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We consider the problem of determining the unknown term in the right-hand side of a
second-order differential equation with unbounded operator generating a cosine oper-
ator function from the overspecified boundary data. We obtain necessary and sufficient
conditions of the unique solvability of this problem in terms of location of the spectrum
of the unbounded operator and properties of its resolvent.

1. Introduction

In a Banach space E we consider the differential equation

d2v

dt2
= Av+ f (t) + p, 0≤ t ≤ t1. (1.1)

HereA is a linear unbounded operator with the domainD(A), f (t) is a function continu-
ous on the segment [0, t1] with the values in the space E, and p is an unknown parameter
belonging to E. By the solution of the differential equation (1.1) we mean a function twice
continuously differentiable on [0, t1] with the values from D(A) satisfying (1.1). For (1.1)
we put the boundary value conditions

v(0)= v0, v′(0)= v̇0, (1.2)

v
(
t1
)= v1. (1.3)

The problem is to find a pair (v(t), p) which satisfies the differential equation (1.1) and
the boundary value conditions (1.2), (1.3).

The inverse problems of such a type were studied by various authors; the bibliography
may be found in [5]. Such a problem for a second-order differential equation was con-
sidered in [4] in the case of a differential equation with a selfadjoint operator in a Hilbert
space and in [5] in the assumption that the cosine operator function generated by the
operator A is small in the norm.
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In this paper, we obtain necessary and sufficient conditions for the unique solvability
of the problem (1.1)–(1.3) based on the only assumption that the operator A generates a
cosine operator function. We extend on the second-order differential equations the results
obtained in [2] for equations of the first order. We use here results and method of the
paper [1] devoted to the spectral properties of cosine operator functions.

We assume that the operator A is a generator of a cosine operator function C(t). Such
operator is closed, its domain D(A) is dense in E, and the resolvent set of A is nonempty
(see [3]). In the sequel we denote by R(λ;A) the resolvent (λI −A)−1 of the operator A.
We also assume that the other data of the problem satisfy the conditions

(a) v0,v1 ∈D(A);
(b) v̇ ∈ E0, where E0 is the subspace of all vectors u such that the function C(t)u is

continuously differentiable;
(c) f (t)= f1(t) + f2(t), where f1(t) is a function continuously differentiable in [0, t1],

f2(t)∈D(A), 0≤ t ≤ t1, and A f2(t) is continuous in [0, t1].

The problem (1.1)–(1.3) is called well posed if for any data v0, v̇0, v1, f (t) satisfying
these conditions, it has a unique solution. One can show (see, e.g., [5]) that the unique
solvability of the problem (1.1)–(1.3) implies the estimates for the solution (v(t), p) in
the corresponding norm.

The numbers

µk =−4π2k2

t21
, k = 1,2, . . . , (1.4)

are called the characteristic numbers of the problem (1.1)–(1.3).

Theorem 1.1. The problem (1.1)–(1.3) is well posed if and only if every characteristic num-
ber µk, k = 1,2, . . . , is a regular point of the operatorA and for any x ∈ E the series

∑∞
k=1R(µk,

A)x,
∑∞

k=1AR
2(µk,A)x are Cesáro summable.

Recall that a series
∑∞

n=1 an, an ∈ E, is said to be Cesáro summable if there exists the
limit

(C− 1)
∞∑
n=1

an := lim
N→∞

1
N

N−1∑
n=1

n∑
k=1

ak (1.5)

and a double series
∑∞

n=−∞ an is said to be Cesáro summable if there exists the limit

(C− 1)
∞∑

n=−∞
an := lim

N→∞
1
N

N−1∑
n=0

n∑
k=−n

ak. (1.6)

Proof. The conditions on the data v0, v̇0, f (t) yield (see [3, pages 35-36]) that the Cauchy
problem (1.1)-(1.2) has a unique solution given by the formula

v(t)= C(t)v0 + S(t)v̇0 +
∫ t

0
S(t− s) f (s)ds+

∫ t
0
S(t− s)pds, 0≤ t ≤ t1, (1.7)

where C(t) is the operator cosine function generated by the operator A and S(t) is the as-
sociated sine function. Using the boundary condition (1.3) we conclude that the problem
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(1.1)–(1.3) is equivalent to the operator equation

Bp =w, (1.8)

where

Bp =
∫ t1

0
S
(
t1− s

)
pds, p ∈ E, (1.9)

w = v1−C
(
t1
)
v0− S

(
t1
)
v̇0−

∫ t1
0
S
(
t1− s

)
f (s)ds. (1.10)

The problem (1.1)–(1.3) is well posed if and only if (1.8) has a unique solution for any
w ∈D(A). The latter is valid if and only if the operator B defined in (1.9) has an inverse
defined on all D(A).

