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Let u be a given bounded uniformly continuous mild solution of a higher-order abstract
functional differential equation of delay or advance type. We give a so-called Massera-
type criterion for the existence of a mild solution, which is a “spectral component” of u
with spectrum similar to the one of the forcing term f . Various spectral criteria for the
existence of almost periodic and quasiperiodic mild solutions are given.

1. Introduction

The asymptotic behavior of solutions of differential equations in Banach spaces has been
extensively studied since the last two decades. One of the interesting topics in this study
is to find conditions for the existence of almost periodic solutions. We refer the reader to
[1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] for more information.

The equation which we consider in this paper is of the form

A0u(t) +
n∑
k=1

Aku
(k)(t) +

m∑
l=0

∫ b
a
dBl(η)u(l)(t+η)= f (t), t ∈R, (1.1)

where A0 is a closed linear operator acting on a Banach space X; Ak ∈ L(X), for all
k= 1, . . . ,n; Bl ∈ BV([a,b],L(X)), for all l = 0, . . . ,m; f is an X-valued almost periodic
function on R.

The problem with which we are concerned is to find (spectral) conditions for the exis-
tence of an almost periodic mild solution of (1.1) with the same structure of spectrum as
the one of f . Such conditions are commonly referred to as Massera-type criteria for the
existence of solutions with special structure of spectrum (see, e.g., [7, 9, 16]).

There have been several methods so far to deal with this problem for different kinds of
equations. Our method of study is to use the one in [9] combined with the notion of al-
most periodic spectrum of bounded functions. As a result, we obtain a new Massera-type
criterion for the existence of almost periodic mild solutions (see Corollary 3.7) which
improves several known ones in [4, 7, 9].
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2. Preliminaries

2.1. Notation. Throughout the paper, R, C, X stand for the sets of real, complex num-
bers, and a complex Banach space, respectively; L(X), BC(R,X), BUC(R,X), AP(X) de-
note the spaces of linear bounded operators on X, all X-valued bounded continuous,
bounded uniformly continuous, and almost periodic functions in Bohr’s sense (see [6,
page 4]) with sup-norm, respectively; � denotes the Schwartz space of all functions
ϕ∈ C∞(R) such that each derivative of ϕ decays faster than any polynomial. By BV([a,b],
L(X)), we denote the space of all functions from [a,b] into L(X) which are of bounded
variation. For a linear operatorA, we denote byD(A), σ(A) the domain and the spectrum
of A. Let (S(t))t∈R be the translation group on BUC(R,X) given by

(
S(t)u

)
(s) := u(t+ s), ∀s, t ∈R, ∀u∈ BUC(R,X), (2.1)

whose infinitesimal generator is � := d/dt, defined on D(�) := BUC1(R,X) which con-
sists of all functions f ∈ BUC(R,X) such that the derivative f ′ exists as an element of
BUC(R,X). Similarly, we define the space BUCk(R,X) for every natural number k.

2.2. Spectral theory of functions. In this paper, sp(u) stands for the Beurling spectrum
of a given bounded uniformly continuous function u, which is defined by

sp(u) := {ξ ∈R :∀ε > 0, ∃ϕ∈ L1(R) : supp ϕ̃⊂ (ξ − ε,ξ + ε), ϕ∗u �= 0
}

, (2.2)

where

ϕ̃(s) :=
∫∞
−∞

e− ist f (t)dt, ϕ∗u(s) :=
∫∞
−∞

ϕ(s− t)u(t)dt. (2.3)

In the case of u∈ BUC(R,X), the Beurling spectrum coincides with the Carleman spec-
trum which consists of all ξ ∈R such that the Carleman-Fourier transform of u, defined
by

û(λ) :=



∫∞
0
e−λtu(t)dt (Reλ > 0),

−
∫∞

0
eλtu(−t)dt (Reλ < 0),

(2.4)

has no holomorphic extension to any neighborhood of iξ (see [11, Proposition 0.5, page
22]). In turn, the Beurling spectrum of u coincides with its Arveson spectrum, defined by
(see [1, Section 2])

isp(u)= σ(�u
)
, (2.5)

where �u is the infinitesimal generator of the restriction of the translation group
(S(t)|�u)t∈R to the closed subspace �u := span{S(τ)u,τ ∈R}.
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Below we list some properties of the spectra of functions which we will need in the
sequel.

