x, -y) \in \Omega_1$,
 $\Omega \setminus \overline{D} = \Omega_1 \cup \Omega_2$; (1.6)

 $(\Omega 3)$ equation (1.1) in Ω does not admit any solution $u \in H_0^1(\Omega)$ such that $J(u) = \alpha_0(\Omega)$.

Now, we give some examples. The infinite strip with hole: $\Omega' = \mathbf{A}^r \setminus \omega$, where $\mathbf{A}^r = B^{N-1}(0;r) \times \mathbb{R}$ and $\omega \subset \mathbf{A}^r$ is a y-symmetric bounded domain, and $\Omega'' = \{(x,y) \in \mathbb{R}^{N-1} \times \mathbb{R} \mid |x|^2 < |y| + 1\}$. Clearly, Ω' and Ω'' satisfy $(\Omega 1)$ and $(\Omega 2)$. Furthermore, by Lien, Tzeng, and Wang [9, Lemma 2.5], if Ω is a ball-up domain in \mathbb{R}^N , then (1.1) in Ω does not admit any solution $u \in H^1_0(\Omega)$ such that $J(u) = \alpha_0(\Omega)$. Thus, the domain Ω'' satisfies $(\Omega 3)$. Moreover, along the same line of the proof of Lien, Tzeng, and Wang [9, Lemma 2.5], we obtain $\alpha_0(\Omega') = \alpha_0(\mathbf{A}^r)$. By Lemma 2.8, the domain Ω' satisfies $(\Omega 3)$ (or see Wang [12, Example 2.13 and Proposition 2.14]).

Let $\Omega(r) = \Omega \cap B^N(0;r)$ be a *y*-symmetric bounded domain and let $\Omega_t^+ = \{(x,y) \in \Omega \mid y > t\}$ and $\Omega_t^- = \{(x,y) \in \Omega \mid y < t\}$, then our first main result is the following theorem.

Theorem 1.1. Suppose that Ω satisfies $(\Omega 1)$, $(\Omega 2)$, and $(\Omega 3)$. Then, for each $\varepsilon > 0$ and $l \ge 0$ there exists an $\widetilde{r}(\varepsilon, l) > 0$ such that for $r > \widetilde{r}(\varepsilon, l)$, if v is a ground-state solution of (1.1) in $\Omega(r)$, then either $\int_{\Omega_l^+} |v|^p < \varepsilon$ or $\int_{\Omega_l^-} |v|^p < \varepsilon$.

Note that, if we take $\varepsilon = (p/(p-2))\alpha_0(\Omega)$ and l = 0, then there exists an $r_0 > 0$ such that for $r > r_0$, every ground-state solution of (1.1) in $\Omega(r)$ is not y-symmetric. Then, we have the following result.

COROLLARY 1.2. Let $\varepsilon = (p/(p-2))\alpha_0(\Omega)$ and l=0, then there exists an $r_0 > 0$ such that for $r > r_0$, (1.1) in $\Omega(r)$ has at least three positive solutions of which one is y-symmetric and the other two are not y-symmetric.

By Theorem 1.1, for each $\varepsilon > 0$ and $l \ge 0$ there exists an $m_0 \in \mathbb{N}$ such that for each $m \ge 0$ m_0 , (1.1) in $\Omega(m)$ has a ground-state solution ν_m that satisfies $\int_{\Omega_i^+} |\nu_m|^p < \varepsilon$ or $\int_{\Omega_i^-} |\nu_m|^p < \varepsilon$ ε . Then, we have the following results.

THEOREM 1.3. (i) The sequence $\{v_m\}$ is a $(PS)_{\alpha_0(\Omega)}$ -sequence in $H_0^1(\Omega)$ for J; (ii) $v_m \to 0$ weakly in $L^p(\Omega)$ and in $H_0^1(\Omega)$ as $m \to \infty$.

