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The topological degree for (S)+-mappings concerning a nonlinear eigenvalue problem
associated with one-dimensional p-Laplacian is evaluated. The result is applied to a vari-
ational inequality, where the multiple existence of solutions is discussed.

1. Introduction

In this paper, we evaluate the topological degree for (S)+-mappings concerning the fol-
lowing nonlinear eigenvalue problem:

−(∣∣u′(x)
∣∣p−2

u′(x)
)′ = µ

∣∣u(x)
∣∣p−2

u(x), x ∈ (0,1),

u(0)= u(1)= 0,
(1.1)

where p > 1 and µ∈R. It is shown by the second author [12] that all eigenvalues for (1.1)
are explicitly written in terms of the beta function as follows:

µk(p)= (p− 1)
{
k

2
p
B
(

1
p

,1− 1
p

)}p

(1.2)

and that µk(p) are all simple.

Define the (S)+-mapping (see [2]) T
p
µ : W

1,p
0 (0,1)→W−1, p′(0,1) by

〈
T

p
µ (u),v

〉= ∫ 1

0
|u′|p−2u′v′dx−µ

∫ 1

0
|u|p−2uvdx, u,v ∈W

1, p
0 (0,1). (1.3)

Then, we have the following theorem.

Theorem 1.1. Let µ∈ (µk(p),µk+1(p)) for some k ∈N∪{0}. Then,

deg(S)+

(
T

p
µ ,U(0,ρ),0

)= (−1)k ∀ρ > 0, (1.4)

where U(0,ρ) is the open ball in W
1,p
0 (0,1) centered at the origin with radius ρ. (As for

k = 0, it is understood that µ0 =−∞.)
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Concerning the Leray-Schauder degree, the corresponding result is obtained in [3].
As for the higher-dimensional case, that is, the case where the interval (0,1) is replaced
by a bounded domain Ω in RN (and µ < µ2(p)), see [4] (Leray-Schauder degree) and [5]
(degree for (S)+-mappings).

These kind of results are useful for the study of the (multiple) existence of the equa-
tions of the type

−div
(|∇u|p−2∇u)= f (x,u) in Ω,

u= 0 on ∂Ω
(1.5)

as well as the variational inequalities of the type∫
Ω
|∇u|p−2∇u ·∇(v−u)dx+ϕ(v)−ϕ(u)≥

∫
Ω
f (x,u)(v−u)dx ∀v ∈W

1, p
0 (Ω),

(1.6)

where f is a Carathéodory function and ϕ is a lower semicontinuous convex function.
The index formulas for mappings of class (S)+ or “densely defined” mappings which

satisfy a variant of (S)+ condition have been investigated in [7, 8, 9, 13] in abstract set-
tings. However, they assume that the leading term of mappings does not degenerate in a
sense, and hence their results cannot be applied directly to our problem.

To prove Theorem 1.1, we employ a technique similar to those in [3, 4], a homotopic
deformation along p to the case p = 2. In [3], such a deformation is applied in C[0,1],
the same Banach space where the degree is considered in the formula corresponding to
(1.4). On the other hand, in [4], the corresponding result to Theorem 1.1 is considered

in W
1,p
0 (Ω), which varies with p, so more delicate arguments are required. One needs a

lemma which provides a connection between two degrees in different Banach spaces, the

degree in W
1, p
0 (Ω), and the degree in Lq(Ω) for some fixed q (see [4, Lemma 2.4]). Then,

a homotopic deformation is used in Lq(Ω).
Our strategy is similar to that of the latter case. We employ the degree theory for sub-

differential operators which is developed in our previous work [10]. It is shown that the
left-hand side of (1.4) coincides with the degree in L2(0,1) for some mapping given as
the sum of a subdifferential operator and a perturbation associated with (1.1). Then, a
homotopic deformation along p is applied in the fixed space L2(0,1).

This paper is composed of four sections. In Section 2, we recall some basic facts on
the degree for (S)+-mappings as well as the degree for subdifferential operators. A proof
of Theorem 1.1 is given in Section 3, where the procedure mentioned above is carried
out. In Section 4, we give an example of applications to variational inequalities, where
the multiple existence of solutions is discussed.

2. Preliminaries

If X is a Banach space, then the norm of X will be denoted by ‖ · ‖X or | · |X . We denote
by 〈·,·〉X the duality pairing between X and its dual X∗ and by UX(u,r) the open ball of
X centered at u with radius r > 0. For a subset A of X , the closure and the boundary of A

with respect to the topology of X are designated by A
X

and ∂XA, respectively.
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Usually, deg(M,D, f ) stands for the degree for a mapping M relative to a bounded
open subset D at a point f . By substituting M − f for M, we can always assume that
f = 0. We simply denote deg(M,D) instead of deg(M,D,0).