Proposition 2.1. Let u,un,v ∈ BUC(R,X) such that limn→∞‖un − u‖ = 0, ψ ∈ �, and
Λ⊂R. Then

(i) sp(u) is closed;
(ii) sp(u+ v)⊂ sp(u)∪ sp(v);

(iii) sp(ψ∗u)⊂ sp(u)∩ supp ψ̃;
(iv) sp(u−ψ∗u)⊂ sp(u)∩ supp(1− ψ̃);
(v) if ψ̃ ≡ 1 on a neighbourhood of sp(u) then ψ∗u= u;

(vi) if sp(u)∩ supp ψ̃ =∅, then ψ∗u= 0;
(vii) if sp

(
un
)⊂Λ, for all n, then sp(u)⊂Λ;

(viii) if sp(u) is countable, and X does not contain any subspace which is isomorphic to the
space of numerical null-sequences c0, then u is almost periodic;

(ix) if u is uniformly continuous and sp(u) is discrete, then u is almost periodic.

Proof. We refer the reader to [11, Propositions 0.4, 0.6, Theorem 0.8, pages 20–25] and
[6, Chapter 6] for the proofs of (i)–(viii) and [3] for (ix). �

Remark 2.2. The condition X �⊃ c0 in Proposition 2.1 (viii) can be replaced by one of the
following conditions:

(a) u(R) is relatively weakly compact in X;
(b) u is totally ergodic, that is, the limit

Mηu= lim
τ→∞

1
2τ

∫ τ
−τ
eiηsS(s)uds (2.6)

exists in BUC(R,X), for all η ∈R.

For more information, we refer the reader to [6, page 92], [1, Section 3], and [15].

Now we recall that the almost periodic spectrum of a bounded uniformly continuous
function u, (which will be called AP-spectrum for the sake of simplicity) is defined by

spAP(u) := {ξ ∈R :∀ε > 0, ∃ϕ∈ L1(R) : supp ϕ̃⊂ (ξ − ε,ξ + ε), ϕ∗u /∈ AP(X)
}
.

(2.7)

To proceed, we recall some known facts in [1] about the notion of AP-spectrum. Let
Y := BUC(R,X)/AP(X) and let π : BUC(R,X)→ Y be the quotient map. Since AP(X)
is invariant with respect to the group (S(t))t∈R, (S(t))t∈R induces a strongly continuous
group on Y , denoted by (S̄(t))t∈R, which is defined by the formula

S̄(t)π(u) := π(S(t)u
)
, ∀t ∈R, ∀u∈ BUC(R,X). (2.8)

Let �̃ denote the infinitesimal generator of the group (S̄(t))t∈R (see [2]).
Similarly to the Beurling spectrum of a function u, its AP-spectrum coincides with the

Arveson spectrum of π(u), that is,

ispAP(u)= σ(�̃π(u)
)
, (2.9)



884 Massera-type criterion

where �̃π(u) is the infinitesimal generator of the restriction of the translation group
(S̄(t)|�π(u) )t∈R to the subspace �π(u) := span{S̄(τ)π(u),τ ∈R} (see [1] for details).

To verify when a point belongs to spAP(u), we may use [1, Section 2, Lemma 2.2],
which can be stated in our terminology as follows.

Lemma 2.3. Let π(u) ∈ Y and η ∈ R. Assume that R(λ,�̃)π(u)(Reλ > 0) has a holomor-
phic extension to a neighborhood of iη. Then iη /∈ σ(�̃π(u)), and equivalently η /∈ spAP(u).

We list below some main properties of AP-spectra of functions.

Proposition 2.4. Let u,v,un ∈ BUC(R,X) such that limn→∞‖un−u‖ = 0, ψ ∈�, and Λ
is a subset of R. Then

(i) spAP(u+ v)⊂ spAP(u)∪ spAP(v);
(ii) spAP(ψ∗u)⊂ spAP(u)∩ supp ψ̃;

(iii) spAP(u−ψ∗u)⊂ spAP(u)∩ supp(1− ψ̃);
(iv) if spAP

(
un
)⊂Λ, for all n, then spAP(u)⊂Λ;

(v) if spAP(u) is countable, and X does not contain c0, then u is almost periodic.