By Theorem 1.1, the ground-state solutions of (1.1) in $\Omega(r)$ are not y-symmetric for large r. In this motivation, we consider the positive ground-state solutions of the following equation:

$$-\Delta u + u = f(u) \quad \text{in } \Theta,$$

$$u = 0 \quad \text{on } \partial \Theta,$$
 (1.7)

where Θ is a y-symmetric bounded domain and the nonlinear term f is usually assumed to satisfy the following conditions:

- (f1) f(-t) = -f(t) and f(t) = o(|t|) near t = 0;
- (f2) there exist two constants $\theta \in (0, 1/2)$ and $C_0 > 0$ such that $0 < F(u) \equiv \int_0^u f(s) ds \le 1$ $\theta u f(u)$ for all $u \geq C_0$;
- $(f3) |f(t)| \le C|t|^q$ for some 1 < q < (N+2)/(N-2) if N > 2, $1 < q < \infty$ if N = 2 and for large *t*;
- $(f4) \partial^2 f/\partial t^2(t) \ge 0 \text{ for } t \ne 0.$
- $f(t) = |t|^{p-2}t$ is a typical example. Under the conditions (f1) through (f3), the definition of ground-state solutions of (1.7) is similar to the minimax problem (1.3). Here, we modify the proof of Chern and Lin [4] to get the following results.

THEOREM 1.4. Let $v \in C^2(\Theta) \cap C(\overline{\Theta})$ be a positive ground-state solutions of (1.7) in Θ . Then, there exists a $z_0 \in \{y = 0\} \cap \Theta$ such that $(\partial v/\partial y)(z_0) = 0$ if and only if v is y-symmetric.

COROLLARY 1.5. If v is a positive ground-state solution of (1.1) in $\Omega(r)$ as in Corollary 1.2 and z_c is a critical point of v, then $z_c \notin \{y = 0\} \cap \Omega$. In particular, either $(\partial v/\partial y)(z) < 0$ or $(\partial v/\partial y)(z) > 0$ for all $z \in \{y = 0\} \cap \Omega$.

2. Preliminaries

We define the *y*-symmetric domains and *y*-symmetric functions as follows.

Definition 2.1. (i) Ω is y-symmetric provided that $z = (x, y) \in \Omega$ if and only if $(x, -y) \in \Omega$ Ω ;

(ii) let Ω be a y-symmetric domain in \mathbb{R}^N . A function $u:\Omega\to\mathbb{R}$ is y-symmetric (axially symmetric) if u(x, y) = u(x, -y) for $(x, y) \in \Omega$.

Throughout this paper, let Ω be a y-symmetric domain in \mathbb{R}^N , $H_s(\Omega)$ the H^1 - closure of the space $\{u \in C_0^{\infty}(\Omega) \mid u \text{ is } y\text{-symmetric}\}$ and let $X(\Omega)$ be either the whole space $H_0^1(\Omega)$ or the y-symmetric Sobolev space $H_s(\Omega)$. Then, $H_s(\Omega)$ is a closed linear subspace of $H_0^1(\Omega)$. Let $H_s^{-1}(\Omega)$ be the dual space of $H_s(\Omega)$.

We define the Palais-Smale (PS) sequences, (PS)-values and (PS)-conditions in $X(\Omega)$ for J as follows.

Definition 2.2. We define the following:

- (i) for $\beta \in \mathbb{R}$, a sequence $\{u_n\}$ is a $(PS)_{\beta}$ -sequence in $X(\Omega)$ for J if $J(u_n) = \beta + o(1)$ and $J'(u_n) = o(1)$ strongly in $X^{-1}(\Omega)$ as $n \to \infty$;
- (ii) $\beta \in \mathbb{R}$ is a (PS)-value in $X(\Omega)$ for J if there is a (PS) $_{\beta}$ -sequence in $X(\Omega)$ for J;
- (iii) J satisfies the $(PS)_{\beta}$ -condition in $X(\Omega)$ if every $(PS)_{\beta}$ -sequence in $X(\Omega)$ for J contains a convergent subsequence.

By Willem [14], for any $\beta \in \mathbb{R}$, a (PS) $_{\beta}$ -sequence in $X(\Omega)$ for J is bounded. Moreover, a (PS)-value β should be nonnegative.

LEMMA 2.3. Let $\beta \in \mathbb{R}$ and $\{u_n\}$ be a $(PS)_{\beta}$ -sequence in $X(\Omega)$ for J, then there exists a positive number $c(\beta)$ such that $\|u_n\|_{H^1} \leq c(\beta)$ for large n. Furthermore,

$$a(u_n) = b(u_n) + o(1) = \frac{2p}{p-2}\beta + o(1)$$
(2.1)

and $\beta \geq 0$. Moreover, $c(\beta)$ can be chosen so that $c(\beta) \rightarrow 0$ as $\beta \rightarrow 0$.

