
PERIODIC SOLUTIONS FOR NONAUTONOMOUS
DIFFERENTIAL EQUATIONS AND INCLUSIONS
IN TUBES

GRZEGORZ GABOR

Received 6 September 2002

We study the existence of periodic trajectories for nonautonomous differential equations
and inclusions remaining in a prescribed compact subset of an extended phase space.
These sets of constraints are nonconvex right-continuous tubes not satisfying the viability
tangential condition on the whole boundary. We find sufficient conditions for existence
of viable periodic trajectories studying properties of the exit subset of the tube. A new
approximation approach for continuous multivalued maps is presented.

1. Introduction

The present paper is devoted to the existence of solutions to the boundary value problem

ẋ(t)∈ F(t,x(t)
)
, a.e. in [0,T],

x(0)= x(T),
(1.1)

or, in particular,

ẋ(t)= f
(
t,x(t)

)
, a.e. in [0,T],

x(0)= x(T),
(1.2)

in a finite-dimensional space, with some additional state constraints, that is, we insist that
trajectories do not leave a prescribed closed set W ⊂ [0,T]×Rn, or in other words, that
trajectories are viable in W .

Following the literature in the subject, we call such trajectories viable periodic. If the
right-hand side F [resp., f ] is T-periodic, then we can extend solutions of problem (1.1)
[resp., (1.2)] to usual T-periodic trajectories. We concentrate in the paper on the problem
defined for t ∈ [0,T], leaving an unbounded T-periodic case as a standard consequence.

If W = [0,T]×Rn, there have been many papers dealing with the periodic problem
in both single-valued and multivalued case. The methods have been mainly based on the
degree theory (or fixed point index theory) applied to the single-valued or multivalued
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Poincaré operator of translation along trajectories. The guiding function method pro-
posed by Krasnosel’skiı̆ [10] has been successfully adopted for inclusions (1.1) (see, e.g.,
[7, 9]) as well as for functional differential inclusions (see, e.g., [8] and the references
therein). The main reason that we can use this method in a multivalued case is that the
solution map very often has compact Rδ values, so that its composition with the evalua-
tion map is sufficiently good to apply the degree theory.

When we add some essential state constraints, an important role in a successful solu-
tion of the viable T-periodic problem is played by studying the behavior of the right-hand
side F on the boundary ∂W of W . To do this, we can use terms of tangent cones to the
set W .

In the simplest case, if F is sufficiently regular and satisfies the condition

{1}×F(t,x)⊂ TW (t,x) for every (t,x)∈ ∂W \ ({T}× IntW(T)
)
, (1.3)

where TW (·) stands for the Bouligand contingent cone and W(t) := {x ∈ Rn | (t,x) ∈
W}, then no trajectory leaves W and each T-periodic solution obtained by applying any
standard technique is viable, so it is what we look for.

When, instead of (1.3), one has

({1}×F(t,x)
)∩TW (t,x) �= ∅ for every (t,x)∈ ∂W \ ({T}× IntW(T)

)
, (1.4)

the above technique can be used if the operator SW :W(0) � C([0,T],Rn),

SW
(
x0
)

:= {x ∈ C([0,T],Rn
) | x is a solution to (1.1) viable in W

}
(1.5)

has sufficiently regular values. We note a pioneering paper on this matter for nonconvex
tubes, namely [13], where the author has proved that for any Marchaud map and W =
[0,T]×K with K being a proximal retract, the map SW is upper semicontinuous with
compact Rδ values. The Scorza-Dragoni type arguments can be also applied (see [12]).
As far as the author knows, the most general results in this direction have been recently
obtained by Kryszewski and his coauthors (see [11] and the references therein) for sets
defined via functional constraints.

The case where condition (1.4) is not satisfied everywhere becomes much worse be-
cause there is no hope to obtain sufficiently good topological properties of the map SW .
The so-called exit set W− appears, where each trajectory leaves the set W immediately.
This set was first studied by Ważewski [16] in 1947 in the context of existence of viable
trajectories in a given set. The Ważewski retract method has been intensively developed
and used, for example, in the Conley index theory. It occurs that this exit set W− can be
also used to find viable T-periodic trajectories for nonautonomous differential equations.

The suitable topological method has been presented in [14]. The author has studied
(1.2) with f being T-periodic with respect to the first variable. The pair (W ,W−) has
been assumed to be a T-periodic pair, which means that both W and W− are invariant
with respect to some T-periodic process in Rn (see a definition of a process in Section 2).
Since (W ,W−) is T-periodic, we can consider W as a torus in S1 ×Rn. Then, the tech-
niques used in the Conley index theory and for autonomous differential equations may
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be applied. The main result in [14] has given the formulae joining the fixed point in-
dex of the Poincaré translation operator ϕ(0,T)(·) and the number Λ(W ,W−) induced
by the process generating the tube. The method proposed in [14] was used to obtain a
lower bound of the number of periodic trajectories (see [17]) or chaotic dynamics (see
[15, 18]).

In the present paper, we develop the technique from [14] in some new directions. We
avoid the assumption that (W ,W−) is a T-periodic pair. Since we do not assume that
f (·,x) is T-periodic, we cannot use the identification of the tube with any torus. The
main formulae (3.22) giving a connection between the index of ϕ(0,T)(·) and the number
Λ(W ,W−) defined in Proposition 3.10 is obtained without the assumption that (W ,W−)
is an isolating block (see [14]).

What is important is that our development also involves differential inclusions with
continuous right-hand sides for which we obtain the existence results using the number
Λ(W ,W−).

We explain how the paper is organized.
In Section 2, we give some basic information which is used in the sequel. In particular,

some properties of exit sets are presented.
In Section 3.1, we introduce the notion of a right-continuous tube and study its main

properties together with relations between such tubes and their exit sets. In particular,
we obtain a useful homotopy extension result, Proposition 3.9. We also define a number
Λ(W ,W−) which is a main tool in existence results.

Main results on viable T-periodic trajectories for differential equations are presented
in Section 3.2. Several corollaries and illustrations are also given.

In Section 4, we deal with differential inclusions of the form (1.1) with continuous
right-hand sides. Under some regularity assumptions on the tube, we present the new
method of studying an existence of viable T-periodic trajectories by a special approxima-
tion of the map F by Lipschitz single-valued maps having the same exit set W−.

2. Preliminaries

We start with some notations we use in the paper. By IntA, clA, and ∂A we mean, re-
spectively, the interior, closure, and boundary of a subset A of a metric space X . The
open ball centered at x0 and with radius r is denoted by B(x0,r). For simplicity, the
open unit ball in Rn is denoted by B1. The distance between two sets N ,M ⊂ X is the
number dist(N ,M) := inf{d(x, y) | x ∈ N , y ∈M}. If N = {x}, then we simply write
dM(x) := dist({x},M). We use the symbol | · | for the Euclidean norm. For any point
x of a metric space X , by C(x) we denote the connected component containing x, that is,
a maximal connected subset of X which contains x.

Recall that a multivalued map F : R×Rn � Rn is a Marchaud map if F has nonempty
compact convex values, the map F(·,x) is measurable for every x ∈ Rn, F(t,·) is up-
per semicontinuous for almost all t ∈ R, and F has at most the linear growth, which
means that “there exists a locally integrable function β : R→ [0,∞) such that |F(t,x)| :=
sup{|y|; y ∈ F(t,x)} ≤ β(t)(1 + |x|) for every (t,x)∈R×Rn.”