In this paper, we treat three types of degrees, the Brouwer degree, the degree for (S)+-
mappings (with maximal monotone perturbation), and the degree for subdifferential op-
erators in Hilbert spaces developed in [10]. They will be denoted by d(·,·), deg(S)+

(·,·),
and degH(·,·), respectively.

2.1. Degree for (S)+-mappings. Let X be a real reflexive Banach space. A single-valued
mapping S from D(S)⊂ X into X∗ is said to be class (S)+ if for any sequence (un) of D(S),
the conditions

un⇀ u weakly in X , limsup
n→∞

〈
S
(
un
)
,un−u

〉
X ≤ 0 (2.1)

imply that un→ u strongly.
We here recall how to define the degree for S.
Let D be a bounded open subset of X and let S be a demicontinuous (S)+-mapping

from D into X∗. Let {Xα : α ∈ A} be the family of all finite-dimensional subspaces of X
and let Sα be the Galerkin approximation of S with respect to Xα, that is,

〈
Sα(u),v

〉
Xα
= 〈S(u),v

〉
X ∀u∈D∩Xα, ∀v ∈ Xα. (2.2)

Then, deg(S)+
(S,D) is defined by

deg(S)+
(S,D) := d

(
Sα,D∩Xα

)
(2.3)

for Xα large enough (in the sense of inclusion). Moreover, as for the case where X is
separable and S is bounded, we can easily see that the role of {Xα} can be played by a
countable subfamily {Xi : i∈N} ⊂ {Xα} which satisfy

⋃
i∈N

Xi

X

= X (2.4)

(see the proof of [2, Theorem 4]).

2.2. Degree for subdifferential operators. Let H be a real separable Hilbert space with
the inner product (·,·)H .

Definition 2.1. Denote by ΦC(H) the collection of lower semicontinuous convex func-
tions ϕ from H into [0,+∞] which satisfy the following conditions:

(A.0) ϕ(0)= 0,
(A.C) for each L∈ (0,+∞), the level set {u∈H : ϕ(u) + |u|2H ≤ L} is compact in H .

For ϕ ∈ ΦC(H) and u ∈ D(ϕ) (= {u ∈ H : ϕ(u) < +∞}), define the subdifferential
∂ϕ(u) of ϕ at u by

∂ϕ(u)= {v ∈H : ϕ(w)−ϕ(u)≥ (v,w−u)H ∀w ∈H
}
. (2.5)
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Then, as it is well known, ∂ϕ becomes a maximal monotone operator in H . For λ > 0,
we denote by Jλ and ∂ϕλ the resolvent and the Yosida approximation of ϕ, respectively,
that is,

Jλ = (I + λ∂ϕ)−1, ∂ϕλ =
1
λ

(
I − Jλ

)
, (2.6)

where I is the identity on H . It follows from (A.0) that 0 ∈ ∂ϕ(0) and hence Jλ0 = 0,
∂ϕλ(0)= 0, |Jλu|H ≤ |u|H , and |∂ϕλ(u)|H ≤ |u|H/λ for all u∈H and λ > 0.

We define a class of homotopy in ΦC(H) likewise.

Definition 2.2. Denote by Φhom
C (H) the collection of families {ϕt : t ∈ [0,1]} of members

of ΦC(H) which satisfy the following conditions:

(A.C)h for each L∈ (0,+∞), the set

⋃
t∈[0,1]

{
u∈H : ϕt(u) + |u|2H ≤ L

}
(2.7)

is precompact in H ,
(A.P)h {∂ϕt : t ∈ [0,1]} is a pseudomonotone homotopy of maximal monotone opera-

tors, that is, if tn → t in [0,1] and [u,v] ∈ ∂ϕt, then there exist [un,vn] ∈ ∂ϕtn

such that un→ u and vn→ v strongly.

(Concerning other type of conditions equivalent to (A.P)h see [2, Definition 8] or [11,
Definition 2.2].)

In [10], we introduced two classes of multivalued perturbations (and their homo-
topies). For our purpose here, we only recall one of them in a restricted form (especially
we consider a class of single-valued perturbations).