Now, we consider the Nehari minimization problem

$$\alpha_X(\Omega) = \inf_{u \in \mathbf{M}(\Omega)} J(u), \tag{2.2}$$

where $\mathbf{M}(\Omega) = \{u \in X(\Omega) \setminus \{0\} \mid a(u) = b(u)\}$. Note that $\mathbf{M}(\Omega)$ contains every nonzero solution of (1.1) in Ω , $\alpha_X(\Omega) > 0$ and if $u_0 \in \mathbf{M}(\Omega)$ achieves $\alpha_X(\Omega)$, then u_0 is a positive (or negative) solution of (1.1) in Ω (see [13, 14]). Moreover, we have the following useful lemma, whose proof can be found in [13, Lemma 7].

LEMMA 2.4. Let $\{u_n\}$ be in $X(\Omega)$. Then, $\{u_n\}$ is a $(PS)_{\alpha_X(\Omega)}$ -sequence in $X(\Omega)$ for J if and only if $J(u_n) = \alpha_X(\Omega) + o(1)$ and $a(u_n) = b(u_n) + o(1)$.

We denote

- (i) $\alpha_X(\Omega)$ by $\alpha_0(\Omega)$ for $X(\Omega) = H_0^1(\Omega)$ and $\alpha_X(\Omega)$ by $\alpha_s(\Omega)$ for $X(\Omega) = H_s(\Omega)$,
- (ii) $\mathbf{M}(\Omega)$ by $\mathbf{M}_0(\Omega)$ for $X(\Omega) = H_0^1(\Omega)$ and $\mathbf{M}(\Omega)$ by $\mathbf{M}_s(\Omega)$ for $X(\Omega) = H_s(\Omega)$.

Remark 2.5. By the principle of symmetric criticality (see [11]), we have every $(PS)_{\beta}$ -sequence in $X(\Omega)$ for J is a $(PS)_{\beta}$ -sequence in $H_0^1(\Omega)$ for J.

Let Ω be any unbounded domain and $\xi \in C^{\infty}([0,\infty))$ such that $0 \le \xi \le 1$ and

$$\xi(t) = \begin{cases} 0 & \text{for } t \in [0, 1], \\ 1 & \text{for } t \in [2, \infty). \end{cases}$$
 (2.3)

Let

$$\xi_n(z) = \xi\left(\frac{2|z|}{n}\right). \tag{2.4}$$

Then, we have the following results whose proof can be found in [15].

PROPOSITION 2.6. Equation (1.1) in Ω does not admit any solution u_0 such that $J(u_0) = \alpha_X(\Omega)$ if and only if for each $(PS)_{\alpha_X(\Omega)}$ -sequence $\{u_n\}$ in $X(\Omega)$ for J, there exists a subsequence $\{u_n\}$ such that $\{\xi_n u_n\}$ is also a $(PS)_{\alpha_X(\Omega)}$ -sequence in $X(\Omega)$ for J.

PROPOSITION 2.7. *J* does not satisfy the $(PS)_{\alpha_X(\Omega)}$ -condition in $X(\Omega)$ for *J* if and only if there exists a $(PS)_{\alpha_X(\Omega)}$ -sequence $\{u_n\}$ in $X(\Omega)$ for *J* such that $\{\xi_n u_n\}$ is also a $(PS)_{\alpha_X(\Omega)}$ -sequence in $X(\Omega)$ for *J*.

Let $\Omega_1 \subsetneq \Omega_2$, clearly $\alpha_X(\Omega_1) \geq \alpha_X(\Omega_2)$. Then, we have the following useful results.

LEMMA 2.8. Let $\Omega_1 \subsetneq \Omega_2$ and $J: X(\Omega_2) \to \mathbb{R}$ be the energy functional. Suppose that $\alpha_X(\Omega_1) = \alpha_X(\Omega_2)$. Then, the following hold:

- (i) equation (1.1) in Ω_1 does not admit any solution $u_0 \in X(\Omega_1)$ such that $J(u_0) = \alpha_X(\Omega_1)$;
- (ii) *J* does not satisfy the $(PS)_{\alpha_X(\Omega_2)}$ -condition.

The proof is given by Wang and Wu [13, Lemma 13].