It is known (see [6]) that, for any Marchaud map, the Cauchy problem (1.1) with
x(t0)= x0 has a solution extensible onto the whole real line. By a solution to the inclusion
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(1.1) we always mean an absolutely continuous map. A solution will be often named a
trajectory.

Let W ⊂R×Rn be a closed set. We say that a trajectory x(·) starting from (t0,x0) for
the inclusion (1.1) is viable in W if (t,x(t))∈W for every t ≥ t0 such that W(t) := {z ∈
Rn | (t,z)∈W} �=∅.

For (1.2), assume that f : R×Rn→Rn is measurable with respect to the first variable
and Lipschitz with respect to the second one in the sense that there is a locally integrable
function α : R→ [0,∞) such that

∣∣ f (t,x)− f (t, y)
∣∣≤ α(t)|x− y|, for any t ∈R, x, y ∈R

n. (2.1)

Of course, if f (·,0) is locally integrable, then the Cauchy problem for (1.2) and any
(t0,x0) ∈ R×Rn has a unique solution defined on the whole real line. Then, the global
process on Rn is defined, that is, a continuous map ϕ : R×Rn×R→Rn with properties

(i) ϕ(σ ,0)(·)= id for every σ ∈R;
(ii) ϕ(σ ,s+t) = ϕ(σ+s,t) ◦ϕ(σ ,s) for each σ ,s, t ∈R.

It is seen that ϕ(σ ,t)(x) is the value of the unique trajectory starting from (σ ,x) after a
time t.

In what follows, we assume that W ⊂ Rn is a closed subset and F : Rn � Rn a Mar-
chaud map.

On the boundary of W we consider the following two sets.

Definition 2.1.

Ws(F) := {x0 ∈ ∂W | each trajectory starting from x0 leaves W immediately
}

,

We(F) := {x0 ∈ ∂W | there is a trajectory starting from x0 which leaves W

immediately
}
.

(2.2)

A trajectory x(·) leaves W immediately, if

∃tm > 0, tm −→ 0 : x
(
tm
) �∈W. (2.3)

We will write briefly Ws, We instead of Ws(F), We(F). It is seen that for (1.2) generating
a global process, Ws =We.

Since we use in this paper the exit set Ws, we recall some basic properties of it given
in terms of tangent cones. By a tangent cone to a set W in a point x ∈W , we mean the
Bouligand contingent cone defined as

TW (x) :=
{
v ∈R

n | liminf
h→0+

dist(x+hv,W)
h

= 0
}
. (2.4)

Define

W0 := {x ∈ ∂W | F(x)∩TW (x)=∅}. (2.5)

We summarize properties of the exit set in the following.
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Proposition 2.2. (1) For any Marchaud map, W0 ⊂Ws ⊂ clW0.
(2) Let F be a Marchaud map locally Lipschitz around x ∈ clW0 \W0. Denote DW (x) :=

Rn \TRn\W (x).
If

F(x)∩ (DW (x)∪T∂W\W0 (x)
)=∅, (2.6)

then x ∈Ws.
If

F(x)∩DW(x) �= ∅ or F(x)∩TW0 (x)=∅, (2.7)

then x �∈Ws.

This result was announced in [4]. For the complete proof, see [5]. It brings an impor-
tant information from the practical point of view. It allows us to check whether the set
Ws is closed. As we will see, this is a standard assumption in problems which we investi-
gate.

If (1.2) satisfies the uniqueness property, we can define the exit function τ :W → [0,∞],

τ(σ ,x) := sup
{
t ≥ 0 | (σ + t,ϕ(σ ,t)(x)

)∈W}. (2.8)

It is easy to check that, if Ws is closed, the exit function is continuous.
Throughout the paper, we will use well-known notions of absolute (and absolute

neighborhood) retracts denoted by AR and ANR, respectively. For properties of ARs and
ANRs, see, for example, [2]. Obviously, if a closed set X ⊂Rn is an AR (resp., ANR), then
it is a retract of Rn (resp., of its open neighborhood in Rn).

If X is a compact ANR, then, for any continuous map f : X → X , the Lefschetz number
λ( f ) of f is well defined (see [9] for details). Note that λ(idX)= χ(X), the Euler charac-
teristic of X .

For compact ANRs and continuous maps, the fixed point index is also constructed
(see [3]) and has the following properties.

Let U , V , U1, U2 be open subsets of X and f ,g : X → X . Denote by Fix( f ) the set of
fixed points of f .

Existence 2.3. If Fix( f )∩ ∂U =∅ and ind( f ,U) �= 0, then there is a fixed point of f inU .

Localization (Excision) 2.4. If Fix( f )⊂V ⊂U , then ind( f ,U)= ind( f ,V).

Additivity 2.5. If U1 ∩U2 = ∅ and Fix( f )∩ (clU \ (U1 ∪U2)) = ∅, then ind( f ,U) =
ind( f ,U1) + ind( f ,U2).

Homotopy 2.6. If h : X × [0,1]→ X is such that h(·,0)= g, h(·,1)= f and Fix(h(·, t))∩
∂U =∅ for every t ∈ [0,1], then ind( f ,U)= ind(g,U).

Normalization 2.7. ind( f ,X)= λ( f ).
From the localization property it follows that, for any isolated subset P of Fix( f ), we

can define ind( f ,P) as the index on some sufficiently small open neighborhood of P in X .
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In this paper, we will use the following notion.

Definition 2.8. Let (X ,Y) be a topological pair (it means that X is a topological space
and Y its closed subset) and let (A,B) be a subpair, that is, a pair such that A ⊂ X and
B ⊂ Y . The pair (A,B) is a strong deformation retract pair of (X ,Y), if there is a map of
topological pairs (the map f : (A,B)→ (C,D) is a map of pairs, if f (A)⊂ C and f (B)⊂
D), h : (X × [0,1],Y × [0,1])→ (X ,Y) such that

(i) h(x,0)= x for every x ∈ X ;
(ii) h(x,1)∈ A for every x ∈ X , and h(x,1)∈ B for every x ∈ Y ;

(iii) h(x,s)= x for every x ∈A and s∈ [0,1].
If Y = B =∅, then A is a strong deformation retract of X .

3. Differential equations on right-continuous tubes

In this section, we deal with differential equations (1.2) with measurable Lipschitz right-
hand side f . The aim is to find a T-periodic trajectory for (1.2), that is, with x(0)= x(T),
satisfying simultaneously state constraints, that is, remaining in a prescribed set W ⊂
[0,T]×Rn.

In the first part of this section, we show what sets of constraints will be dealt with.
We give several properties describing the connection between dynamics and topological
properties of some subsets of W .

In the second subsection, we present the main result on the existence of a viable peri-
odic trajectory for (1.2) and some corollaries (see Corollaries 3.12–3.19). Some illustrat-
ing examples are given.

3.1. Right-continuous tubes. Let J be an arbitrary interval in R, bounded or not. We
start with the following notion.

Definition 3.1. The closed set W ⊂ J ×Rn is a right-lower semicontinuous tube, if the map
J  t �→W(t) := {x ∈ Rn | (t,x) ∈W} has nonempty closed values and satisfies the fol-
lowing condition:

(i) for every t0 ∈ J , x0 ∈W(t0) and each sequence (tn)⊂ [t0,∞) converging to t0, there
exists a sequence (xn) such that xn ∈W(tn) and xn→ x0.

If the mapW(·) is also upper semicontinuous, then we call this tube right-continuous. We
say that the tubeW is T-periodic, if the length of J is not less that T andW(t)=W(t+T)
for each t, t+T ∈ J .