At first we derive some relations with the operators B and µkI −A. Set ρk = 2πki/t1,
k = 0,±1,±2, . . . . We prove that

Bx = (µkI −A)
∫ t1

0

∫ u
0

(s−u)S(s)xdscosh
(
ρku
)
du, x ∈ E, k = 1,2, . . . . (1.11)

For x ∈ D(A) using the equalities AS(s)x = S′′(s)x, S′(s)x = C(s)x and the fact that A is
closed we have

A
∫ t1

0

∫ u
0

(s−u)S(s)xdscosh
(
ρku
)
du

=
∫ t1

0

∫ u
0

(s−u)S′′(s)xdscosh
(
ρku
)
du

=
∫ t1

0

[
(s−u)C(s)x|u0 −

∫ u
0
S′(s)xds

]
cosh

(
ρku
)
du

=
∫ t1

0

[
ux− S(u)x

]
cosh

(
ρku
)
du

(1.12)

and hence

A
∫ t1

0

∫ u
0

(s−u)S(s)xdscosh
(
ρku
)
du=−

∫ t1
0
S(u)xcosh

(
ρku
)
du. (1.13)

Since A is closed and D(A) is dense in E, the last equality is valid for any x ∈ E. Next we
have

µk

∫ t1
0

∫ u
0

(s−u)S(s)xdscosh
(
ρku
)
du

=
∫ t1

0

∫ u
0

(s−u)S(s)xds
(

cosh
(
ρku
))′′

du

=
∫ u

0
(s−u)S(s)xdsρk sinh

(
ρku
)|t10 +

∫ t1
0

∫ u
0
S(s)xds

(
cosh

(
ρku
))′
du

=
∫ u

0
S(s)xdscosh

(
ρku
)
du|t10 −

∫ t1
0
S(u)xcosh

(
ρku
)
du

(1.14)
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which implies

µk

∫ t1
0

∫ u
0

(s−u)S(s)xdscosh
(
ρku
)
du=

∫ t1
0
S(s)xds−

∫ t1
0
S(u)xcosh

(
ρku
)
du. (1.15)

Subtracting (1.13) from (1.15), we obtain (1.11). Moreover, from the formulas (1.11),
(1.13), we obtain

ABx =−(µkI −A)
∫ t1

0
S(u)xcosh

(
ρku
)
du. (1.16)

Next we check the equality

∫ t1
0
S(u)xcosh

(
ρku
)
du= (µkI −A)1

2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xdscosh

(
ρku
)
du, k = 1,2, . . . ,

(1.17)

for any x ∈ E. For x ∈D(A) we have

A
1
2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xdscosh

(
ρku
)
du

= 1
2

∫ t1
0

∫ u
0

(
t1− s

)
S′′(s)xdscosh

(
ρku
)
du

= 1
2

∫ t1
0

[(
t1− s

)
C(s)x|u0 +

∫ u
0
S′(s)xds

]
cosh

(
ρku
)
du

(1.18)

and therefore

A
1
2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xdscosh

(
ρku
)
du= 1

2

∫ t1
0

[(
t1−u

)
C(u)x+ S(u)x

]
cosh

(
ρku
)
du.

(1.19)

Since A is closed and D(A) is dense in E, the last equality is valid for any x ∈ E. Next
we have

µk
1
2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xdscosh

(
ρku
)
du

= 1
2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xds

(
cosh

(
ρku
))′′

du

= 1
2

(∫ u
0

(
t1− s

)
S(s)x sinh

(
ρku
)|t10 −

∫ t1
0

(
t1−u

)
S(u)x

(
cosh

(
ρku
))′
du
)

= 1
2

[
−(t1−u)S(u)xcosh

(
ρku
)|t10 +

∫ t1
0

((
t1−u

)
C(u)x− S(u)x

)
cosh

(
ρku
)
du
]

(1.20)

which implies

µk
1
2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xdscosh

(
ρku
)
du= 1

2

∫ t1
0

((
t1−u

)
C(u)x− S(u)x

)
cosh

(
ρku
)
du.