By the Rellich compact theorem, J satisfies the $(PS)_{\alpha_X(\Omega)}$ -condition in $X(\Omega)$ if Ω is a bounded domain.

LEMMA 2.9. Let Ω be a bounded domain in \mathbb{R}^N . Then, the $(PS)_{\alpha_X(\Omega)}$ -condition holds in $X(\Omega)$ for J. Furthermore, (1.1) in Ω has a positive solution u_0 such that $J(u_0) = \alpha_X(\Omega)$.

3. Concentration behavior

We need the following results.

LEMMA 3.1. Let Ω be an unbounded domain. Then,

$$\alpha_X(\Omega(r)) \setminus \alpha_X(\Omega) \quad \text{as } r \nearrow \infty.$$
 (3.1)

Proof. Since $\Omega(r)$ is a bounded domain for all r > 0, by Lemmas 2.8 and 2.9, we have $\alpha_X(\Omega(r))$ is monotone decreasing as r is monotone increasing and $\alpha_X(\Omega(r)) > \alpha_X(\Omega)$. Thus, there exists a $d_0 \ge \alpha_X(\Omega)$ such that

$$\alpha_X(\Omega(r)) \setminus d_0 \quad \text{as } r \nearrow \infty.$$
 (3.2)

Claim that $d_0 \le \alpha_X(\Omega)$. Let $\{u_n\}$ be a $(PS)_{\alpha_X(\Omega)}$ -sequence in $X(\Omega)$ for J. By Lemma 2.3, there exists a c > 0 such that

$$\int_{\Omega} |\nabla u_n|^2 + u_n^2 \le c, \qquad \int_{\Omega} |u_n|^p \le c \tag{3.3}$$

for all $n \in \mathbb{N}$. Thus, for each $n \in \mathbb{N}$, there exists a sequence $\{r_n\}$ such that $r_n > 0$ with $r_n > \infty$ as $n \to \infty$ and

$$\int_{\Omega \cap \{|z| \ge r_n\}} \left| \nabla u_n \right|^2 + u_n^2 < \frac{1}{n}, \qquad \int_{\Omega \cap \{|z| \ge r_n\}} \left| u_n \right|^p < \frac{1}{n}. \tag{3.4}$$

Now, define $\eta_{r_n}(z) = \eta(2|z|/r_n)$, where $\eta \in C_c^{\infty}([0,\infty))$ satisfies $0 \le \eta \le 1$ and

$$\eta(t) = \begin{cases} 1 & \text{for } t \in [0,1], \\ 0 & \text{for } t \in [2,\infty). \end{cases}$$
(3.5)

Then, $\eta_{r_n}u_n \in X(\Omega)$. From (3.4), we obtain

$$a(\eta_{r_n} u_n) = a(u_n) + o(1),$$

$$b(\eta_{r_n} u_n) = b(u_n) + o(1).$$
(3.6)

By the routine computations, there exists a sequence $\{s_n\} \subset \mathbb{R}^+$ such that $a(s_n\eta_{r_n}u_n) = b(s_n\eta_{r_n}u_n)$, $s_n = 1 + o(1)$ and

$$J(s_n \eta_{r_n} u_n) = J(\eta_{r_n} u_n) + o(1) = \alpha_X(\Omega) + o(1), \tag{3.7}$$

that is, $s_n \eta_{r_n} u_n \in \mathbf{M}(\Omega(r_n))$ and $J(s_n \eta_{r_n} u_n) \ge \alpha_X(\Omega(r_n)) = d_0 + o(1)$. Taking $n \to \infty$, we get $\alpha_X(\Omega) \ge d_0$. Therefore, $\alpha_X(\Omega) = d_0$.

Let $\Omega_t^+ = \{(x, y) \in \Omega \mid y > t\}$ and $\Omega_t^- = \{(x, y) \in \Omega \mid y < t\}$. Then, we have the following result.

Lemma 3.2. Suppose that the domain Ω satisfies $(\Omega 1)$, $(\Omega 2)$, and $(\Omega 3)$. Then, for each $\varepsilon > 0$ and $l \ge 0$, there exists a $\delta(\varepsilon, l) > 0$ such that if $u \in \mathbf{M}_0(\Omega)$ and $J(u) < \alpha_0(\Omega) + \delta(\varepsilon, l)$, then either $\int_{\Omega_+^+} |u|^p < \varepsilon$ or $\int_{\Omega_-^-} |u|^p < \varepsilon$.