It is seen that each compact right-lower semicontinuous tube and each continuous
tube is right-continuous.

It is also obvious that if we assume that

f is T-periodic with respect to the first variable, (3.1)

then each T-periodic tube W ⊂ [0,T]×Rn can be considered a subset of a T-periodic
tube defined on the whole real line.
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For (1.2) and any continuous tube W ⊂ [0,T]×Rn, notice that {T}×W(T) is a sub-
set of the exit set Ws of W (see Definition 2.1) for the map (t,x) �→ (1, f (t,x)). We define

W− := (Ws \
({T}×W(T)

))
∪ {(T ,x)∈ {T}×W(T) | ∃(tm,xm

)∈Ws \
({T}×W(T)

)
:
(
tm,xm

)−→ (T ,x)
}
.

(3.2)

If f satisfies (3.1), then, for any T-periodic tube W ⊂ [0,T]× Rn with W−(0) =
W−(T), the set W− is the intersection of W and the exit set for the tube extended on
[0,∞).

Throughout our considerations, we will assume that

W is a compact right-continuous tube and W− is closed. (3.3)

It is seen that if condition (3.3) holds, then W− = cl(Ws \ ({T}×W(T))).

Lemma 3.2. If condition (3.3) is satisfied and W− �=∅, then W−(T) �= ∅.

Proof. Suppose that W− �=∅ and W−(T)=∅. The set A := {t ∈ [0,T] |W−(t) �= ∅} is
closed, since W− is compact. Denote te = supA and take xe ∈Rn such that (te,xe)∈ A.

Since W(·) is right-continuous, there is a sequence (tm,xm)∈W such that te < tm < T
and (tm,xm)→ (te,xe). Therefore, for any m ≥ 1, the trajectory ϕ(tm,·)(xm) remains in W
up to T . Since (te,xe)∈W−, this is impossible due to Filippov’s theorem. �

If the set W− is more regular, we can obtain better information on its shape. To this
end, for each (σ ,x)∈W−, take the connected componentC(σ ,x) inW− containing (σ ,x)
and define

θ(σ ,x) := sup
{
t ∈ [0,T] | C(σ ,x)∩W−(t) �= ∅}. (3.4)

Lemma 3.3. Under assumption (3.3), if W− has only a finite number of connected compo-
nents, then θ(σ ,x)= T for every (σ ,x)∈W−.

Proof. Suppose, on the contrary, that for some (σ ,x)∈W−, θ := θ(σ ,x) < T . SinceC(σ ,x)
is compact, there is z ∈Rn such that (θ,z)∈ C(σ ,x) and d(W−\C(σ ,x))(θ,z) > 0. Therefore,
there are ε,δ > 0 such that, for every (β,u) ∈W with β > θ and |(θ,z)− (β,u)| < δ, we
have τ(β,u)≥ ε. But this is impossible, since τ is continuous and τ(θ,z)= 0. �

Define

PW := {x ∈W(0) | ϕ(0,T)(x)= x, ϕ(0,t)(x)∈W(t) for every t ∈ [0,T]
}
. (3.5)

In many places we will assume that

PW ∩ ∂
(
W(0)∩W(T)

)=∅. (3.6)

We can prove the following important property.

Lemma 3.4. Under assumptions (3.3) and (3.6) the set PW is isolated in the fixed point set
of ϕ(0,T)(·).
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Proof. The set PW is obviously closed, since W is closed. It is sufficient to prove that
{t}×ϕ(0,t)(PW )⊂ IntW for every t ∈ [0,T].

Let x ∈ PW , Then, x ∈ Int(W(0)∩W(T)). For every m ≥ 1, we can choose an open
neighborhood Vm ⊂ IntW(0) of x such that

∣∣ϕ(0,t)(z)−ϕ(0,t)(x)
∣∣≤ 1

m
for any z ∈Vm, t ∈ [0,T]. (3.7)

Suppose, on the contrary, that there is 0 < t0 < T such that {t0}×ϕ(0,t0)(x)∈ ∂W . Since
ϕ(0,t) is a homeomorphism, we can see that the set

Ω := {(s,ϕ(0,s)(z)
) | z ∈V , t0− δ < s < t0 + δ < T

}
(3.8)

is an open neighborhood of {t0} × ϕ(0,t0)(x) in R×Rn. Therefore, there are (tm, ym) ∈
Ω \W , which implies that there are xm ∈ V with ym = ϕ(0,tm)(xm), and the trajectory
starting from (0,xm) leaves W at some point (τ(0,xm),ϕ(0,τ(0,xm))(xm)) near (t0,ϕ(0,t0)(x)).
Taking m→∞, we conclude that (t0,ϕ(0,t0)(x))∈W−; a contradiction. �

There may be some points in ∂W with p = (t,x) ∈ {t} × IntW(t), while each point
from {t}× ∂W(t) belongs to ∂W . Therefore, the lemma above leads us to the following
necessary condition for the existence of viable periodic trajectories.

Corollary 3.5. Let (3.3) and (3.6) be satisfied. If there is a viable T-periodic trajectory in
W , then IntW(t) �= ∅ for every t ∈ [0,T].

The natural question arises: is it possible to verify condition (3.6) without following
along all trajectories starting from ∂(W(0)∩W(T)) on the interval [0,T]? It occurs that
we can find some sufficient conditions in terms of tangent cones, as we can see below.

At first, define

W0 := {(σ ,x)∈ ∂W \W− | (1, f (σ ,x)
)∈ T∂W (σ ,x)

}
. (3.9)

Proposition 3.6. If (3.3) is satisfied,

W(T)⊂W(0), W−(T)⊂W−(0), (3.10)

and there is no pathwise connected component D of W0 joining D(0) and D(T), then condi-
tion (3.6) holds true. (Recall that a nonempty subset A of a topological space X is a pathwise
connected component of X , if A is a maximal subset such that each two points x, y ∈ A may
be joined by a continuous path α : [0,1]→ A, that is, α(0)= x and α(1)= y.)

Proof. Suppose that x ∈ PW ∩ ∂(W(0)∩W(T)). We can prove that (t,ϕ(0,t)(x))∈ ∂W for
every t ∈ [0,T]. Indeed, if not, then as in the proof of Lemma 3.4, one shows that there
is a time t0 ∈ [0,T] at which the trajectory meets W−. The only possibility is that t0 = T ,
but then x ∈W−(T)⊂W−(0) in contrary to the fact that from x a viable trajectory starts.

Now, α : [0,1] →W0, α(λ) := ϕ(0,λT)(x) is a path joining (0,x) and (T ,x) in W0; a
contradiction. �
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Corollary 3.7. If (3.3) and (3.10) are satisfied, and W0 is totally disconnected, then con-
dition (3.6) is satisfied. (The set is totally disconnected, if each connected component is a
singleton.)

The following two results give the relation between properties of W− and the shape of
the whole tube W .

Proposition 3.8. Let assumption (3.3) be satisfied. Let W− have a finite number of con-
nected components, and let {T}×W−(T) be a retract of W−. If W(T) is disconnected, then
the whole tube W is disconnected.