(1.21)
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Subtracting (1.19) from (1.21), we obtain (1.17). Moreover, from the formulas (1.16),
(1.17), we obtain

ABx =−(µkI −A)2 1
2

∫ t1
0

∫ u
0

(
t1− s

)
S(s)xdscosh

(
ρku
)
du, x ∈ E, k = 1,2, . . . . (1.22)

Assume that the operator B has the inverse B−1 with D(B−1)=D(A). Let λ0 be a reg-
ular point of the operator A. Then the operator B0 = B(λ0I −A)−1 is bounded. From
the relations (1.11) we conclude that the characteristic numbers µk, k = 1,2, . . . , are the
regular points of the operator A. Moreover, by virtue of (1.11), (1.13), we obtain

R
(
µk;A

)
x =

∫ t1
0

coshρkuB0

(
λ0

∫ u
0

(s−u)S(s)xds− S(u)x
)
du. (1.23)

This means that

R
(
µk;A

)
x =

∫ t1
0
ϕ(u)cosh

(
ρku
)
du, k = 1,2, . . . , (1.24)

where

ϕ(u)= B0

(
λ0

∫ u
0

(s−u)S(s)xds− S(u)x
)

(1.25)

is a continuous function. Consider the elements

zk =
∫ t1

0
ϕ(u)cosh

(
ρku
)
du, k = 0,±1,±2, . . . . (1.26)

By the vector version of Fejér’s theorem, there exists the limit

lim
N→∞

1
N

N−1∑
n=0

n∑
k=−n

∫ t1
0
ϕk(u)eρkudu. (1.27)

Using the relations

1
N

N−1∑
n=0

n∑
k=−n

∫ t1
0
ϕk(u)eρkudu= 1

N

N−1∑
n=0

n∑
k=−n

zk = z0 +
2
N

N−1∑
n=0

n∑
k=−n

zk (1.28)

and (1.24), we conclude that the series
∑∞

k=1R(µk;A)x is Cesáro summable for any x ∈ E.
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Next, by virtue of the relations (1.22) and (1.19), we obtain

AR2(µk;A
)
x =

∫ t1
0
ψ(u)cosh

(
ρku
)
du, x ∈ E, k = 1,2, . . . , (1.29)

where

ψ(u)= 1
2
B0

(
− λ0

∫ u
0

(
t1− s

)
S(s)xds+

(
t1−u

)
C(u)x+ S(U)x

)
cosh

(
ρku
)
du (1.30)

is a continuous function. From here in the same way as above we conclude that the series∑∞
k=1AR

2(µk;A)x is Cesáro summable for any x ∈ E.
Assume that every characteristic number µk, k = 1,2, . . ., is a regular point of the oper-

ator A and for any x ∈ E the series
∑∞

k=1R(µk,A)x,
∑∞

k=1AR
2(µk,A)x are Cesáro summa-

ble. Following the method of [1], define on the subspace D(A) the operators Q, P via the
relations

Qy = 2(C− 1)
∞∑
k=1

R
(
µk,A

)
Ay, y ∈D(A),

Py = 4(C− 1)
∞∑
k=1

AR2(µk,A
)
Ay, y ∈D(A).

(1.31)

Define the operators Qk, Pk via the relations

Qkx = 1
t1

∫ t1
0
S(s)xcosh

(
ρks
)
ds, k = 0,±1,±2, . . . , x ∈ E,

Pkx = 1
t1

∫ t1
0

[(
t1− s

)
C(s)x+ S(s)x

]
cosh

(
ρks
)
ds, k = 0,±1,±2, . . . , x ∈ E.

(1.32)

By virtue of (1.16) we obtain

1
t1
R
(
µk,A

)
ABx =−Qkx, k = 1,2, . . . , x ∈ E, (1.33)

and using (1.22) and (1.19) we get

1
t1
AR2(µk,A

)
ABx =−1

2
Pkx, k = 1,2, . . . , x ∈ E. (1.34)

By the vector version of Fejér’s theorem, we have

(C− 1)
∞∑

k=−∞
Qkx = 1

2
S
(
t1
)
x, (1.35)

(C− 1)
∞∑

k=−∞
Pkx = 1

2

[
S
(
t1
)
x+ t1x

]
. (1.36)
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Using the relations Q0 = (1/t1)B and (1.33) we obtain

(C− 1)
∞∑

k=−∞
Qkx =Q0x+ 2(C− 1)

∞∑
k=1

Qkx

= 1
t1
Bx− 2

t1

∞∑
k=1

R
(
µk;A

)
ABx

= 1
t1
Bx− 1

t1
QBx

(1.37)

and by virtue of (1.35) we conclude that

1
t1
Bx− 1

t1
QBx = 1

2
S
(
t1
)
x. (1.38)

Next we have

P0x = 1
t1
Bx+

1
t1

∫ t1
0

(
t1− s

)
S′(s)xds

= 1
t1
Bx+

1
t1

[(
t1− s

)
S(s)x|t10 +

∫ t1
0
S(s)xds

]
= 2
t1
Bx

(1.39)

for x ∈ D(A) and since the operators P0, B are bounded, we get P0x = (2/t1)Bx for any
x ∈ E. Thus by virtue of (1.34) we obtain

(C− 1)
∞∑

k=−∞
Pkx = P0x+ 2(C− 1)