Definition 2.3. For a given ϕ∈ΦC(H), denote by ��1(ϕ) the collection of mappings B
from D(B)⊂H into H which satisfy the following conditions:

(A.1) D(B)⊃D(∂ϕ),
(A.2) if [un,vn] ∈ ∂ϕ, un → u strongly, vn⇀ v weakly and Bun⇀ b weakly, then b =

Bu,
(A.3) there exist k ∈ (0,1), α ∈ (0,2), and a positive, monotone increasing function l

such that

|Bu|2H ≤ k|v|2H + l
(|u|H){(ϕ(u)

)α
+ 1
} ∀[u,v]∈ ∂ϕ. (2.8)

Definition 2.4. For a given {ϕt : t ∈ [0,1]} ∈Φhom
C (H), denote by ��hom

1 ({ϕt}) the col-
lection of families {Bt : t ∈ [0,1]} of mappings in ��1 which satisfy the following con-
ditions:

(A.2)h if tn→ t, [un,vn]∈ ∂ϕtn , un→ u strongly, vn⇀ v weakly, and Btnun⇀ b weakly,
then b = Btu,

(A.3)h condition (A.3) is satisfied uniformly in t, that is, the constants k, α and the
function l can be chosen independently of t.



J. Kobayashi and M. Ôtani 985

Let ϕ∈ΦC(H) and B ∈��1(ϕ). We here sketch how to define the degree for ∂ϕ+B.
Since H is separable, there exists a sequence (Hi)i∈N of finite-dimensional subspaces

such that

H1 ⊂H2 ⊂ ··· ⊂Hi ⊂ ··· ,
⋃
i∈N

Hi

H

=H. (2.9)

For i∈N and λ > 0, we put Bi,λ := Pi ◦B ◦ Jλ, where Pi is the orthogonal projection from
H onto Hi. It easily follows from (A.C) that Jλ is a compact mapping and so is Bi,λ by (A.2)
and (A.3). Hence, ∂ϕλ +Bi,λ becomes a continuous mapping of class (S)+ (we identify H∗

with H). Suppose now 0 /∈ (∂ϕ+B)(∂HD), where D is a bounded open subset of H . Then,
degH(∂ϕ+B,D) is defined by

degH(∂ϕ+B,D) := deg(S)+

(
∂ϕλ +Bi,λ,D

)
(2.10)

for sufficiently small λ > 0 and for sufficiently large i∈N.
In the following, for a mapping M on H , we denote by Mi the Galerkin approximation

of M with respect to Hi:〈
Mi(u),v

〉
Hi
= (M(u),v

)
H ∀u∈D(M)∩Hi, ∀v ∈Hi. (2.11)

It then holds that for all u∈Hi,

Mi(u)= 0 in
(
Hi
)∗ ⇐⇒ PiM(u)= 0 in H. (2.12)

We also note that if i≥ j, then (Pj ◦M)i coincides with Mi. Therefore, by (2.3) (and the
fact mentioned below it) and by (2.10), we have

degH(∂ϕ+B,D)= d
((
∂ϕλ +B ◦ Jλ

)
i,D∩Hi

)
(2.13)

for sufficiently small λ > 0 and for sufficiently large i∈N.
Let H = L2(0,1). For p ∈ (1,∞), define ϕp : H → [0,+∞] by

ϕp(u) :=


∫ 1

0

∣∣u′(x)
∣∣p dx if u∈W

1,p
0 (0,1),

+∞ otherwise.
(2.14)

Then, it easily follows that ϕp ∈ΦC(H). Moreover, ∂ϕp(u) = −(|u′|p−2u′)′ in the sense
of distribution with the domain

D
(
∂ϕp)= {u∈W

1, p
0 (0,1) :

(|u′|p−2u′
)′ ∈H

}
. (2.15)

For p ∈ (1,∞) and µ∈R, define B
p
µ : L2(p−1)(0,1)∩H ⊂H →H by

B
p
µu :=−µ|u|p−2u. (2.16)

Then, B
p
µ ∈��1(ϕp) holds. Indeed, the verification of (A.1) is clear. The condition (A.2)

follows from the fact that B
p
µ is weakly-strongly continuous from W

1, p
0 (0,1) into H .
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As for the boundedness condition (A.3), by the Gagliardo-Nirenberg inequality, there ex-
ist C1 = C1(p) > 0, α∈ [0,2/3), and β ∈ (0,2(p− 1)] such that

∣∣Bp
µu
∣∣2
H ≤ µ2C1

{(
ϕp(u)

)α|u|βH} ∀u∈W
1,p
0 (0,1). (2.17)

Hence, (A.3) follows.

3. Proof of Theorem 1.1

In this section, let Vp and H denote W
1, p
0 (0,1) and L2(0,1), respectively. Then,

Vp ⊂H ≡H∗ ⊂V∗
p , (3.1)

where each injection is dense and compact. Let T
p
µ , ϕp, and B

p
µ be given in (1.3), (2.14),

and (2.16), respectively. It then follows from (2.15) and (2.17) that, for all u∈Vp,

T
p
µ (u)∈H ⇐⇒ u∈D

(
∂ϕp),

u∈D
(
∂ϕp)=⇒ T

p
µ (u)= ∂ϕp(u) +B

p
µ (u).