Proof. Let W(T) = A1 ∪A2, where Ai are disjoint, nonempty, and closed. Consider the
connected components Bi in W containing Ai, respectively. Let

θ := inf
{
t ≥ 0 | B1(t)∩B2(t)=∅}, (3.11)

and suppose that θ > 0. We can easily prove that each point (θ,x)∈ {θ}× (B1(θ)∩B2(θ))
belongs to W−. Indeed, if not, the trajectory starting from (θ,x) goes in one of the com-
ponents, say B1, during some positive time t. At the time θ + t, we have d := dist(B1(θ +
t),B2(θ + t)) > 0. Then, there is an open neighborhood V of (θ,x) such that, for any
(σ ,z) ∈ V ∩ ∂W , |ϕ(σ ,θ+t−σ)(z)− ϕ(θ,t)(x)| < d. On the other hand, trajectories starting
from points (σ ,z) ∈ V ∩B2 with σ > θ go inside B2; a contradiction. From the proof of
Lemma 3.3, it follows that (θ,x) may be joined by paths with both A1 and A2, which con-
tradicts the assumption that {T}×W−(T) is a retract of W−. The proof is complete. �

One can find an example (in [0,T]×R2) that the result above is not true without the
retracting assumption. The sets W and W− may look like in Figure 3.1.

The second proposition, a homotopy extension result, is crucial for our further con-
siderations.
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Proposition 3.9. If assumption (3.3) is satisfied and

{T}×W−(T) is a strong deformation retract of W−, (3.12)

then this homotopy can be extended to a strongly deformation homotopy

h :
(
W × [0,1],W− × [0,1]

)−→ ({T}×W(T),{T}×W−(T)
)
. (3.13)

Moreover, for each trajectory viable in W ,

h
((
t,ϕ(0,t)(x)

)
,λ
)= (t+ λ(T − t),ϕ(0,t+λ(T−t))(x)

)
. (3.14)

In particular, h((0,x),1)= (T ,x) for every x ∈ PW .

Proof. Let k :W− × [0,1]→W− be a strong deformation homotopy onto {T}×W−(T).
Define h :W × [0,1]→W ,

h
(
(σ ,x),λ

)=


(
σ + λ(T − σ),ϕ(σ ,λ(T−σ))(x)

)
, if

(
σ + t,ϕ(σ ,t)(x)

) �∈W−

for every 0≤ t ≤ λ(T − σ),

k
((
σ + τ(σ ,x),ϕ(σ ,τ(σ ,x))(x)

)
,
λ(T − σ)− τ(σ ,x)
T − σ − τ(σ ,x)

)
, if not.

(3.15)

Notice that h is continuous, h(·,0)= idW , and

h
(
(σ ,x),1

)=


(
T ,ϕ(σ ,T−σ)(x)

)∈ {T}×W(T), if
(
σ + t,ϕ(σ ,t)(x)

) �∈W−

for every 0≤ t ≤ T − σ ,

k
((
σ + τ(σ ,x),ϕ(σ ,τ(σ ,x))(x)

)
,1
)∈ {T}×W−(T), if not.

(3.16)

Moreover, h is an extension of k. �

Denote

K :=W(0), K− :=W−(0). (3.17)

Then, the map h(·,1) described above induces the following two maps:

H1 : K −→ K such that
(
T ,H1(x)

)= h((0,x),1
)
,

H−
1 : K− −→ K− such that

(
T ,H1(x)

)= h((0,x),1
)
.

(3.18)

Proposition 3.10. Assume that conditions (3.3), (3.10), and (3.12) are satisfied and

W(0), W−(0) are ANRs. (3.19)
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Then, the number

Λ(W ,W−) := λ(H1
)− λ(H−

1

)
(3.20)

does not depend on the choice of a homotopy deforming W− onto {T}×W−(T).

Proof. At first, We note that the Lefschetz numbers λ(H1) and λ(H−
1 ) are well defined

because the sets K and K− defined in (3.17) are compact ANRs.
Let k, k̄ be two homotopies strongly deformingW− onto {T}×W−(T) and h, h̄ :W ×

[0,1]→ {T}×W(T) their extensions. For each x ∈ K and s∈ [0,1], we define χ(x,s)∈ K
as a state such that

(
T ,χ(x,s)

)= h̄(h((0,x),s
)
,1
)
. (3.21)

Notice that (T ,χ(x,0)) = h((0,x),1) = (T ,H1(x)) and (T ,χ(x,1)) = h̄((0,x),1) = (T ,
H̄−

1 (x)). Moreover, χ is continuous. Thus, λ(H1) = λ(H̄1) and λ(H−
1 ) = λ(H̄−

1 ), and the
proof is complete. �

3.2. Periodic trajectories of differential equations. In this subsection, we present the
main result on existence of viable periodic trajectories in continuous tubes and some of
its consequences.

Theorem 3.11. Let assumptions (3.3), (3.10), (3.12), and (3.19) be satisfied. Then, Λ(W ,
W−) �= 0 implies that there exists a viable T-periodic trajectory inW . Moreover, if condition
(3.6) holds, then

ind
(
ϕ(0,T),PW

)=Λ(W ,W−). (3.22)

Proof. Using Proposition 3.9, we find a homotopy h strongly deforming the pair (W ,W−)
onto ({T}×W(T),{T}×W−(T)). Consider a topological direct sum of K and K− × S1

(K and K− are defined in (3.17)) and the quotient space C made of this sum by identify-
ing points x ∈ K− with (x,1)∈ K− × S1. Since K and K− are ANRs, so is C.

Denote, for any p ∈W , by h̃(p) the point in W(T) such that h(p,1)= (T , h̃(p)). De-
fine χC× [0,1]→ C as follows: for x ∈ K ,

χ(x,s) :=


h̃
(
(1− s)T ,ϕ(0,(1−s)T)(x)

)
, if τ(0,x)≥ (1− s)T ,(

h̃
(
τ(0,x),ϕ(0,τ(0,x))(x)

)
, exp

((
1− s− τ(0,x)

T

)
πi
))

, if not,

(3.23)

and, for x = (z,u)∈ K− × S1,

χ
(
(z,u),s

)
:= (H−

1 (z),uexp
(
(1− s)πi)). (3.24)
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Notice that, since h(W− ×{1})⊂ {T}×K−, the only fixed points of χ0 := χ(·,0) could
lie in PW or in K−. But, for x ∈ K−, we have

χ
(
(z,u),0

)= (H−
1 (z),−u) �= (z,u), (3.25)

which eliminates the latter case.
Consider the tube Ŵ ⊂ [0,∞)×Rn defined by

Ŵ(t)=

W(t), if t ∈ [0,T],

W(T), if t > T ,
(3.26)

and f̂ : [0,∞)×Rn→Rn,

f̂ (t,x)=

 f (t,x), if t ∈ [0,T],

f (T ,x), if t > T.
(3.27)

For this extended tube, we have Ŵs =W− ∪ ([T ,∞)×W−(T)). By τ we will mean the
exit function for the tube Ŵ .

Consider the open neighborhood of PW in K :

V := {x ∈W(0) | τ(0,x) > T
}
. (3.28)

It is obvious that ∂KV ⊂ {x ∈W(0) | τ(0,x)= T}. It implies, thanks to (3.10), that there
are no fixed points of ϕ(0,T) on ∂KV and, if we assume (3.6), then also on ∂V ⊂ IntK (see
Lemma 3.4). Moreover, the only fixed points of ϕ(0,T) in V are points from PW .

Note that χ0|V = ϕ(0,T)|V , and hence, using Localization 2.4 and Normalization 2.7
properties of the fixed point index on ANRs, we obtain

λ
(
χ0
)= ind

(
χ0
∣∣
V ,PW

)
. (3.29)

From the existence property of the index Existence 2.3, now it is sufficient to prove that
λ(χ0) �= 0. But λ(χ0) = λ(χ1), where χ1 = χ(·,1), since χ(·,s) has no fixed points on ∂KV
for every s∈ [0,1].