Proof. (i)-(ii) Using two basic properties of almost periodic functions: u+ v ∈ AP(X) and
ψ ∗ u ∈ AP(X) whenever u,v∈AP(X), ψ ∈ �, from the definition of AP-spectrum, we
can verify that (i) holds and

spAP(ψ∗u)⊂ spAP(u). (2.10)

It remains to prove that spAP(ψ∗u)⊂ supp ψ̃. In fact, by Proposition 2.1(iii), we have

spAP(ψ∗u)⊂ sp(ψ∗u)⊂ supp ψ̃, (2.11)

thus proving (ii).
(iii) By Proposition 2.1(iv), Proposition 2.4(i), and (2.10), we have

spAP(u−ψ∗u)⊂ spAP(u)∪ spAP(ψ∗u)⊂ spAP(u),

spAP(u−ψ∗u)⊂ sp(u−ψ∗u)⊂ supp(1− ψ̃).
(2.12)

Hence, spAP(u−ψ∗u)⊂ spAP(u)∩ supp(1− ψ̃).
(iv) First, we will prove that spAP( f )⊂ Λ if and only if ϕ∗ f ∈ AP(X) whenever ϕ∈

L1(R) and supp ϕ̃∩Λ=�. In fact, in what follows, we prove the “if” and “only if” parts.
“If” part. Suppose ξ /∈ Λ. Then, we show that ξ /∈ spAP( f ). Since ξ /∈ Λ, there exists

ε > 0 such that (ξ − ε,ξ + ε)∩Λ=�. Therefore, by the assumption that for all ϕ∈ L1(R)
such that supp ϕ̃⊂ (ξ − ε,ξ + ε), we have ϕ∗ f /∈ AP(X), we get ξ /∈ spAP( f ). This proves
the “if” part.

“Only if” part. Suppose that spAP( f )⊂Λ. We now show that for all ϕ∈L1(R) : supp ϕ̃
⊂ (ξ−ε,ξ + ε), ϕ∗ f ∈ AP(X). Indeed, we have

spAP(ϕ∗ f )⊂ spAP( f )∩ supp ϕ̃⊂Λ∩ supp ϕ̃=�. (2.13)

Hence, ϕ∗ f ∈ AP(X).
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Now we prove (iv). From the above claim and by assumption, we have ϕ∗un ∈ AP(X)
whenever ϕ∈ L1(R) and supp ϕ̃∩ Λ̄=�. On the other hand, since limn→∞‖un−u‖ = 0,
it follows that

AP(X)� ϕ∗un −→ ϕ∗u, (2.14)

as n→∞. Therefore, as AP(X) is closed, ϕ∗u∈ AP(X), that is, spAP(u)⊂ Λ̄.
(v) For the proof, the reader is referred to [6, page 92]. �

Remark 2.5. In analogy to Remark 2.2, we can replace the condition X �⊃ c0 in Proposition
2.4(v) by one of conditions (a) or (b) in Remark 2.2. We refer the reader to [6, page 92],
[1, Section 3], and [15] for more information.

Definition 2.6. A function u ∈ BUC(R,X) is called a strong solution of (1.1) if u(t) ∈
D(A0), for all t ∈ R and u ∈ BUCk(R,X), with k = max(m,n) and (1.1) holds for all
t ∈R.

A function u∈ BUC(R,X) is a mild solution on R of (1.1), if, for each ψ ∈ L1(R) such
that its Fourier transform ψ̃ has compact support, the function ψ∗u is a strong solution
of (1.1) with f replaced by ψ ∗ f .

Remark 2.7. (i) By the superposition principle, if u is a mild solution of (1.1) and ψ ∈
L1(R) has supp ψ̃ compact, then u−ψ∗u is also a mild solution of (1.1) with f replaced
by f −ψ∗ f .

(ii) In the case whereA0 generates a strongly continuous semigroup of linear operators
and A1 = −I , n = 1, m = 0, the above-defined notion of mild solutions coincides with
the usual one of mild solutions to inhomogeneous linear evolution equations, that is,
bounded continuous solutions to the integral equation

u(t)= T(t− s)u(s) +
∫ t
s
T(t− ξ) f (ξ)dξ, ∀t ≥ s; t,s∈R, (2.15)

where (T(t))t≥0 is the semigroup generated by A0. In the light of this, the above-defined
notion of mild solutions can be regarded as a generalization of the usual one. There are
several generalizations which can be found in [8, 10, 11].

3. Main results

We begin this section with the notion of spectrum of (1.1), which is described as follows.

Definition 3.1. For every λ∈C, define an operator

R(λ) :=A0 +
n∑
k=1

λkAk +
m∑
l=0

λl
∫ b
a
eληdBl(η) (3.1)
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on X with D(R(λ))=D(A0), which is called a spectral operator of (1.1). The set

Σ := {λ∈C : R(λ) is not invertible
}

(3.2)

is called the spectrum of (1.1).

In the case where (1.1) is of the form ẋ = A0x− f , here A0 is a linear closed operator,
the spectral operator and the spectrum of (1.1), respectively, are

R(λ)= λ−A0, Σ= σ(A0
)
. (3.3)

As is well known, Σ is a closed subset of C and R−1(λ) is a holomorphic function from
C\σ(A0) to L(X). It is natural to ask if these properties hold true in the general case. The
following lemma gives an answer to this question.