(3.2)

Moreover, there exists a sequence (Hi)i∈N of finite-dimensional subspaces which satisfies
(2.9) and

Hi ⊂D
(
∂ϕp)⊂Vp =D

(
ϕp
)⊂H ∀i∈N, ∀p ∈ (1,+∞) (3.3)

and

⋃
i∈N

Hi

VP =Vp. (3.4)

We also notice that for each L > 0, the level set {u ∈ H : ϕp(u) + |u|2H ≤ L} is bounded
in Vp.

Now, let p ∈ (1,∞) and µ �= µk(p) for all k ∈N. We are going to show

degH
(
∂ϕp +B

p
µ ,UH(0,r)

)= deg(S)+

(
T

p
µ ,UVp(0,ρ)

) ∀r,ρ > 0 (3.5)

by using the homotopy between the Galerkin approximations

(1− t)
(
∂ϕ

p
λ +B

p
µ ◦ Jλ

)
i + t

(
T
µ
p
)
i. (3.6)

In the following three lemmas, we drop p and µ for simplicity.

Lemma 3.1. Let r1 > 0 and r2 > 0 be such that UH(0,r1) ⊃ UV (0,r2)
V

. Then, there exists
i0 ∈N such that for all i≥ i0,

Ti(u) �= 0 ∀u∈Hi∩
(
UH
(
0,r1

) \UV
(
0,r2

)V)
. (3.7)
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Proof. Suppose that the assertion of the lemma was false. Then, we could find sequences
(in) and (un) such that in →∞, un ∈Hin , |un|H < r1, ‖un‖V ≥ r2, and Tin(un) = 0. Espe-
cially, we have

0= 〈Tin

(
un
)
,un
〉
Hi
= (∂ϕ(un)+B

(
un
)
,un
)
H , (3.8)

which implies

pϕ
(
un
)= (∂ϕ(un),un)H =−(B(un),un)H ≤ 1

2

∣∣B(un)∣∣2
H +

1
2

∣∣un∣∣2
H. (3.9)

Therefore, it follows from (2.17) that ϕ(un) is bounded as n→∞. Hence, ‖un‖V is bounded,
and so is ‖T(un)‖V∗ . Passing to subsequence if necessary, we may assume that un⇀ u
weakly in V . Then, taking a sequence (vn) such that vn ∈ Hn and vn → u strongly in V
(see (3.4)), we get

lim
n→∞

〈
T
(
un
)
,un−u

〉
V = lim

n→∞
〈
Tin

(
un
)
,un− vn

〉
Hi

+ lim
n→∞

〈
T
(
un
)
,vn−u

〉
V = 0. (3.10)

Since T is of class (S)+, it follows that un→ u strongly in V (and hence ‖u‖V ≥ r2). From
the continuity of T , we easily deduce T(u)= 0, which implies u= 0. Thus, we are led to a
contradiction. �

Let r,ρ > 0. By choosing r2 > 0 such thatUH(0,r)⊃UV (0,r2)
V

and applying the lemma
above and the excision property of degree, we deduce

deg(S)+

(
T ,UV (0,ρ)

)= deg(S)+

(
T ,UV

(
0,r2

))
= d

(
Ti,UV

(
0,r2

)∩Hi
)

= d
(
Ti,UH(0,r)∩Hi

) (3.11)

for large i∈N.

Lemma 3.2. Let r > 0. Then, there exists λ0 > 0 such that for all λ∈ (0,λ0),

(1− t)
(
∂ϕλ(u) +B

(
Jλu
))

+ tT(u) �= 0 ∀u∈V ∩ ∂HUH(0,r), ∀t ∈ [0,1]. (3.12)

Proof. Assuming the contrary, we could find sequences (λn), (un), and (tn) such that
|un|H = r, λn→ 0, tn→ t in [0,1] and

(
1− tn

){
∂ϕλn

(
un
)

+B
(
Jλnun

)}
+ tnT

(
un
)= 0. (3.13)

We have tn �= 0 since ∂ϕ(Jλu) +B(Jλu)= 0 and µ �= µk(p) imply u= 0. Therefore, T(un)∈
H , and hence, by (3.2),

(
1− tn

){
∂ϕλn

(
un
)

+B
(
Jλnun

)}
+ tn

{
∂ϕ
(
un
)

+B
(
un
)}= 0. (3.14)
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Multiplying this by un yields(
1− tn

)
ϕ
(
Jλnun

)
+ tnϕ

(
un
)

≤ (1− tn
)(
∂ϕλn

(
un
)
,un
)
H + tn

(
∂ϕ
(
un
)
,un
)
H

=−(1− tn
)(
B
(
Jλnun

)
,un
)
H − tn

(
B
(
un
)
,un
)
H

≤ 1
2

(
1− tn

)∣∣B(Jλnun)∣∣2
H +

1
2
tn
∣∣B(un)∣∣2

H +
∣∣un∣∣2

H.