We compute λ(χ1). Notice that

χ1(x)=H1(x) for x ∈ K ,

χ1(z,u)= (H−
1 (z),u

)
for x ∈ K−, u∈ S1.

(3.30)

Therefore, χ1 induces the following maps:

F1 : K −→ K , F1(x) :=H1(x),

F2 : K− × S1 −→ K− × S1, F2(z,u) := (H−
1 (z),u

)
,

F3 : K− −→ K−, F3(x) :=H−
1 (x).

(3.31)
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It is seen that λ(F2)= 0. Using the Mayer-Vietoris exact sequence of the triad (C,K ,K− ×
S1) and the exact sequence of the pair (K ,K−) we obtain

λ
(
χ1
)= λ(F1

)
+ λ
(
F2
)− λ(F3

)= λ(F1
)− λ(F3

)
. (3.32)

The proof of the first statement is finished. To prove the second one it is sufficient to no-
tice that under assumption (3.6), since there are no fixed points of ϕ(0,T) on ∂V , we have

ind
(
ϕ(0,T),PW

)= ind
(
ϕ(0,T)

∣∣
V ,PW

)= ind
(
χ0
∣∣
V ,PW

)
. (3.33)

Thus, the proof of the theorem is complete. �

Corollary 3.12. Let assumptions (3.3), (3.12), and (3.19) be satisfied forW andW− being
T-periodic and f being T-periodic with respect to the first variable. Then, Λ(W ,W−) �= 0
implies that there exists a viable T-periodic trajectory in W . Moreover, if condition (3.6) is
satisfied, then (3.22) holds.

Remark 3.13. Theorem 3.11 and the above result are generalizations of Theorem 7.1 in
[14]. With comparison to [14], we do not assume that (W ,W−) is an isolating block, that
is, the maximal invariant subset in W is included in IntW , due to Lemma 3.4. The as-
sumption in [14] that (W ,W−) is a T-periodic block, that is, there is a continuous process
ω on Rn such that W and W− are invariant under the flow ω∗t (σ ,x) := (σ + t,ω(σ ,t)(x)),
is strictly related to our assumption (3.12). Indeed, for any T-periodic block we have the
following strong deformation homotopy of (W ,W−) onto ({T}×W(T),{T}×W−(T)):

h
(
(σ ,x),s

)= ω(σ ,s(T−σ))(x). (3.34)

In Proposition 3.9, we explain the connection between deformation W− onto {T} ×
W−(T) and (W ,W−) onto ({T}×W(T),{T}×W−(T)). The extended homotopy ob-
tained in Proposition 3.9 obviously may not generate a global process but only a semipro-
cess (for positive times) and only on the tube, but this suffices. In particular, W−(0) may
have more connected components than W−(T). The semiprocess on the extended tube
may be given by

ω(σ ,t)(x)=



h
(

(σ ,x),
t

T − σ
)

, if t ≤ T − σ ,

h
(
hk1(σ ,x),

t+ σ − kT
T

)
, if t ∈ [kT − σ , (k+ 1)T − σ], (3.35)

where h1(·) := h(·,1) and hk1 := h1 ◦ ··· ◦h1, k times.

Example 3.14. Consider the set

W :=
{

(t,x, y)∈R
3 | 0≤ t ≤ 6, 0≤ x ≤ 2, 0≤ y ≤−1

2
t+ 4

}
(3.36)



1070 Periodic solutions in tubes

�

�

��������������

y

t

x

0 6

2

4

1

2

������������������

����������������������

����

����

������

���������������

������

���������������

W(0)

W(T)

W−

�
�

�
�

�
�
�
�
�
�
�
�
��

Figure 3.2.

and a right-hand side f = ( f1, f2) described on ∂W by the inequalities

f2(t,x,0)≥ 0, f2

(
t,x,−1

2
t+ 4

)
≤−1

2
,

f2

(
t, i,−1

2
t+ 3

)
<−1

2
for t ∈ [0,5), f2

(
t, i,

1
2

)
< 0 for t ∈ [5,6], i∈ {0,2},

f2

(
t, i,−1

2
t+ 2

)
>−1

2
, f2(t, i,1) < 0 for t ∈ [0,2), i∈ {0,2},

f1(t,0, y) < 0, f1(t,2, y) > 0 for t ∈ [0,4), y ∈ [0,1),

f1(t,0, y) < 0, f1(t,2, y) > 0 for t ∈ [0,5], y ≥ 0, y ∈
(
− 1

2
t+ 2,−1

2
t+ 3

)
,

t ∈ [5,6], y ∈
[

0,
1
2

)
,

f1(t,0, y)≥ 0, f1(t,2, y)≤ 0 for t ∈ [0,2], y ∈
[

1,−1
2
t+ 2

]
,

f1(t,0, y)≥ 0, f1(t,0, y)≤ 0 for t ∈ [0,5], y ∈
[
− 1

2
t+ 3,−1

2
t+ 4

]
,

t ∈ [5,6], y ∈
[

1
2

,−1
2
t+ 4

]
.

(3.37)

It can be illustrated as in Figure 3.2.
As one can see,

W(T)⊂W(0), W(T) �=W(0),

W−(T)⊂W−(0), W−(T) �=W−(0),
(3.38)

and {T} ×W−(T) is a strong deformation retract of W−. Moreover, the sets W(0),
W−(0) are compact ANRs and Λ(W ,W−) = −1 �= 0. Hence, there exists a viable
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6-periodic trajectory inW . Notice that the problem cannot be reduced to the one covered
by the results from [14].

Corollary 3.15. Suppose that (W ,W−) is of the form ([0,T]×K , [0,T]×K−) for some
compact ANRs K and K−. If χ(K) �= χ(K−), then there is a viable T-periodic trajectory
in W . Moreover, assuming (3.6), then

ind
(
ϕ(0,T),PW

)= χ(K)− χ(K−). (3.39)

Sometimes, when trajectories start from more regular set than ANR, we can look for
viable periodic trajectories studying only the map H−

1 as in the following.

Corollary 3.16. Let assumptions (3.3), (3.10), (3.12), and (3.19) be satisfied. If W(0) is
an absolute retract, then λ(H−

1 ) �= 1 implies that there exists a viable T-periodic trajectory
in W . Moreover, if condition (3.6) holds, then

ind
(
ϕ(0,T),PW

)= 1− λ(H−
1

)
. (3.40)

Corollary 3.17. Let assumptions (3.3), (3.10), (3.12), and (3.19) be satisfied. If W(0) is
an absolute retract and W−(T) consists of two disjoint absolute retracts A1 and A2, then
there exists a viable T-periodic trajectory in W .

Proof. It is sufficient to notice that λ(H−
1 ) equals 0 or 2. Corollary 3.16 finishes the proof.

�

Below, we give an example that for arbitrary Ai a viable T-periodic trajectory may not
exist.

Example 3.18. Let

K := {(r cosψ,r sinψ,z)∈R
3 | ψ ∈ [0,2π], r ∈ [0,3],

− r + 1≤ z ≤ 2 for r ∈ [0,1], − 2≤ z ≤ 2 for r ∈ [1,3]
}
.