Lemma 3.2. Let A0 be a linear closed operator on X, Ak ∈ L(X), for all k = 1, . . . ,n, and
Bl ∈ BV([a,b],L(X)), for all l = 0, . . . ,m. Then

(i) Σ is a closed set;
(ii) R−1 : C\Σ→ L(X) is a holomorphic function.

Proof. (i) To prove the closedness of Σ, we will show that C\Σ is open. For every λ0 ∈
C\Σ, the operator R−1(λ0) exists as an element of L(X). Since A0 is closed, R−1(λ0) is a
bounded operator by the closed graph theorem.

Setting

G(λ) :=
n∑
k=1

λkAk +
m∑
l=0

λl
∫ b
a
eληdBl(η), (3.4)

we have

R(λ)R−1(λ0
)= I +

[
R(λ)−R(λ0

)]
R−1(λ0

)= I +
[
G(λ)−G(λ0

)]
R−1(λ0

)
. (3.5)

It is easily seen that [G(λ)−G(λ0)]R−1(λ0)∈ L(X), for all λ∈ C. Moreover, we have the
estimate

∥∥[G(λ)−G(λ0
)]
R−1(λ0

)∥∥≤M∥∥G(λ)−G(λ0
)∥∥

=M
∥∥∥∥∥

n∑
k=1

(
λk − λk0

)
Ak +

m∑
l=0

∫ b
a

(
λleλη− λl0eλ0η

)
dBl(η)

∥∥∥∥∥
≤M

n∑
k=1

∣∣λk − λk0∣∣∥∥Ak∥∥+M
m∑
l=0

∫ b
a

∣∣λleλη− λl0eλ0η
∣∣dVl(η),

(3.6)
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where M := ‖R−1(λ0)‖; Vl(η) := Var
η
a[Bl] is the variation of Bl on the interval [a,η]. It

follows that there exists a neighborhoodUλ0 of λ0 such that ‖[G(λ)−G(λ0)]R−1(λ0)‖ < 1,
for all λ∈Uλ0 . This shows that there exists the bounded inverse operator[

I +
[
G(λ)−G(λ0

)]
R−1(λ0

)]−1
, ∀λ∈Uλ0 ; (3.7)

and hence, R−1(λ) exists in Uλ0 and is given by the following formula:

R−1(λ)= R−1(λ0
)[
I +
[
G(λ)−G(λ0

)]
R−1(λ0

)]−1
. (3.8)

By the definition of Σ, we have Uλ0 ⊂C\Σ, so C\Σ is an open subset of C. This completes
the proof of (i).

(ii) Assume that λ0 ∈C\Σ. By (i), we have proved

R−1(λ)= R−1(λ0
)[
I +
[
G(λ)−G(λ0

)]
R−1(λ0

)]−1
, ∀λ∈Uλ0 . (3.9)

It may be noted that G(λ) is holomorphic on the whole complex plane. Therefore, R−1 :
C\Σ→ L(X) is a holomorphic function. �

Set

Λ := {ξ ∈R : R(iξ) is not invertible
}
. (3.10)

We are going to estimate the spectra of a bounded mild solution of (1.1) which will play
an important role in proving the main results of the paper.

Lemma 3.3. Assume that A0 is a linear closed operator on X, Ak ∈ L(X), for all k = 1, . . . ,n,
and Bl ∈ BV([a,b],L(X)), for all l = 0, . . . ,m. Let u∈ BUC(R,X) be a mild solution of (1.1).
Then

(i) sp(u)⊂Λ∪ sp( f );
(ii) spAP(u)⊂Λ if f ∈ AP(X).

Proof. We first prove that if (i) and (ii) hold for every strong solution, then so do they for
any mild solution. In fact, let u∈ BUC(R,X) be a mild solution of (1.1). Let Kn ∈ L1(R)
be a sequence of functions such that

(i) supp K̃n = [−n,n];
(ii) for every g ∈ BUC(R,X), if we set gn = g ∗Kn, then limn→∞ gn = g.

We refer the reader to [6, pages 87-88] for the construction of such a sequence of func-
tions Kn. Since u∈ BUC(R,X) is a mild solution of (1.1), it follows that Kn∗u is a strong
solution of (1.1) with f replaced by Kn∗ f . By the assumption that (i) holds for strong
solutions, we have

sp
(
Kn∗u

)⊂Λ∪ sp
(
Kn∗ f

)
⊂Λ∪ (sp( f )∩ supp K̃n

)
⊂Λ∪ sp( f ), ∀n= 1,2, . . . .