(3.15)

By (2.17), this inequality implies that (1− tn)ϕ(Jλnun) and tnϕ(un) are bounded as n→∞.
Since ϕ(Jλnun) ≤ ϕ(un), it follows that ϕ(Jλnun) is also bounded. By (2.17) again,
|B(Jλnun)|2H and tn|B(un)|2H are bounded. Here, since

(
∂ϕλn

(
un
)
,∂ϕ
(
un
))

H ≥
∣∣∂ϕλn

(
un
)∣∣2

H ≥ 0 (3.16)

(cf. Brézis [1, Proposition 2.6]), multiplying (3.14) by ∂ϕλn
(un), we easily see that

|∂ϕλn
(un)|2H is bounded. Hence, by (3.14), the boundedness of tn|∂ϕ(un)|H is also de-

rived. Accordingly, we may assume that

Jλnun −→ u strongly in H ,

∂ϕλn

(
un
)= ∂ϕ

(
Jλnun

)
⇀ v weakly in H ,

B
(
Jλnun

)
⇀ b weakly in H

(3.17)

for some u,v,b ∈H . Then we have v = ∂ϕ(u) and b = B(u) by the demiclosedness of ∂ϕ
and by (A.2), respectively. Moreover, since |un− Jλnun|H = λn|∂ϕλn

(un)|H , we deduce that

un −→ u strongly in H (3.18)

(and hence |u|H = r).
If t �= 0, then |∂ϕ(un)|H and |B(un)|H are bounded. Therefore, by the same argument

as above, we conclude that (for some subsequence)

∂ϕ
(
un
)
⇀ ∂ϕ(u), B

(
un
)
⇀ B(u) weakly in H. (3.19)

Letting n→∞ in (3.14), we get ∂ϕ(u) +B(u) = 0, which implies u = 0. This contradicts
|u|H = r.

Suppose now t=0, that is, tn→0. Since tnϕ(un)= ϕ(t
1/p
n un) is bounded, so is t

1/p
n ‖un‖V .

Therefore, t
1/(p−1)
n un→ 0 strongly in V , and hence

tnT
(
un
)= T

(
t

1/(p−1)
n un

)−→ 0 strongly in V∗. (3.20)

Thus, similar to the case t �= 0, letting n→∞ in (3.13) leads to a contradiction. �

Lemma 3.3. Let r > 0, and let λ be fixed to satisfy (3.12). Then, there exists i0 = i0(λ)∈ N

such that for all i≥ i0

(1− t)
(
∂ϕλ(u) +B

(
Jλu
))

i + tTi(u) �= 0 ∀u∈Hi∩ ∂HUH(0,r), ∀t ∈ [0,1]. (3.21)
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Proof. If not, there exist sequences (in), (un), and (tn) such that in→∞, un ∈Hin , |un|H =
r, tn→ t in [0,1] and

(
1− tn

)(
∂ϕλ

(
un
)

+B
(
Jλnun

))
i + tnTin

(
un
)= 0. (3.22)

Since un ∈Hin ⊂D(∂ϕ), we have T(un)∈H . Therefore, by (2.12),

(
1− tn

)
Pin
{
∂ϕλ

(
un
)

+B
(
Jλun

)}
+ tnPin

{
∂ϕ
(
un
)

+B
(
un
)}= 0. (3.23)

Since |un|H = r and |∂ϕλ(un)|H ≤ |un|H/λ, we may assume that

un⇀ u weakly in H ,

∂ϕλ

(
un
)= ∂ϕ

(
Jλun

)
⇀ v∗ weakly in H ,

(3.24)

for some u,v∗ ∈H . Moreover, by the estimate

ϕ
(
Jλun

)≤ (∂ϕλ

(
un
)
,un
)≤ 1

λ

∣∣un∣∣2
H , (3.25)

we see that ϕ(Jλun) is bounded. We may assume that Jλun converges to some v weakly in
V and strongly in H . Then, by the demiclosedness of ∂ϕ, we have [v,v∗]∈ ∂ϕ. Moreover,
letting n→∞ in the equation un = Jλun + λ∂ϕλ(un), we get u= v+ λv∗. Therefore, by the
definition of Jλ and ∂ϕλ, we obtain v = Jλu and v∗ = ∂ϕλ(u). Thus,

Jλun⇀ Jλu weakly in V , (3.26)

∂ϕλ

(
un
)
⇀ ∂ϕλ(u) weakly in H. (3.27)

Moreover, since B is weakly-strongly continuous from V into H ,

B
(
Jλun

)−→ B
(
Jλu
)

strongly in H. (3.28)

On the other hand, by an argument similar to that of the proof of the previous lemma,
we deduce from (3.23) that tnϕ(un) and tn|B(un)|2H are bounded as n→∞. Hence, by
(3.23), we see that tn|Pin∂ϕ(un)|H is also bounded.