(3.41)

It means that we rotate around the z-axis the set A in Figure 3.3.
Define a field g1(ψ,r,z) := (1,r(2− r),z) which induces the Lipschitz map g on R3

(after changing coordinates).
The exit set for K is the set As := {(x,z)∈ A | |z| = 2} rotated around the z-axis, that

is, Ks = {(x, y,z)∈ K | |z| = 2}.
Now, consider the tube W := [0,T]×K , where 0 < T < 2π, and a field f (t,u) := (1,

g(u)) for every u∈ R3. Then, W− = [0,T]×Ks and obviously {T}×W−(T) is a strong
deformation retract of W−. Notice that, from Corollary 3.15, it follows that

Λ(W ,W−)= χ(K)− χ(K−)= 1− 1= 0. (3.42)
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Notice that in W there is only one trajectory with possible periodicity ϕ(0,ψ)(2cosψ,
2sinψ,0). Since T < 2π, it is not T-periodic.

For more than two absolute retracts Ai in Corollary 3.17, it may also occur that Λ(W ,
W−)= 0 (some of them change places). It seems that one can find examples that, more-
over, there is no viable periodic trajectory. However, we can easily prove the following
result in a low dimension.

Corollary 3.19. Let assumptions (3.3), (3.10), (3.12), and (3.19) be satisfied. If n ≤ 2
(dimension of a space), W(0) is an absolute retract and W−(T) consists of disjoint absolute
retracts A1, . . . ,Ak, k ≥ 2, then there exists a viable T-periodic trajectory in W .

Proof. It is easy to see that, since the topological dimension of ∂W is not greater than 2,
λ(H−

1 )= 0 or λ(H−
1 )= k �= 1. Therefore, Λ(W ,W−) �= 0, which ends the proof. �

We end this section giving the result on existence of viable T-periodic trajectories
without assumption (3.10).

Proposition 3.20. Let W ⊂ [0,T]×Rn be a right-continuous compact tube. If W(0) ⊂
W(T), W(T) is an absolute retract and W− = cl(∂W \ ({T} ×W(T))), then there is a
viable T-periodic trajectory in W .

Proof. Consider the map f̃ : R×Rn → Rn, f̃ (t,x) :=− f (t,x). Then, the exit set W̃− for

(−1, f̃ (·)) is empty and each trajectory starting from W(T) is viable with ϕ̃(0,T)(x) :=
ϕ(T ,−T)(x)∈W(0)⊂W(T).

By the Schauder fixed point theorem, there exists a point x0 ∈W(T), and in fact in
W(0), such that ϕ̃(0,T)(x0)= x0. Now, the trajectory ϕ(0,·)(x0) is the one we look for. The
proof is complete. �

One can easily find examples that there may be no viable T-periodic solutions if
W(0)⊂W(T), W(0) �=W(T), and W− is not a whole boundary.
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4. Differential inclusions

The problem of finding T-periodic trajectories for differential inclusions is much more
complicated. While there are some techniques (see, e.g., [13]) for solving this problem
when on the boundary of the tube the tangential condition ({1}×F(t,x))∩TW(t,x) �= ∅
is satisfied, the situation becomes dramatically worse if this condition does not hold. For
instance, we cannot prove that the solution map assigning to a point (t,x)∈W the set of
viable solutions starting from it has sufficiently regular values.

The idea is to approximate our multivalued map by sufficiently regular single-valued
maps having T-periodic trajectories. However, we should follow in such a way that the
topological properties of all exit sets for these approximating maps would be under con-
trol, which is very difficult, or even impossible, in general.

Nevertheless, as we can see, in some situations we can overcome these difficulties.
The first result we present is self-evident and we include it only for making our discus-

sion more complete. We will use for a tube W ⊂ [0,T]×Rn the following set:

We := (We \
({T}×W(T)

))
∪ {(T ,x)∈ {T}×W(T) | ∃(tm,xm

)∈We \
({T}×W(T)

)
:
(
tm,xm

)−→ (T ,x)
}

,
(4.1)

where We was defined in Section 2.

Proposition 4.1. Assume that a Marchaud map F and a compact right-continuous tube
W ⊂ [0,T]× Rn satisfy assumptions (3.10), (3.12), (3.19), and F possesses measurable
Lipschitz selections, and We =W−. Then, Λ(W ,W−) �= 0 implies that there exists a vi-
able T-periodic trajectory for F in W . (If F(t,·) is Lipschitz, that is, dH(F(t,x),F(t, y)) ≤
L|x − y|, where dH stands for the Hausdorff metric, then obviously f (t,x) := σ(F(t,x)),
where σ(F(t,x)) denotes the Steiner point of F(t,x), is a measurable Lipschitz selection of F.)

It is obvious that each measurable Lipschitz selection of F satisfies all assumptions of
Theorem 3.11 and a viable T-periodic trajectory for f is a desired solution.

The assumption We =W− for multivalued maps is strong while it is evidently veri-
fied in problems with the uniqueness property. In what follows, we avoid this condition.
However, some regularity assumptions on the tube are necessary.

Definition 4.2. A right-continuous compact tube W ⊂ [0,T]×Rn is an (n+ 1)C1,1 tube
if there exists an extended right-continuous tube Ŵ ⊂ (a,b)×Rn, a ≤ 0 ≤ T ≤ b ≤ +∞
(i.e., Ŵ(t)=W(t) for every t ∈ [0,T]), which is a C1,1 (n+ 1)-manifold with a boundary
∂Ŵ .

(W ,W−) is an (n + 1)C1,1 pair if W is an (n + 1)C1,1 tube and the exit set Ŵs for
{1}×F(·), if it is nonempty, is a C1,1 n submanifold of ∂Ŵ with a boundary ∂∂ŴŴs, and
Ŵs∩W =W−.

We will assume that the map (t,x) � F(t,x) is continuous. Weaker assumptions are
left for further research. Our present aim is to show a possible method of studying the
existence of viable T-periodic trajectories which consists in a controlled approximation
of a right-hand side F by sufficiently regular single-valued maps.
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Our technique is based on the following crucial result.

Lemma 4.3. Let K , X , and F : Rn→Rn satisfy the following:

(I) K is a C1,1 n-manifold with a boundary, and X ⊂ K is a compact subset;
(II) F is a continuous Marchaud map;

(III) there is a compact neighborhood P of X in K such that Ks(F)∩P is closed;
(IV) if Ks(F) is nonempty, it is a C1,1 (n − 1)-submanifold of ∂K with a boundary

∂∂KKs(F).

Then, for every ε > 0, there exists f : Rn→Rn such that

(a) f is an ε-approximation of F( f : X → Y is an ε-approximation of a compact valued
map F : X � Y , if, for every x ∈ X , f (x)∈ B(z,ε) for some z ∈ F(B(x,ε)));

(b) Ks( f )∩X = Ks(F)∩X ;
(c) f is Lipschitz on some open neighborhood of X in Rn.

Proof. Let S ⊂ K be a compact neighborhood of X such that S ⊂ IntK P. We proceed in
two steps.
Step 1. We construct an open set U in Rn such that S \Ks(F)⊂U and (Ks(F)∩ S)∩U =
∅, and a map g :U →Rn such that

(A) 〈g(x),νx〉 < 0 for every x ∈ (∂K \Ks(F))∩ S;
(B) g is C∞ in U ;
(C) g(x)∈ F(x) + min{ε,dKs(F)(x)}B1 for every x ∈ S \Ks(F).

To do this, at first we find for every x ∈ S \Ks(F) a vector vx ∈Rn and an open neigh-
borhood Ux of x in Rn in the following way.
Case 1. Let x ∈ (∂K \Ks(F))∩ S. Then, there exists wx ∈ F(x)∩ TK (x). Denote ηx :=
dKs(F)(x) > 0 and εx := (1/4)min{ε,ηx}.