Proof. If not, there exist c > 0, $l_0 \ge 0$, and $\{u_n\} \subset \mathbf{M}_0(\Omega)$ such that $J(u_n) = \alpha_0(\Omega) + o(1)$,

$$\int_{\Omega_{l_0}^+} |u_n|^p \ge c, \qquad \int_{\Omega_{-l_0}^-} |u_n|^p \ge c.$$
 (3.8)

By Lemma 2.4, $\{u_n\}$ is a $(PS)_{\alpha_0(\Omega)}$ -sequence in $H_0^1(\Omega)$ for J. Now, Ω satisfies condition $(\Omega 3)$. By Proposition 2.6, there exists a subsequence $\{u_n\}$ such that $\{\xi_n u_n\}$ is also

a (PS) $_{\alpha_0(\Omega)}$ -sequence in $H_0^1(\Omega)$ for J, where ξ_n is as in (2.4). Let $\nu_n = \xi_n u_n$. We obtain

$$J(\nu_n) = \alpha_0(\Omega) + o(1),$$

 $J'(\nu_n) = o(1) \quad \text{in } H^{-1}(\Omega).$ (3.9)

Since Ω is a y-symmetric domain in \mathbb{R}^N separated by a bounded domain, there exists a $n_0 > l_0$ such that $v_n = 0$ in $\overline{\Omega(n_0)}$ for $n > 2n_0$, and $\Omega \setminus \overline{\Omega(n_0)} = \Omega_1 \cup \Omega_2$, where $\Omega_1 = \Omega_{n_0}^+$ and $\Omega_2 = \Omega_{-n_0}^-$. Moreover, $v_n = v_n^1 + v_n^2$, where

$$\nu_n^i(z) = \begin{cases} \nu_n(z) & \text{for } z \in \Omega_i \\ 0 & \text{for } z \notin \Omega_i \end{cases} \text{ for } i = 1, 2.$$
 (3.10)

Then, $v_n^i \in H_0^1(\Omega_i)$ and $a(v_n^i) = b(v_n^i) + o(1)$. By (3.9), we obtain

$$J'(v_n^i) = o(1)$$
 strongly in $H^{-1}(\Omega_i)$ for $i = 1, 2$. (3.11)

Assume that

$$J(v_n^i) = c_i + o(1)$$
 for $i = 1, 2$. (3.12)

Since $J(v_n) = J(v_n^1) + J(v_n^2) = \alpha_0(\Omega) + o(1)$, we have $c_1 + c_2 = \alpha_0(\Omega)$. Since c_i are (PS)-values in $H_0^1(\Omega_i)$ for J, by Lemma 2.3, $c_i \ge 0$ and

$$c_{1}\left(\frac{2p}{p-2}\right) = \int_{\Omega_{l_{0}}^{+}} |v_{n}^{1}|^{p} + o(1) = \int_{\Omega_{l_{0}}^{+}} |u_{n}|^{p} + o(1),$$

$$c_{2}\left(\frac{2p}{p-2}\right) = \int_{\Omega_{-l_{0}}^{-}} |v_{n}^{2}|^{p} + o(1) = \int_{\Omega_{-l_{0}}^{-}} |u_{n}|^{p} + o(1).$$
(3.13)

By (3.8), we have $c_i > 0$ for i = 1, 2. We have that

$$\alpha_0(\Omega) = c_1 + c_2 \ge \alpha_0(\Omega_1) + \alpha_0(\Omega_2), \tag{3.14}$$

which contradicts the fact that $\alpha_0(\Omega) \leq \alpha_0(\Omega_i)$ for i = 1, 2.