If t �= 0, then ϕ(un) is bounded. We may assume that

un −→ u weakly in V and strongly in H. (3.29)

Therefore, it follows that |u|H = r,

∥∥T(un)∥∥V∗ (3.30)

is bounded,

B
(
un
)−→ B(u) strongly in H. (3.31)
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Take a sequence (wn) such that wn ∈Hin and wn→ u strongly in V . Then,

t limsup
n→∞

〈
T
(
un
)
,un−u

〉
V

= limsup
n→∞

〈
tnTin

(
un
)
,un−wn

〉
V

=− liminf
n→∞

(
1− tn

)(
∂ϕλ

(
un
)

+B
(
Jλun

)
,un−wn

)
H

= 0.

(3.32)

Since T is of class (S)+, it follows that un → u strongly in V , and hence T(un)→ T(u)
strongly in V∗.

We are going to show that PinT(un)⇀ T(u) weakly in V∗. Let w be arbitrarily taken
in V . Take a sequence (wn) such that wn ∈Hin and wn→w strongly in V . Then, noticing
that |Pin∂ϕ(un)|H is bounded, we get

lim
n→∞

〈
PinT

(
un
)
,w
〉
V

= lim
n→∞

(
Pin
(
∂ϕ
(
un
)

+B
(
un
))

,w−wn
)
H + lim

n→∞
(
T
(
un
)
,Pinwn

)
H

= lim
n→∞

〈
T
(
un
)
,wn

〉
V

= 〈T(u),w
〉
V ,

(3.33)

which implies PinT(un)⇀ T(u) weakly in V∗. Thus, letting n→∞ in (3.23), we obtain

(1− t)
(
∂ϕλ(u) +B

(
Jλu
))

+ tT(u)= 0, (3.34)

which contradicts (3.12) since |u|H = r.
Now let t = 0, that is, tn→ 0. Then, since tn|B(un)|2H is bounded,

tnB
(
un
)−→ 0 strongly in H. (3.35)

Moreover, combining the same argument as in the proof of the previous lemma and the
same one as above, we get

tnPin∂ϕ
(
un
)
⇀ 0 weakly in V∗. (3.36)

Since, tn|Pin∂ϕ(un)|H is bounded, we obtain

tnPin∂ϕ
(
un
)
⇀ 0 weakly in H. (3.37)

Thus, letting n→∞ in (3.23), we obtain

∂ϕλ(u) +B
(
Jλu
)= 0, (3.38)

which implies u= 0.
We are going to show that un→ u strongly in H (and therefore |u|H = r), which leads

to a contradiction.
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By (3.28) and (3.35),

lim
n→∞

((
1− tn

)
PinB

(
Jλun

)
+ tnPinB

(
un
)
,un−u

)
H = 0. (3.39)

Therefore, noticing that Pinu→ u strongly in H , we get

limsup
n→∞

(
∂ϕλ

(
un
)
,un−u

)
H

= limsup
n→∞

(
∂ϕλ

(
un
)
,Pinun−Pinu

)
H + lim

n→∞
(
∂ϕλ

(
un
)
,Pinu−u

)
H

= limsup
n→∞

((
1− tn

)
Pin∂ϕλ

(
un
)
,un−u

)
H

=− liminf
n→∞

(
tnPin∂ϕ

(
un
)
,un−u

)
H

=− liminf
n→∞ tn pϕ

(
un
)

+ lim
n→∞

(
tnPin∂ϕ

(
un
)
,u
)
H

≤ 0.

(3.40)

Since ∂ϕλ is of class (S)+ in H , we conclude that un→ u strongly in H .
We have thus proved the lemma. �

Let λ > 0 be so small and i∈N be so large that (3.21) is satisfied. Then, by (2.13) and
by the homotopy invariance of the Brouwer degree, we have

degH
(
∂ϕp +B

p
µ ,UH(0,r)

)= d
((
∂ϕ

p
λ +B

p
µ ◦ Jλ

)
i,UH(0,r)∩Hi

)
= d

((
T

p
µ
)
i,UH(0,r)∩Hi

)
.

(3.41)

Combining this equality and (3.11), we deduce (3.5).
In order to employ the homotopy invariance of degH(·,·) along p, we need the follow-

ing lemma.