(3.11)

This shows that (i) holds for any mild solution.
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Now, assuming that (ii) holds for strong solutions, we show that so does (ii) for mild
solutions. By definition, it suffices to show that Kn∗ f ∈ AP(X). But this is obvious be-
cause Kn ∈ L1(R) and f is an almost periodic function. Thus,

spAP

(
Kn∗u

)⊂Λ, ∀n= 1,2, . . . . (3.12)

Since Kn∗u converges uniformly to u and by Propositions 2.1(iv) and 2.4(i), we have

sp(u)⊂Λ∪ sp( f ), spAP(u)⊂Λ, (3.13)

which proves our claim.
Now, it remains to prove (i) and (ii) for strong solutions.
(i) Suppose that u is a strong solution of (1.1). For a fixed η ∈ R, let v(t) := u(t + η),

bl(t) := ∫ ba dBl(η)u(l)(t + η), for all l = 0, . . . ,m, t ∈ R. Since u is a strong solution, it fol-
lows that u(k), k = 0, . . . ,n, and v(l),bl, l = 0, . . . ,m, are bounded functions. Therefore, their
Fourier-Carleman transforms exist and can be easily computed. In fact, by induction, we
have

û(k)(λ)= λkû(λ)−
k−1∑
j=0

λju(k− j−1)(0), ∀k = 1, . . . ,n. (3.14)

Similarly,

v̂(l)(λ)= λlv̂(λ)−
l−1∑
j=0

λjv(l− j−1)(0)

= λleλη
(
û(λ)−

∫ η
0
e−λtu(t)dt

)
−

l−1∑
j=0

λju(l− j−1)(η), ∀l = 1, . . . ,m.

(3.15)

Now, we compute the Fourier-Carleman transforms of bl, for all l=0, . . . ,m. For Reλ>0,

b̂l(λ)=
∫∞

0
e−λt

(∫ b
a
dBl(η)u(l)(t+η)

)
dt

=
∫ b
a
dBl(η)

(∫∞
0
e−λtu(l)(t+η)dt

)
=
∫ b
a
dBl(η)v̂(l)(λ), ∀l = 1, . . . ,m,

(3.16)

and for Reλ < 0,

b̂l(λ)=−
∫∞

0
eλt
(∫ b

a
dBl(η)u(l)(−t+η)

)
dt

=−
∫ b
a
dBl(η)

(∫∞
0
eλtu(l)(−t+η)dt

)
=
∫ b
a
dBl(η)v̂(l)(λ), ∀l = 1, . . . ,m.

(3.17)
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Finally, for Reλ �= 0,

b̂l(λ)=
∫ b
a
dBl(η)v̂(l)(λ)

= λl
∫ b
a
eληdBl(η)û(λ)− λl

∫ b
a
dBl(η)

(
eλη
∫ η

0
e−λtu(t)dt

)

−
l−1∑
j=0

λj
∫ b
a
eληdBl(η)u(l− j−1)(η), ∀l = 1, . . . ,m.

(3.18)

In the case of l = 0,

b̂0(λ)=
∫ b
a
eληdB0(η)û(λ)−

∫ b
a
dB0(η)

(
eλη
∫ η

0
e−λtu(t)dt

)
. (3.19)

Taking Fourier-Carleman transform in (1.1), by (3.14), (3.15), (3.18), (3.19), we see that
û(λ)∈D(A0), for all λ∈C, and

A0û(λ) +
n∑
k=1

Ak

[
λkû(λ)−

k−1∑
j=0

λju(k− j−1)(0)

]

+
[∫ b

a
eληdB0(η)û(λ)−

∫ b
a
dB0(η)

(
eλη
∫ η

0
e−λtu(t)dt

)]
+

m∑
l=1

[
λl
∫ b
a
eληdBl(η)û(λ)− λl

∫ b
a
dBl(η)

(
eλη
∫ η

0
e−λtu(t)dt

)

−
l−1∑
j=0

λj
∫ b
a
eληdBl(η)u(l− j−1)(η)

]
= f̂ (λ).

(3.20)

Therefore,[
A0 +

n∑
k=1

λkAk +
m∑
l=0

λl
∫ b
a
eληdBl(η)

]
û(λ)−

m∑
l=0

λl
∫ b
a
dBl(η)

(
eλη
∫ η

0
e−λtu(t)dt

)

−
n∑
k=1

k−1∑
j=0

λju(k− j−1)(0)−
m∑
l=1

l−1∑
j=0

λj
∫ b
a
eληdBl(η)u(l− j−1)(η)= f̂ (λ).