∞∑
k=1

Pkx

= 2
t1
Bx− 4

t1

∞∑
k=1

AR2(µk;A
)
ABx

= 2
t1
Bx− 1

t1
PBx

(1.40)

and by virtue of (1.36) we conclude that

2
t1
Bx− 1

t1
PBx = 1

2
S
(
t1
)
x+

1
2
t1x. (1.41)

Subtracting (1.38) from (1.41) we obtain

1
t1
Bx+

1
t1
QBx− 1

t1
PBx = 1

2
t1x (1.42)

which implies SBx = x, x ∈ E, with S = (2/t21)(I +Q− P). The operator S is defined on
D(A) and since S and B commute on D(A), we conclude that BSy = y, y ∈ D(A), and
thus S= B−1. �

Theorem 1.2. For the problem (1.1)–(1.3) to be well-posed it is necessary, and in the case
when E is a Hilbert space is sufficient, that every characteristic number µk, k = 1,2, . . ., be a
regular point of the operator A and supk≥1‖kR(µk,A)‖ <∞.
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Proof. Assume that the problem (1.1)–(1.3) is well-posed. Then as was shown above ev-
ery characteristic number µk, k = 1,2, . . . , is a regular point of the operator A; moreover,
the resolvent R(µk;A) in these points satisfies the relations (1.23). From these relations,
integrating by parts, we obtain

ρkR
(
µk;A

)
x = B0

∫ t1
0

[
λ0

∫ u
0
S(s)xds+C(u)x

]
sinh

(
ρku
)
du. (1.43)

From here using the estimates (see [3])

∥∥C(u)
∥∥≤M1,

∥∥S(u)
∥∥≤M2, 0≤ u≤ t1, (1.44)

we obtain supk≥1‖ρkR(µk,A)‖ <∞ which means supk≥1‖kR(µk,A)‖ <∞.
Assume that E is a Hilbert space and every characteristic number µk, k = 1,2, . . . , is a

regular point of the operator A and

sup
k≥1

∥∥kR(µk,A
)∥∥ <∞. (1.45)

As was shown in [1], condition (1.45) implies that the sequences of the partial Cesáro
sums

RNx = 1
N

N−1∑
n=1

n∑
k=1

R
(
µk;A

)
x, VNx = 1

N

N−1∑
n=1

n∑
k=1

AR2(µk;A
)
x (1.46)

are bounded for any x ∈ E. Hence in order to prove that the series
∑∞

k=1R(µk;A)x,∑∞
k=1AR

2(µk;A)x are Cesáro summable for any x ∈ E, it is enough to check this asser-
tion for the elements from the dense subspace D(A). Let λ0 be a regular point of the
operator A with Reλ0 > 0. For every z from D(A) we have z = R(λ0;A)y with some y ∈ E.
Using the resolvent identity we obtain

R
(
µk;A

)
z = R(µk;A

)
R
(
λ0;A

)
y = 1

µk − λ0

(
R
(
λ0;A

)−R(µk;A
))
y. (1.47)

By virtue of (1.45) we conclude that

∥∥R(µk;A
)
z
∥∥≤ 1∣∣µk − λ0

∣∣
(∥∥R(λ0;A

)∥∥+
∥∥R(µk;A

)∥∥)‖y‖ ≤ C1∣∣µk − λ0
∣∣‖y‖ (1.48)

with some constant C1 not depending on k. Hence it follows that for any z ∈ D(A) the
series

∑∞
k=1R(µk;A)z converges and therefore is Cesáro summable.

Next we have

AR2(µk;A
)=−R(µk;A

)
+µkR2(µk;A

)
(1.49)
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and thus it remains to show that the series
∑∞

k=1µkR
2(µk;A)z is Cesáro summable for any

z ∈D(A). Using the resolvent identity we get

µkR
2(µk;A

)
z = µkR2(µk;A

)
R
(
λ0;A

)
y

= 1
µk − λ0

(
µk

µk − λ0

(
R
(
λ0;A

)−R(µk;A
))−µkR2(µk;A

))
y.

(1.50)

Hence it follows that
∥∥µkR2(µk;A

)
z
∥∥

≤ 1∣∣µk − λ0
∣∣
[∣∣∣∣ 1
µk

(
µk−λ0

)∣∣∣∣(∥∥R(λ0;A
)∥∥+

∥∥R(µk;A
)∥∥)+

∥∥ρkR(µk;A
)∥∥2
]
‖y‖. (1.51)

By virtue of (1.45) we obtain

∥∥µkR2(µk;A
)
z
∥∥≤ C2∣∣µk − λ0

∣∣‖y‖ (1.52)

with some constant C2 not depending on k. Hence it follows that for any z ∈ D(A) the
series

∑∞
k=1µkR

2(µk;A)z converges and therefore is Cesáro summable. �
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