Now, we begin to show the proof of Theorem 1.1. By Lemma 3.1, for each $\varepsilon > 0$ and $l \ge 0$, there exists a $\delta(\varepsilon, l) > 0$ such that if $u \in \mathbf{M}_0(\Omega)$ and $J(u) < \alpha_0(\Omega) + \delta(\varepsilon, l)$, then $\int_{\Omega_l^+} |u|^p < \varepsilon$ or $\int_{\Omega_l^-} |u|^p < \varepsilon$. Moreover, by Lemma 3.2, there exists an $\widetilde{r} > 0$ such that

 $\alpha_0(\Omega(r)) < \alpha_0(\Omega) + \delta(\varepsilon)$ for all $r > \widetilde{r}$. Thus, if ν is a ground-state solution of (1.1) in $H^1_0(\Omega(r))$ for $r > \widetilde{r}$, then $\nu \in \mathbf{M}_0(\Omega(r)) \subset \mathbf{M}_0(\Omega)$, $J(\nu) < \alpha_0(\Omega) + \delta(\varepsilon)$ and either $\int_{\Omega_r^+} |\nu|^p < \varepsilon$ or $\int_{\Omega_r^-} |\nu|^p < \varepsilon$.

Now, we begin to show the proof of Theorem 1.3.

- (i) By Lemma 3.1, we have $J(\nu_m) = \alpha_0(\Omega(m)) = \alpha_0(\Omega) + o(1)$. Since $\nu_m \in \mathbf{M}_0(\Omega(m)) \subset \mathbf{M}_0(\Omega)$, from Lemma 2.4 we can conclude that $\{\nu_m\}$ is a $(\mathrm{PS})_{\alpha_0(\Omega)}$ -sequence in $H^1_0(\Omega)$ for J.
- (ii) Let $v \in L^q(\Omega)$, where 1/p + 1/q = 1. Then, for each $\varepsilon > 0$ there exists an l > 0 such that

$$\int_{(\Omega(l))^c} |\nu|^q < \varepsilon^q. \tag{3.15}$$

By Theorem 1.1, there exists an $m_0 > l$ such that

$$\int_{\Omega(l)} |\nu_m|^q < \varepsilon^p \quad \forall m > m_0. \tag{3.16}$$

Thus, for each $\varepsilon > 0$ there exists an m_0 such that

$$\int_{\Omega} \nu_{m} \nu = \int_{(\Omega(l))^{c}} \nu_{m} \nu + \int_{\Omega(l)} \nu_{m} \nu \leq \left(\int_{(\Omega(l))^{c}} |\nu_{m}|^{p} \right)^{1/p} \left(\int_{(\Omega(l))^{c}} |\nu|^{q} \right)^{1/q} \\
+ \left(\int_{\Omega(l)} |\nu_{m}|^{p} \right)^{1/p} \left(\int_{\Omega(l)} |\nu|^{q} \right)^{1/q} \leq (c_{1} + c_{2}) \varepsilon \quad \forall m > m_{0}, \tag{3.17}$$

where $c_1 = ((2p/(p-2))\alpha_0(\Omega))$ and $c_2 = ||v||_{L^q}$. This implies that $v_m \to 0$ weakly in $L^p(\Omega)$ as $m \to \infty$. Since v_m is a solution of (1.1) in $\Omega(m)$, we have

$$\int_{\Omega(m)} \nabla \nu_m \nabla \varphi + \nu_m \varphi = \int_{\Omega(m)} |\nu_m|^{p-2} \nu_m \varphi \quad \forall \varphi \in H_0^1(\Omega(m)). \tag{3.18}$$

First, we need to show for each $\varepsilon > 0$ and $\varphi \in C^1_{\varepsilon}(S)$ there exists an m_0 such that

$$\int_{\Omega(m)} \nabla \nu_m \nabla \varphi + \nu_m \varphi < \varepsilon \quad \forall \, m > m_0 \tag{3.19}$$

for $\varphi \in C_c^1(\Omega)$. Let $K = \text{supp } \varphi$, then $K \subset \Omega$ is compact and there exists an m_1 such that $K \subset \Omega(m)$ for all $m \ge m_1$. From Theorem 1.4, for each $\varepsilon > 0$ there exist $l_0 > 0$ and m_0 such that $\varphi \in H_0^1(\Omega(m))$,

$$\int_{(\Omega(l_0))^c} |\varphi|^p = 0, \qquad \int_{\Omega(l_0)} |\nu_m|^p < \varepsilon^{(p-1)/p} \quad \forall m > m_0.$$
 (3.20)