(3.21)

Finally, we arrive at

R(λ)û(λ)− p(λ)= f̂ (λ), (3.22)

where

p(λ) :=
m∑
l=0

λl
∫ b
a
dBl(η)

(
eλη
∫ η

0
e−λtu(t)dt

)

+
n∑
k=1

k−1∑
j=0

λjAku
(k− j−1)(0) +

m∑
l=1

l−1∑
j=0

λj
∫ b
a
eληdBl(η)u(l− j−1)(η).

(3.23)



890 Massera-type criterion

Take ξ0 ∈R such that ξ0 /∈ (Λ∪ sp( f )), that is, ξ0 /∈Λ and ξ0 /∈ sp( f ). Since ξ0 /∈Λ, by
Lemma 3.2, it follows that R−1(λ) exists and is a holomorpic function in a neighborhood
of iξ0. Thus,

û(λ)= R−1(λ)
[
f̂ (λ) + p(λ)

]
. (3.24)

On the other hand, since ξ0 /∈ sp( f ), f̂ (λ) has a holomorphic extension to a neighbor-
hood of iξ0 and p(λ) is a holomorphic function. Hence, from (3.24), we see that û(λ)
also has a holomorphic extension to a neighboorhood of iξ0, that is, ξ0 /∈ sp(u). This
proves (i).

(ii) Suppose that ξ0 ∈R such that ξ0 /∈ Λ. We have to prove that ξ0 /∈ spAP(u). To this
end, we apply S(t) to both sides of (1.1). Since the derivation operator commutes with
shift operators, we obtain

�0S(t)u+
n∑
k=1

�k
(
S(t)u

)(k)
+

m∑
l=0

∫ b
a
d�l(η)

(
S(t+η)u

)(l) = S(t) f , t ∈R, (3.25)

where �k, k = 0, . . . ,n, and �l(η),η ∈ [a,b], l = 0, . . . ,m, are multiplication operators de-
fined by the formulas (

�ku
)
(t)=Aku(t), k = 0, . . . ,n,(

�l(η)u
)
(t)= Bl(η)u(t), η ∈ [a,b], l = 0, . . . ,m.

(3.26)

It is easily seen that for the chosen iξ0 := λ0, the operator of multiplication by R(λ),

�
(
λ0
)

:=�0 +
n∑
k=1

λk0�k +
m∑
l=0

λl0

∫ b
a
eλ0ηd�l(η), (3.27)

is invertible as well. Let U(t) := S(t)u, F(t) := S(t) f , for all t ∈R. We can rewrite (3.25)
as follows:

�0U(t) +
n∑
k=1

�kU
(k)(t) +

m∑
l=0

∫ b
a
d�l(η)U (l)(t+η)= F(t), t ∈R. (3.28)

As in the proof of (i), by taking Fourier-Carleman transforms in (3.28), we get

�(λ)Û(λ)− q(λ)= F̂(λ), (3.29)

where

q(λ) :=
m∑
l=0

λl
∫ b
a
d�l(η)

(
eλη
∫ η

0
e−λtU(t)dt

)

+
n∑
k=1

k−1∑
j=0

λj�kU
(k− j−1)(0) +

m∑
l=1

l−1∑
j=0

λj
∫ b
a
eληd�l(η)U (l− j−1)(η).

(3.30)
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By Lemma 2.3, it suffices to show that R(λ,�̃)π(u)(Reλ > 0) has a holomorphic ex-
tension to a neighborhood of iξ0. In fact, by Lemma 3.2, R−1(λ) exists as a holomorpic
function in the neighborhood of iξ0 := λ0. Thus, around λ0, from (3.29),

Û(λ)=�−1(λ)
[
F̂(λ) + q(λ)

]
. (3.31)

For Reλ > 0, by integral representation of the resolvent formula, we get

Û(λ)= (̂S(·)u)(λ)=
∫∞

0
e−λtS(t)udt = R(λ,�)u, (3.32)

and similarly, F̂(λ)= ̂(S(·) f )(λ)= R(λ,�) f . Hence, around λ0,

R(λ,�)u=�−1(λ)R(λ,�) f + �−1(λ)q(λ), Reλ > 0. (3.33)

We have π(�−1(λ)R(λ,�) f ) = 0, because f ∈ AP(X) and �−1(λ), R(λ,�) are bounded
operators for Reλ > 0 and around λ0. Thus, by applying π to the above formula, we obtain

π
(
R(λ,�)u

)= π(�−1(λ)q(λ)
)
. (3.34)

Hence,

R(λ,�̃)π(u)= π(�−1(λ)q(λ)
)
, Reλ > 0. (3.35)

Since �−1(λ) and q(λ) are holomorpic in the neighborhood Uξ0 of iξ0, it follows that
R(λ,�̃)π(u) (λ∈Uξ0 ,Reλ>0) has a holomorphic extension toUξ0 . This proves the lemma.