Take an open neighborhoodUx of x such that dKs(F)(y)≥ ηx/2 and F(x)⊂ F(y) + εxB1,
for every y ∈Ux.

Now, take vx :=wx − txνx (tx > 0 is sufficiently small) such that vx ∈ F(x) + εxB1.
Then, for y ∈Ux ∩K ,

vx ∈ F(y) + 2εxB1 ⊂ F(y) +
1
2
ηxB1 ⊂ F(y) +dKs(F)(y)B1, (4.2)

vx ∈ F(y) +
ε

2
B1. (4.3)

Moreover, we can take Ux so small that 〈vx,νy〉 < 0 for every y ∈ Ux ∩ ∂K , since 〈vx,
νx〉 = 〈wx,νx〉− tx < 0.
Case 2. Let x ∈ S \ ∂K . Similarly as above, we can find Ux with Ux ∩ ∂K =∅ and vx ∈
F(x) satisfying (4.2) and (4.3) for any y ∈Ux.

Choose a countable, locally finite covering {Uxi | xi ∈ S \Ks(F)} of S \Ks(F) and con-
sider the smooth (C∞) partition of unity {λi :Uxi → [0,1]} subordinated to it.

Define U :=⋃∞i=1Uxi and notice that S \Ks(F)⊂U and U ∩Ks(F)=∅.
For every x ∈U , denote I(x) := {i∈N | λi(x) �= 0} and define

g(x) :=
∑
i∈I(x)

λi(x)vxi . (4.4)
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Since each λi is C∞, (B) holds.
To verify (A), take x ∈ (∂K \Ks(F))∩ S and notice that, by the definition of vxi andUxi ,

for each i∈ I(x), one has xi ∈ (∂K \Ks(F))∩ S and

〈
g(x),νx

〉= ∑
i∈I(x)

λi(x)
〈
vxi ,νx

〉
< 0. (4.5)

Now, for x ∈ S \Ks(F) and for i∈ I(x), by (4.2), one has vxi ∈ F(x) + dKs(F)(x)B1 and
this set is convex. Hence,

g(x)=
∑
i∈I(x)

λi(x)vxi ∈ F(x) +dKs(F)(x)B1. (4.6)

Similarly, g(x)∈ F(x) + (ε/2)B1, so (C) is also satisfied.
Step 2. In order to construct the map f we first define, for x ∈ Ks(F)∩ S, a map vx(·) and
an open neighborhood Ux of x in the following way.
Case 1. Let x ∈ Int∂K Ks(F)∩ S. We know that minv∈F(x)〈v,νx〉 ≥ 0.

Fix wx ∈ F(x), so 〈wx,νx〉 ≥ 0. Take an open neighborhood Ux of x in Rn such that
Ux ∩ ∂∂KKs(F)=∅, Ux ∩ ∂K ⊂ Ks(F) and F(x)⊂ F(y) + (ε/2)B1, for every y ∈Ux.

Define vx :=wx + txνx, where tx > 0 is so small that 〈vx,νy〉 > 0 for y ∈Ux ∩Ks(F) and
vx ∈ F(x) + (ε/2)B1. Then, condition (4.3) holds.
Case 2. Suppose that x ∈ ∂∂KKs(F)∩ S. Then, since x ∈ Ks(F)∩ P which is closed, we
know by Proposition 2.2 that there is v ∈ F(x)∩TK (x) such that v ∈ TKs(F)(x). There is
an open neighborhood Vx of x in Rn and a C1,1 diffeomorphism φ : Vx → φ(Vx) ⊂ Rn

such that Vx ∩Ks(F)⊂ P, φ(x)= 0,

φ
(
Vx ∩K

)= {(y1, . . . , yn
)∈R

n | y1 ≤ 0
}=: X ,

φ
(
Vx ∩Ks(F)

)= {(y1, . . . , yn
)∈ X | y1 = 0, y2 ≥ 0

}=: Xs.
(4.7)

As a consequence, for z ∈Vx ∩K ,

Intφ′(z)
(
TK (z)

)= {(y1, . . . , yn
)∈ X | y1 < 0

}
,

Intφ′(z)
(
TRn\K (z)

)= {(y1, . . . , yn
)∈R

n | y1 > 0
}

,
(4.8)

and, for z ∈Vx ∩ ∂∂KKs(F),

Int∂X φ′(z)
(
TKs(F)(z)

)= {(y1, . . . , yn
)∈ X | y1 = 0, y2 > 0

}
. (4.9)

Define on φ(Vx) the map G(y) := φ′(φ−1(y))F(φ−1(y)).
Let ζ(y) := (y2,1,0, . . . ,0) and take w := φ′(x)v. Then, 〈w,e1〉 = 0 and 〈w,e2〉 ≥ 0,

where e1, e2 are unit vectors on two first axes. Let uθ(y) :=w+ θζ(y), where θ > 0. Then,

〈
uθ(y),e1

〉
< 0 for y ∈ ∂X \Xs,〈

uθ(y),e1
〉
> 0 for y ∈ Int∂X Xs,〈

uθ(y),e2
〉
> 0 for y ∈ ∂∂XXs.

(4.10)
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Define, for z ∈ Vx, vθ(z) := (φ−1)′(φ(z))uθ(φ(z)). Using (4.10) and the fact that tan-
gent cones correspond to tangent cones under the diffeomorphism φ (see (4.8), (4.9)),
we obtain

〈
vθ(z),νz

〉
< 0 for z ∈ (∂K \Ks(F)

)∩Vx,〈
vθ(z),νz

〉
> 0 for z ∈ (Int∂K Ks(F)

)∩Vx,〈
vθ(z),nz

〉
> 0 for z ∈ (∂∂KKs(F)

)∩Vx,

(4.11)

where nz is an inward normal vector to Ks(F) in T∂K (z).
Similarly as in Case 1, we can find an open neighborhood Ux ⊂ Vx of x and a small

θx > 0 such that, for vx(z) := vθx(z), we additionally have

vx(z)∈ F(z) + εB1 for every z ∈Ux ∩K. (4.12)

We constructed an open covering of S consisting of U from Step 1 and {Ux}x∈Ks(F)∩S.
Since Ks(F)∩ S is compact, we can choose a finite subcovering {Ui}ki=0, where U0 := U ,
and consider a smooth partition of unity {βi} subordinated to it.

Define

f0(x) := β0(x)g(x) +
k∑
i=1

βi(x)vxi(x). (4.13)

Take any continuous selection of F and its locally Lipschitz ε-approximation f1. Take

also open neighborhoods Ω, Ω1 of S in Rn such that Ω⊂Ω1 ⊂Ω1 ⊂
⋃k
i=0Ui. Let u : Rn→

[0,1] be a locally Lipschitz function such that u ≡ 0 on Rn \Ω1 and u≡ 1 on Ω. We are
in a position to define f : Rn→Rn,

f (x) := u(x) f0(x) +
(
1−u(x)

)
f1(x). (4.14)

We verify conditions (a)–(c).
The considerations above imply that fi(x)∈ F(x) + εB1. Since values of F are convex,

we have f (x)∈ F(x) + εB1 and condition (a) is verified.
We check (b). Let x ∈ (∂K \Ks(F))∩X and I(x) := {i ∈ {1, . . . ,k} | βi(x) �= 0}. From

(4.11) and (A) it follows that, for i∈ I(x), 〈vxi(x),νx〉 < 0 and, consequently, 〈g(x),νx〉<0.
Therefore, 〈 f (x),νx〉 < 0, which implies that Ks( f )∩X ⊂ Ks(F)∩X .