We obtain

$$\int_{\Omega(m)} |v_{m}|^{p-2} v_{m} \varphi = \int_{(\Omega(l_{0}))^{c}} |v_{m}|^{p-2} v_{m} \varphi + \int_{\Omega(l_{0})} |v_{m}|^{p-2} u_{m}^{1} \varphi
\leq \left(\int_{(\Omega(l_{0}))^{c}} |v_{m}|^{p} \right)^{(p-1)/p} \left(\int_{(\Omega(l_{0}))^{c}} |\varphi|^{p} \right)^{1/p}
+ \left(\int_{\Omega(l_{0})} |v_{m}|^{p} \right)^{(p-1)/p} \left(\int_{\Omega(l_{0})} |\varphi|^{p} \right)^{1/p}$$
(3.21)

$$\int_{\Omega} \nabla v_{m} \nabla \varphi + \int_{\Omega} v_{m} \varphi = \int_{\Omega(m)} \nabla v_{m} \nabla \varphi + \int_{\Omega(m)} v_{m} \varphi$$

$$= \int_{\Omega(m)} |v_{m}|^{p-2} v_{m} \varphi \quad \forall m > m_{0}.$$
(3.22)

We have that

$$\int_{\Omega} \nabla v_m \nabla \varphi + \int_{\Omega} v_m \varphi \le c\varepsilon \quad \forall m > m_0.$$
 (3.23)

Since $\alpha_0(\Omega(m+1)) < \alpha_0(\Omega)$, there exists a C > 0 such that $\|\nu_m\|_{H^1} \le C$. Thus, for each $\varepsilon > 0$ and $\psi \in H^1_0(\Omega)$, there exists a $\varphi \in C^1_\varepsilon(\Omega)$ such that

$$\|\psi - \varphi\|_{H^1} < \frac{\varepsilon}{C}.\tag{3.24}$$

From (3.23) and (3.24), we can conclude that for each $\varepsilon > 0$ and $\psi \in H_0^1(\Omega)$ there exists an $m_0 > 0$ such that

$$\langle v_{m}, \psi \rangle_{H^{1}} = \langle v_{m}, \psi - \varphi \rangle_{H^{1}} + \langle v_{m}, \varphi \rangle_{H^{1}}$$

$$\leq C \|\psi - \varphi\|_{H^{1}} + \langle v_{m}, \varphi \rangle_{H^{1}}$$

$$\langle \varepsilon + c\varepsilon \quad \text{for } m > m_{0}.$$
(3.25)

This implies that $\nu_m \to 0$ weakly in $H_0^1(\Omega)$.

4. Symmetry

Now, we begin to show the proof of Theorem 1.4. Let v be a ground-state solution of (1.7) in Θ and let $z^* = (x, -y)$ be the reflection point of z = (x, y) with respect to the hyperplane $T := \{y = 0\}$. First, we claim that either

$$v(z) \ge v(z^*) \quad \forall z \in \Theta^+$$
 (4.1)

or

$$v(z) \le v(z^*) \quad \forall z \in \Theta^+,$$
 (4.2)

where Θ^+ is one of half domain $\Theta \setminus T$. If not, then the following two sets

$$A_{+} = \{ z \in \Theta^{+} \mid \nu(z) > \nu(z^{*}) \}, \tag{4.3}$$

$$A_{-} = \{ z \in \Theta^{+} \mid \nu(z) < \nu(z^{*}) \}, \tag{4.4}$$

are nonempty. Let $w(z) = v(z) - v(z^*)$ for $z \in \Theta^+$. Then, w satisfies

$$\Delta w - w + f_{\nu}(\zeta(z))w = 0, \quad \text{in } \Theta^{+},$$

$$w = 0, \quad \text{in } \partial \Theta^{+},$$
(4.5)

where $\zeta(z)$ is between v(z) and $v(z^*)$. Let

$$A_{-}^{*} = \{ z^{*} \mid z \in A_{-} \}. \tag{4.6}$$

For d > 0, we define a function

$$u_d(z) = \begin{cases} w(z) & \text{if } z \in A_+, \\ dw(z^*) & \text{if } z \in A_-^*, \\ 0 & \text{otherwise.} \end{cases}$$
 (4.7)

Since $\int_{A_+} w \phi_1 > 0$ and $\int_{A_-} w \phi_1 < 0$, there exists a constant $d_0 > 0$ such that

$$\int_{\Theta} u_{d_0} \phi_1 = \int_{A_1} w \phi_1 + d_0 \int_A w \phi_1 = 0, \tag{4.8}$$

where ϕ_1 is the first positive eigenfunction of the following eigenvalue problem:

$$(\Delta - 1 + f_{\nu}(\zeta(z)))\phi + \lambda\phi = 0 \quad \text{in } \Theta,$$

$$\phi = 0 \quad \text{on } \partial\Theta.$$
 (4.9)