�

We are in a position to state one of the main results of this paper.

Theorem 3.4. Let A0 be a linear closed operator on X, Ak ∈ L(X), for all k = 1, . . . ,n,
and let Bl ∈ BV([a,b],L(X)), for all l = 0, . . . ,m. Assume further that Λ is bounded and
dist(Λ\sp( f ), sp( f ))>0. Then, whenever equation (1.1) has a mild solution u∈BUC(R,X),
it has a mild solution w ∈ BUC(R,X) such that

sp(w)⊂ sp( f ). (3.36)

Proof. Set d = dist(Λ\sp( f ), sp( f )). Since Λ is compact, we can choose a continuous
function ϕ∈ L1(R) such that

ϕ̃= 1 on Λ\sp( f ),

supp ϕ̃⊂
{
λ∈R : dist

(
λ,Λ\sp( f )

)
<
d

2

}
.

(3.37)

Set w = u−ϕ∗u. According to Remark 2.7(i), the function w is a mild solution of (1.1)
with forcing term f − ϕ∗ f . Since supp ϕ̃∩ sp( f ) = ∅, by Proposition 2.1(v), we get
f −ϕ∗ f = f . Hence, w is a mild solution of (1.1).
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Next, we will show that sp(w)⊂ sp( f ). Indeed, by Proposition 2.1(iv) and Lemma
3.3(i), we have

sp(w)= sp(u−ϕ∗u)

⊂ sp(u)∩ supp(1− ϕ̃)

⊂ (Λ∪ sp( f )
)∩ supp(1− ϕ̃)

⊂ sp( f ).

(3.38)

�

Remark 3.5. The above result is an extension of the classical one due to Massera (see [7, 9]
for more information in this direction).

Recall that f is quasiperiodic if it is of the form f (t) = F(t, t, . . . , t), t ∈ R, where
F(t1, t2, . . . , tn) is X-valued continuous function of n variables which is periodic on each
variable. By [6, page 48], if f is quasiperiodic and sp( f ) is discrete, then sp( f ) has an in-
teger and finite basis, that is, there exists a finite subset T ⊂ sp( f ) such that any element
λ ∈ sp( f ) can be represented in the form λ = n1b1 + ··· + nmbm, where nj ∈ Z, bj ∈
T , j = 1, . . . ,m. Conversely, if f is almost periodic and sp( f ) has an integer and finite
basis, f is quasiperiodic. Finally, from Proposition 2.1(viii), we get immediately the fol-
lowing corollary.

Corollary 3.6. Let all assumptions of Theorem 3.4 be satisfied. Moreover, assume that X

does not contain c0. Then

(i) if sp( f ) is countable, (1.1) has an almost periodic mild solution w such that sp(w)⊂
sp( f );

(ii) if sp( f ) has an integer and finite basis, (1.1) has a quasiperiodic mild solution w such
that sp(w)⊂ sp( f ).

Proof. (i) The theorem follows immediately from Theorem 3.4 and Proposition 2.1(viii).
(ii) By (i), we have that w is almost periodic and sp(w)⊂ sp( f ). Therefore, sp(w) has

an integer and finite basis. Hence w is quasiperiodic. �

Using the estimate of the AP-spectrum of bounded mild solutions, we can improve
the above corollary as follows.

Corollary 3.7. Let all assumptions of Theorem 3.4 be satisfied. Moreover, assume that X

does not contain c0, Λ∩ sp( f ) is countable, and f ∈ AP(X). Then, (1.1) has an almost
periodic mild solution w such that sp(w)⊂ sp( f ).

Proof. Choose ϕ ∈ L1(R) as in the proof of Theorem 3.4 and set w = u − ϕ ∗ u. In
Theorem 3.4, we have proved that w is a mild solution of (1.1) such that (3.36) holds.
We now show that w ∈ AP(X). In fact, by Proposition 2.4(iii) and Lemma 3.3(ii), we get

spAP(w)= spAP(u−ϕ∗u)

⊂ spAP(u)∩ supp(1− ϕ̃)

⊂Λ∩ supp(1− ϕ̃)

⊂Λ∩ sp( f ).