Notice that, for x ∈ Int∂K Ks(F)∩X , β0(x) = 0 and 〈vxi ,νx〉 > 0 (see Step 2, Case 1).
Thus, 〈 f (x),νx〉 > 0. If x ∈ ∂∂KKs(F)∩X , then xi ∈ ∂∂KKs(F) for every i ∈ I(x). More-
over, β0(x) = 0, 〈vxi(x),νx〉 = 0 and 〈vxi ,nx〉 > 0, which implies that 〈 f (x),nx〉 > 0 while
〈 f (x),νx〉 = 0. From Proposition 2.2 it follows that a trajectory for f starting from x
leaves the set K immediately. Therefore, Ks( f )= Ks(F).

Finally, it is seen that f is locally Lipschitz according to regularity of βi and the diffeo-
morphism φ; the proof is complete. �
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We can adopt Lemma 4.3 to a nonautonomous case and obtain the following lemma.

Lemma 4.4. Let F : R×Rn � Rn be a continuous Marchaud map with a growth |F(t,x)| ≤
c(1 + |x|), and let (W ,W−) be an (n+ 1)C1,1 pair. Then, for every ε > 0, there exists a map
f : R×Rn→Rn such that

(a) the exit sets for f and F are the same;
(b) f is an ε-approximation of F in some neighborhood of W where it is Lipschitz.

Proof. Let Ŵ be an extended C1,1 tube of W and Ŵs its exit set. Consider the continuous
map G : R×Rn � R×Rn, G(t,x) := {1}×F(t,x).

Take an arbitrary 0 < ε < 1. Let

M := sup
{|y|+ 1 | y ∈ F(t,x), (t,x)∈W +B1

}
(4.15)

and δ :=min{ε/(1 + 2M),1/2}.
From Lemma 4.3 it follows that there is a map g : R×Rn → R×Rn which is a δ-

approximation of G, Lipschitz on some open neighborhood Ω⊂W +B1 of W , and such
that W− = Ŵs ∩W is the exit set for g on W . Denote g(t,x) = (g1(t,x),g2(t,x)), where
g1(t,x)∈R and g2(t,x)∈Rn.

Define f : R×Rn→Rn,

f (t,x) := 1
g1(t,x)

g2(t,x). (4.16)

It is easy to see that the exit set for f equals W−, since (1, f (t,x)) = (1/g1(t,x))g(t,x).
Moreover, f is a well-defined ε-approximation of F, Lipschitz on Ω. Indeed, the Lips-
chitzeanity is obvious, since |g1(t,x)− 1| < 1/2. Let (t,x)∈Ω. Since g is a δ-approximation
of G, there is y ∈ F(s,z) for some |s− t| < δ and |z− x| < δ such that

∣∣g1(t,x)− 1
∣∣ < δ,

∣∣g2(t,x)− y
∣∣ < δ. (4.17)

It implies that

∣∣ f (t,x)− y
∣∣= ∣∣∣∣ 1

g1(t,x)
g2(t,x)− y

∣∣∣∣
≤
∣∣∣∣ 1
g1(t,x)

g2(t,x)− g2(t,x)
∣∣∣∣+

∣∣g2(t,x)− y
∣∣

<

∣∣1− g1(t,x)
∣∣

g1(t,x)

∣∣g2(t,x)
∣∣+ δ < 2Mδ + δ ≤ ε,

(4.18)

which means that f is an ε-approximation of F. The proof is complete. �

Using the above lemma, we can prove the main result of this section.

Theorem 4.5. Let F : R×Rn � Rn be a continuous Marchaud map with a growth |F(t,
x)| ≤ c(1 + |x|), and let (W ,W−) be an (n + 1)C1,1 pair. Assume that W(T) ⊂W(0),
W−(T)⊂W−(0) and {T}×W−(T) is a strong deformation retract ofW−. If Λ(W ,W−) �=
0, then there exists a viable T-periodic trajectory for F in W .
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Proof. Let {εm} be a sequence of positive numbers converging to 0. For each m≥ 1, fol-
lowing Lemma 4.4, we find a Lipschitz εm-approximation fm of F generating the same
exit set W−.

Using Theorem 3.11, we can find xm ∈W(0) such that the trajectory x̄m(·) for fm
starting from xm is viable and T-periodic. Since W(0) is compact, without any loss of
generality we can assume that xm→ x ∈W(0).

Now, we use the fact that F has at most a linear growth and W is compact, and, from
the condition

˙̄xm(t)= fm
(
t, x̄m(t)

)∈ F(B((t, x̄m(t)
)
,

1
m

))
+

1
m
B1, (4.19)

we deduce that there is a constant C > 0 such that |x̄m(t)| ≤ C for every t ∈ [0,T] and
| ˙̄xm(t)| ≤ C for almost every t ∈ [0,T]. By the convergence theorem (see [1, Theorem
0.3.4]), we can assume that x̄m → x uniformly, and ˙̄xm converges weakly in L1 to ẋ for
some absolutely continuous map x. This implies that x is viable in W and x(0)= x(T). It
is sufficient to prove that ẋ(t)∈ F(t,x(t)) a.e. in [0,T].

Notice that ẋ belongs to the weak closure of the set conv{ ˙̄xm |m ≥ k}. By the Mazur
lemma, it also belongs to the strong closure of this set. Hence, there is a sequence zk ∈
conv{ ˙̄xm |m≥ k} such that ‖zk − ẋ‖L1 ≤ 1/k. This implies that there exists a subsequence
zkl → ẋ a.e. in [0,T].

Take an arbitrary ε > 0, and let s∈ [0,T] be such that liml→∞ zkl(s)= ẋ(s). There exists
δ > 0, δ < ε, such that F(s, y)⊂ F(s,x(s)) + εB1 if |y− x(s)| < δ. On the other hand, there
is N ≥ 1 such that 1/N < δ/2 and |x̄m(s)− x(s)| < δ/2 for every m ≥ N and s ∈ [0,T].
Therefore,

˙̄xm(s)∈ F(B((s,x(s)
)
,δ
))

+
δ

2
B1 ⊂ F

(
s,x(s)

)
+ 2εB1. (4.20)

Hence, zkl(s) ∈ F(s,x(s)) + 2εB1 for every l ≥ 1, which implies that ẋ(s) ∈ F(s,x(s)) +
2εB1. Since ε was arbitrary, one has ẋ(s)∈ F(s,x(s)) for almost every s∈ [0,T]. This fin-
ishes the proof. �

As a consequence, we can state the following corollary.

Corollary 4.6. Consider the control problem with constraints

ẋ = f (t,x,u), u∈U ⊂R
m, (t,x)∈W ⊂ [0,T]×R

n, x(0)= x(T), (4.21)

and assume that the map F(t,x) := f ({(t,x)} × U) is a continuous Marchaud map. If
(W ,W−) forms an (n + 1)C1,1 pair with W(0), W−(0) being ANRs, W(T) ⊂W(0),
W−(T)⊂W−(0), and such that {T}×W−(T) is a strong deformation retract of W−, then
Λ(W ,W−) �= 0 implies that there is a control u : [0,T] → U inducing a solution x(·) to
problem (4.21).
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Naukowe, Warsaw, 1967.

[3] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Illinois, 1971.
[4] P. Cardaliaguet, Conditions suffisantes de non-vacuité du noyau de viabilité [Sufficient conditions
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[16] T. Ważewski, Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des
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