Lemma 3.4. Let 1 < p1 < p2 <∞. Then, {ϕp : p ∈ [p1, p2]} belongs to Φhom
C (H).

Proof. It is obvious that {ϕp} satisfies (A.C)h in Definition 2.2. We are going to show that
{ϕp} also satisfies (A.P)h.

Let pn→ p in [p1, p2] and [u,v]∈ ∂ϕp, that is,

−(|u′|p−2u′
)′ = v(x), x ∈ (0,1), u(0)= u(1)= 0. (3.42)

For each n∈N, we consider the following problem:

∂ϕp(un)+
1
n

{
∂ϕp1

(
un
)

+ ∂ϕp2
(
un
)}= v. (3.43)

Noticing that ∂ϕq(u)= (q− 1)|u′|q−2u′′ for all u∈D(∂ϕq), we can easily see that

(
∂ϕr(u),∂ϕq(u)

)
H ≥ 0 ∀u∈D

(
∂ϕr)∩D

(
∂ϕq), ∀r,q ∈ (1,∞). (3.44)

Hence, ∂ϕp + (∂ϕp1 + ∂ϕp2 )/n becomes a maximal monotone and coercive operator in
H , so (3.43) admits a unique solution un ∈ D(∂ϕp)∩D(∂ϕp1 )∩D(∂ϕp2 ). Furthermore,
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since

∣∣∣∣u′n∣∣q−2
u′′n
∣∣≤ ∣∣∣∣u′n∣∣p1−2

u′′n
∣∣+

∣∣∣∣u′n∣∣p2−2
u′′n
∣∣ ∀q ∈ [p1, p2

]
, (3.45)

we find that un ∈ D(∂ϕp1 )∩D(∂ϕp2 ) ⊂ D(∂ϕq) for all q ∈ [p1, p2], in particular, un ∈
D(∂ϕpn). Multiplying (3.43) by un, we get the a priori bounds for |un|H , ϕp(un), ϕp1 (un)/n,
and ϕp2 (un)/n. Furthermore, multiplying (3.43) by ∂ϕp(un), we can deduce the a priori
bound for |∂ϕp(un)|2H . Hence, it follows from (3.43) the a priori bounds for |∂ϕp1 (un)|H/n
and |∂ϕp2 (un)|H/n. Therefore, there exists a subsequence of (un) denoted again by (un)
such that

un −→ û strongly in H ,

∂ϕp

(
un
)
⇀ ∂ϕp(û) weakly in H ,

∂ϕp1

(
un
)

n
−→ 0 strongly in V∗

p1
, and weakly in H ,

∂ϕp2

(
un
)

n
−→ 0 strongly in V∗

p2
, and weakly in H.

(3.46)

Hence, û should satisfy ∂ϕp(û) = v, which implies û = u. Thus, (A.P)h is verified with
un = un and vn ≡ v. �

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let p ∈ (1,∞), µ ∈ (µk(p), µk+1(p)), and r, ρ > 0. Then, since the
function q �→µk(q) is continuous by (1.2), there exists a continuous function ν : (1,∞)→R

such that

µk(q) < ν(q) < µk+1(q) ∀q ∈ (1,∞), ν(p)= µ. (3.47)

We are going to show that

degH
(
∂ϕp +B

p
ν(p),UH(0,r)

)= degH
(
∂ϕ2 +B2

ν(2),UH(0,r)
)
. (3.48)

Put p1=min{2, p} and p2=max{2, p}. Then, {Bq
µ(q) : q∈[p1, p2]} belongs to ��hom

1 ({ϕq :

q ∈ [p1, p2]}). Indeed, the condition (A.2)h in Definition 2.4 follows from the continuity
of ν(·). Moreover, the constant C1 in (2.17) can be chosen independently of q ∈ [p1, p2],
and hence (A.3)h is satisfied. Therefore, noticing that ∂ϕq(u) +B

q
ν(q)(u)= 0 has only trivial

solution, we deduce (3.48) from the homotopy invariance of degH(·,·). By (3.5) and
(3.48), we get

deg(S)+

(
T

p
µ ,UVp(0,ρ)

)= degH
(
∂ϕp +B

p
ν(p),UH(0,r)

)
= degH

(
∂ϕ2 +B2

ν(2),UH(0,r)
)

= deg(S)+

(
T2

ν(2),UV2 (0,ρ)
)
.