(3.39)
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Since Λ∩ sp( f ) is countable and X does not contain c0, by Propositon 2.4(v), we have
that w is almost periodic. �

To illustrate the usefulness of the above criterion for the almost periodicity of mild
solutions of higher-order delay or advance abstract functional differential equations, we
will consider the following examples.

Example 3.8. We consider a simple ordinary differential equation of the form

ẋ(t)= f (t), x(t)∈Cn, (3.40)

where f is a Cn-valued continuous 2π-periodic function. Obviously, the existence of a
2π-periodic solution to (3.40) is equivalent to the 2π-periodicity of the primitive

F(t)=
∫ t

0
f (ξ)dξ, t ∈R. (3.41)

By an elementary argument, we can show that F(t) can be represented in the form

F(t)=mt+G(t), (3.42)

where G is a continuous 2π-periodic function and m = (1/2π)
∫ 2π

0 f (ξ)dξ. Hence, for F
to be 2π-periodic, it is necessary and sufficient that F be bounded. It is easy to see that
under this condition, there is exactly one solution x of (3.40) such that sp(x)⊂ sp( f ).

This justifies the essential of our condition on the existence of a bounded mild solution
in Theorem 3.4.

Example 3.9. In this example, we consider the oscillation equation

ẍ(t) + x(t)= sin(1− ε)t, x(t)∈R, (3.43)

where 0≤ ε < 1 is a parameter. If 0 < ε < 1, the equation has the general solution that is
of the form

x(t)= C1 cos t+C2 sin t+
1

1− (1− ε)2
sin(1− ε)t, (3.44)

where C1, C2 are two constants. It is clear that every solution is almost periodic. In this
case, since there is no resonance, there exists only one almost periodic solution, that is,

x1(t)= 1
1− (1− ε)2

sin(1− ε)t (3.45)

with the same frequencies as the forcing term f (t)= sin(1− ε)t.
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Obviously, if ε = 0, the general solution of this equation is of the form

x(t)= C1 cos t+C2 sin t− t

2
cos t, (3.46)

where C1, C2 are constants. Therefore, since every solution of (3.43) in this case is un-
bounded, it has no 2π-periodic solutions.

Example 3.10. Consider the equation

ujt(t,x)= dj∆uj(t,x) +
n∑
k=1

∫∞
0
dbjk(τ)uk(t− τ,x) + f j(x, t), t ∈R, x ∈Ω,

dj
∂uj
∂ν

(t,x)= 0, x ∈ ∂Ω, j = 1, . . . ,n,

(3.47)

where u(x, t), f (x, t) are scalar-valued functions, dj ≥ 0, bjk∈BV(R+), for all j,k=1, . . . ,n,
Ω⊂Rn denotes a bounded domain with smooth boundary, and ν(x) the outer normal at
x ∈ ∂Ω.

This equation without the forcing term f j(t,x) has been investigated in [10, Section 6].
We define the space X := [L2(Ω)]n and A : X→X by the formula

A= (diagdj
)
∆,

D(A)=
{
u∈X : djuj ∈W2,2(Ω), dj

∂uj
∂ν

(t,x)= 0 on ∂Ω
}
.

(3.48)

We define B(t) : X→X by the formula

(
B(t)u

)
j(x)=

n∑
k=1

bjk(t)uk(x), u∈X. (3.49)

Then, (3.47) can be rewritten in the form

du(t)
dt

=Au(t) +
∫∞

0
B(τ)u(t− τ) + f (t), u(t), f (t)∈X. (3.50)

Let u be a bounded uniformly continuous solution of (3.50) and let f be an almost pe-
riodic function. Let µ0 = 0 > µ1 ≥ µ2 ≥ ··· denote the eigenvalues of the Laplacian with
Neumann boundary condition and ej the corresponding eigenvectors. By [10, Section 6],
the imaginary spectrum of (3.50) is yielded as follows:

Λ= {λ∈R : χm(iλ)= 0 for some m∈N0
}

, (3.51)

where

χm(iλ) := det
(
λ−µmD− d̂B(λ)

)
, m∈N0. (3.52)
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Moreover, one can prove that Λ has Lebesgue measure zero. However, from this and the
spectral inclusion in Lemma 3.3(ii)

spAP(u)⊂Λ, (3.53)

we cannot conclude that u is almost periodic. But if we set up more conditions on f
such that Λ∩ sp( f ) is countable, then according to Corollary 3.7, there exists an almost
periodic solution w of equation (3.50) such that (3.36) holds.
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