Let λ_2 be the second eigenvalue of (4.9). Since ν is a ground-state solution of (1.7), by the same method of the proof of Theorem 2.11 in [10], we have λ_2 is nonnegative. Moreover, by (4.3)–(4.7), we have

$$\Delta u_d - u_d + f_v(\zeta(z))u_d > 0 \quad \text{for } z \in A_+,$$

$$\Delta u_d - u_d + f_v(\zeta(z))u_d < 0 \quad \text{for } z \in A_-^*,$$

$$\Delta u_d - u_d + f_v(\zeta(z))u_d = 0 \quad \text{otherwise.}$$

$$(4.10)$$

1029

Therefore, from (4.8) and (4.10), we have

$$0 > \int_{\Theta} -u_{d}(z) \left[\Delta u_{d}(z) - u_{d} + f_{v}(\zeta(z)) u_{d}(z) \right] dz$$

$$= \int_{\Theta} \left[\left| \nabla u_{d}(z) \right|^{2} + u_{d}^{2} - f_{v}(\zeta(z)) u_{d}^{2}(z) \right] dz$$

$$\geq \lambda_{2} \int_{\Theta} u_{d}^{2}(z) dz \geq 0,$$

$$(4.11)$$

a contradiction. This proves inequalities (4.1) and (4.2). By (4.1) and (4.2), we may assume $w(z) \ge 0$ for all $z \in \Theta^+$, if w(z) > 0 for some $z \in \Theta^+$. Since w satisfies (4.5), by using the strong maximum principle, we have w > 0 in Θ^+ . Similarly, if $w(z) \le 0$ and w(z) < 0 for some $z \in \Theta^+$, we have w < 0 in Θ^+ . Suppose that w(z) > 0 for all $z \in \Theta^+$. Then, from (4.5) and applying the Hopf Lemma, we have

$$\frac{\partial w}{\partial (-y)}(z_0) = -2\frac{\partial v}{\partial y}(z_0) < 0. \tag{4.12}$$

Similarly, if w(z) < 0 for all $z \in \Theta^+$, we have $(\partial v/\partial)y(z_0) < 0$, this contradicts the fact that $(\partial v/\partial)y(z_0) = 0$. Therefore, w(z) = 0 for all $z \in \Theta^+$ or v(x,y) = v(x,-y) for all $(x,y) \in \Theta$. The converse is obvious.

Acknowledgment

The author is partially supported by the National Science Council of Taiwan.

References

- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381.
- [2] J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1731–1769.
- [3] ______, Nonlinear elliptic problems on singularly perturbed domains, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 5, 1023–1037.
- [4] J.-L. Chern and C.-S. Lin, *The symmetry of least-energy solutions for semilinear elliptic equations*, J. Differential Equations **187** (2003), no. 2, 240–268.
- [5] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988), no. 1, 120–156.
- [6] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243.
- [7] Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York University, New York, 1997.
- [8] S. Jimbo, Singular perturbation of domains and the semilinear elliptic equation. II, J. Differential Equations **75** (1988), no. 2, 264–289.
- [9] W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Differential Integral Equations 6 (1993), no. 6, 1281–1298.
- [10] C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, Calculus of Variations and Partial Differential Equations (Trento, 1986), Lecture Notes in Math., vol. 1340, Springer, Berlin, 1988, pp. 160–174.

1030 Symmetry and concentration behavior

- [11] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19–30.
- [12] H.-C. Wang, A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4237–4256.
- [13] H.-C. Wang and T. F. Wu, *Symmetry breaking in a bounded symmetry domain*, NoDEA-Nonlinear Differential Equations Appl. (2004), no. 11, 361–377.
- [14] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Massachusetts, 1996.
- [15] T.-F. Wu, Concentration and dynamic system of solutions for semilinear elliptic equations, Electron. J. Differential Equations (2003), no. 81, 1–14.

Tsung-Fang Wu: Center for General Education, Southern Taiwan University of Technology, Tainan 71005, Taiwan

E-mail address: tfwu@mail.stut.edu.tw