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We establish the existence of three positive periodic solutions for a class of delay func-
tional differential equations depending on a parameter by the Leggett-Williams fixed
point theorem.

1. Introduction

In this paper, we will discuss the existence of positive periodic solutions for the first-order
functional differential equations

y′(t)=−a(t)y(t) + λh(t) f
(
y
(
t− τ(t)

))
, t ∈R, (1.1)

x′(t)= a(t)x(t)− λh(t) f
(
x
(
t− τ(t)

))
, t ∈R, (1.2)

where a= a(t), h= h(t), and τ = τ(t) are continuous T-periodic functions, and f = f (u)
is a nonnegative continuous function. We assume that T is a fixed positive number and
that a = a(t) satisfies the condition

∫ T
0 a(u)du > 0. The number λ will be treated as a

parameter in both equations.
Functional differential equations with periodic delays appear in a number of ecolog-

ical models. In particular, our equations can be interpreted as the standard Malthusian
population model y′ = −a(t)y subject to perturbations with periodic delays. One im-
portant question is whether these equations can support positive periodic solutions. The
existence of one or two positive periodic solutions for these functional differential equa-
tions has been studied, see for examples [1, 2, 3, 5, 6, 7, 8, 9]. In this paper, we will obtain
some existence criteria for three positive periodic solutions when the parameter λ varies.
E = (E,‖ · ‖) in the sequel is a Banach space, and C ⊂ E is a cone. By a concave non-

negative continuous functional ψ on C, we mean a continuous mapping ψ : C→ [0,+∞)
with

ψ
(
µx+ (1−µ)y

)≥ µψ(x) + (1−µ)ψ(y), x, y ∈ C, µ∈ [0,1]. (1.3)
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898 Triple periodic solutions of FDE

Let ξ, α, β be positive constants, we will employ the following notations:

Cξ =
{
y ∈ C : ‖y‖ < ξ},

Cξ =
{
y ∈ C : ‖y‖ ≤ ξ},

C(ψ,α,β)= {y ∈ Cβ : ψ(y)≥ α}.
(1.4)

Our existence criteria will be based on the Leggett-Williams fixed point theorem
(see [4]).

Theorem 1.1. Let E = (E,‖ · ‖) be a Banach space, C ⊂ E a cone of E and R > 0 a constant.
Suppose there exists a concave nonnegative continuous functional ψ on C with ψ(y)≤ ‖y‖
for y ∈ CR. Let A : CR→ CR be a completely continuous operator. Assume there are numbers
r, L, and K with 0 < r < L < K ≤ R such that

(H1) the set {y ∈ C(ψ,L,K) : ψ(y) > L} is nonempty and ψ(Ay) > L for all y ∈ C(ψ,
L,K);

(H2) ‖Ay‖ < r for y ∈ Cr ;
(H3) ψ(Ay) > L for all y ∈ C(ψ,L,R) with ‖Ay‖ > K .

Then A has at least three fixed points y1, y2, and y3 ∈ CR. Furthermore, y1 ∈ Cr , y2 ∈ {y ∈
C(ψ,L,R) : ψ(y) > L}, and y3 ∈ CR\(C(ψ,L,R)∪Cr).

2. Existence of triple solutions for (1.1)

A continuously differentiable and T-periodic function y : R→ R is called a T-periodic
solution of (1.1) associated with ω if it satisfies (1.1) when λ= ω in (1.1).

It is not difficult to check that any T-periodic continuous function y(t) that satisfies

y(t)= λ
∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds, t ∈R, (2.1)

where

G(t,s)= exp
(∫ s

t a(u)du
)

exp
(∫ T

0 a(u)du
)− 1

, t,s∈R, (2.2)

is also a T-periodic solution of (1.1) associated with λ. Note further that

0 < N ≡ min
t,s∈[0,T]

G(t,s)≤G(t,s)≤ max
t,s∈[0,T]

G(t,s)≡M, t ≤ s≤ t+T ;

1≥ G(t,s)
maxt,s∈[0,T]G(t,s)

≥ mint,s∈[0,T]G(t,s)
maxt,s∈[0,T]G(t,s)

= N

M
> 0.

(2.3)
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For the sake of convenience, we set

A0 = max
t∈[0,T]

∫ t+T
t

G(t,s)h(s)ds,

B0 = min
t∈[0,T]

∫ t+T
t

G(t,s)h(s)ds.

(2.4)

We use Theorem 1.1 to establish the existence of three positive periodic solutions to
(2.1). To this end, one or several of the following conditions will be needed:

(S1) f : [0,+∞)→ [0,+∞) is a continuous and nondecreasing function,
(S2) h(t) > 0 for t ∈R,
(S3) limx→0 f (x)/x = l1,
(S4) limx→+∞ f (x)/x = l2.