(3.49)

It is shown in the proof of [6, Proposition 4.2] that the last equation is equal to (−1)k.
We have thus completed the proof of Theorem 1.1. �
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Corollary 3.5. Let µ∈ (µk(p),µk+1(p)) for some k ∈N∪{0}. Then,

degH
(
∂ϕp +B

p
µ ,UH(0,r)

)= (−1)k ∀r > 0, ∀p ∈ (1,∞). (3.50)

4. Application

Consider the following variational inequality:
Find

u∈ K :
∫ 1

0

∣∣u′(x)
∣∣p−2

u′(x)
(
v′(x)−u′(x)

)
dx

≥
∫ 1

0
f
(
x,u(x)

)(
v(x)−u(x)

)
dx ∀v ∈ K ,

(4.1)

where 1 < p <∞, f : (0,1)×R→R is a Carathéodory function and

K = {v ∈W
1,p
0 (0,1) :

∣∣v′(x)
∣∣≤ C a.e. in Ω

}
(4.2)

for some C > 0. In [11], the higher-dimensional version of (4.1) is considered, where the
multiple existence of solutions is shown under the condition that limτ→0 f (x,τ)/|τ|p−2τ
lies between the first and the second eigenvalues of p-Laplacian in a sense.

As for the one-dimensional case, we have the following theorem.

Theorem 4.1. Suppose that f satisfies the following conditions:

(i) for each r > 0, there exists a function ρr ∈ L1(Ω) such that

∣∣ f (x,τ)
∣∣≤ ρr(x) a.e. x ∈ (0,1), ∀τ ∈R with |τ| ≤ r, (4.3)

(ii) it holds that for some k ≥ 1,

µk(p)≤�≡ lim
τ→0

f (x,τ)
|τ|p−2τ

≤�≡ µk+1(p) a.e. x ∈ (0,1). (4.4)

Then, the variational inequality (4.1) has at least three solutions.

Proof. Since a proof is quite similar to that of [11, Theorem 4.1], we only give an outline
of it. We employ the degree for (S)+-mappings with maximal monotone perturbations.
It will be also denoted by deg(S)+

(·,·).
Since K forms a bounded subset of L∞(0,1), we may assume that

∣∣ f (x,τ)
∣∣≤ ρ(x) a.e. x ∈ (0,1), ∀τ ∈R, (4.5)

for some ρ ∈ L1(0,1) by cutting off the function f with respect to the second variable.

Set V =W
1,p
0 (0,1), and define the mapping S

p
f : V →V∗ by

〈
S
p
f (u),v

〉
V =

∫ 1

0
|u′|p−2u′v′dx−

∫ 1

0
f (x,u)vdx u,v ∈V. (4.6)
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Then, S
p
f becomes of class (S)+ since, by (4.5), the mapping u �→ f (·,u) is compact fromV

into V∗. Hence, the variational inequality (4.1) can be reduced to the following abstract
equation in V∗:

S
p
f (u) + ∂VIK (u)� 0, (4.7)

where IK is the indicator function of K and ∂VIK : V → V∗ is its subdifferential in V .
Moreover, u is a solution of (4.7) if and only if it is a critical point of the functional
Ψ+ IK , where

Ψ(u)= 1
p

∫ 1

0
|u′|p dx−

∫ 1

0

∫ u(x)

0
f (x,τ)dτdx, u∈V. (4.8)

We proceed to find three solutions of (4.7). The first solution is u= 0 since f (x,0)= 0
by (4.4). The second one is the global minimizer of Ψ+ IK . Indeed, Ψ+ IK is bounded
below by (4.5), and its infimum is achieved by some u0 ∈ K sinceK is bounded andΨ+ IK
is weakly lower semicontinuous. Moreover, it easily follows from (4.4) that Ψ(u0) < 0 =
Ψ(0), which implies u0 �= 0.

We may assume that u0 is an isolated solution for (4.7), otherwise the assertion of the
theorem holds. Therefore, by [11, Theorem 3.13], we get

deg(S)+

(
S
p
f + ∂VIK ,UV

(
u0,r

))= 1 (4.9)

for small r > 0. Noticing the fact that K is bounded, we also have

deg(S)+

(
S
p
f + ∂VIK ,UV (0,R)

)
= 1 (4.10)

for large R > 0. Moreover, from (4.4), we can derive

deg(S)+

(
S
p
f + ∂VIK ,UV (0,r)

)= deg(S)+

(
T

p
µ ,UV (0,r)

)
(4.11)

for small r > 0 and for any µ ∈ (µk(p),µk+1(p)) (use [3, Proposition 5.1] instead of [11,
Lemma 4.2]). Therefore, by Theorem 1.1, we get

deg(S)+

(
S
p
f + ∂VIK ,UV (0,r)

)
= (−1)k (4.12)

for small r > 0. Finally, by (4.9), (4.10), and (4.12), we have

deg(S)+

(
S
p
f + ∂VIK ,UV (0,R) \UV

(
u0,r

)∪UV (0,r)
)

= 1− 1− (−1)k �= 0,
(4.13)

which assures the existence of the third solution. �
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