Let E be the set of all real T-periodic continuous functions endowed with the usual
operations and the norm ‖y‖ =maxt∈[0,T] |y(t)|. Then E is a Banach space with cone

C = {y ∈ E : y(t)≥ 0, t ∈ (−∞,+∞)
}
. (2.5)

Theorem 2.1. Suppose (S1)–(S4) hold such that l1 = l2 = 0. Suppose further that there is a
number L > 0 such that f (L) > 0. Let R, K , L, and r be four numbers such that

R≥ K >
LM

N
≥ L > r > 0, (2.6)

f (r)
r

<
f (R)
R

<
B0 f (L)
A0L

. (2.7)

Then for each λ ∈ (L/(B0 f (L)),R/(A0 f (R))], there exist three nonnegative periodic solu-
tions y1, y2, and y3 of (1.1) associated with λ such that y1(t) < r < y2(t) < L < y3(t)≤ R for
t ∈R.

Proof. First of all, in view of (S2), A0,B0 > 0. Note further that if f (L) > 0, then by (S1),
f (R) > 0 for any R greater than L. In view of (S4), we may choose R≥ K > L such that the
second inequality in (2.7) holds, and in view of (S3), we may choose r ∈ (0,L) such that
the first inequality in (2.7) holds. We set λ1 = L/(B0 f (L)) and λ2 = R/(A0 f (R)). Then
λ1,λ2 > 0. Furthermore, λ1 < λ2 in view of (2.7). We now define for each λ ∈ (λ1,λ2] a
continuous mapping A : C→ C by

(Ay)(t)= λ
∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds, t ∈R (2.8)

and a functional ψ : C→ [0,∞) by

ψ(y)= min
t∈[0,T]

y(t). (2.9)
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In view of (S1), (S2), and (2.7), we have

(Ay)(t)= λ
∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds

≤ λ f (‖y‖)
∫ t+T
t

G(t,s)h(s)ds

≤ λ f (R)
∫ t+T
t

G(t,s)h(s)ds

≤ λA0 f (R)≤ λ2A0 f (R)= R,

(2.10)

for t ∈ [0,T] and all y ∈ CR. Therefore, A(CR)⊂ CR. We assert that A is completely con-
tinuous on CR. Indeed, in view of the theorem of Arzela-Ascoli, it suffices to show that
A(CR) is equicontinuous. To see this, note that for t1 < t2,

∫ t2+T

t2
G
(
t2,s
)
h(s) f

(
y
(
s− τ(s)

))
ds−

∫ t1+T

t1
G
(
t1,s
)
h(s) f

(
y
(
s− τ(s)

))
ds

=
∫ t2+T

t1+T
G
(
t2,s
)
h(s) f

(
y
(
s− τ(s)

))
ds

+
∫ t1+T

t2

{
G
(
t2,s
)−G(t1,s

)}
h(s) f

(
y
(
s− τ(s)

))
ds

−
∫ t2
t1
G
(
t1,s
)
h(s) f

(
y
(
s− τ(s)

))
ds.

(2.11)

Furthermore,

∣∣∣∣
∫ t2
t1
G
(
t1,s
)
h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

≤
{
f
(‖y‖)

∫ t1+T

t1
G(t,s)h(s)ds

}∣∣t2− t1∣∣
≤A0 f

(‖y‖)∣∣t2− t1∣∣,
∣∣∣∣
∫ t2+T

t1+T
G(t,s)h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

≤
{
f
(‖y‖)

∫ t1+2T

t1+T
G(t,s)h(s)ds

}∣∣t2− t1∣∣
≤A0 f

(‖y‖)∣∣t2− t1∣∣,
∣∣∣∣
∫ t1+T

t2

{
G
(
t2,s
)−G(t1,s

)}
h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

≤ f
(‖y‖) max

x∈[0,T]
h(x)

∫ t1+T

t2

∣∣G(t2,s
)−G(t1,s

)∣∣ds

≤ f
(‖y‖) max

x∈[0,T]
h(x)

∫ 2T

0

∣∣G(t2,s
)−G(t1,s

)∣∣ds.

(2.12)
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In view of the uniform continuity of G in {(t,s) | 0 ≤ t, s≤ 2T}, for any ε > 0, there is δ
which satisfies

0 < δ <min
{
T ,

ε

3λ2A0 f (R)
,

ε

3λ2 f (R)
[

max0≤t, s≤2T G(t,s)
][

maxx∈[0,T]h(x)
]
}

, (2.13)

and for 0 < t2− t1 < δ, we have

∣∣G(t1,s
)−G(t2,s

)∣∣ < ε

6λ2T f (R)max0≤t≤T h(t)
, s∈ [0,2T]. (2.14)

Thus
∣∣(Ay)

(
t1
)− (Ay)

(
t2
)∣∣

= λ
∣∣∣∣
∫ t2+T

t2
G(t,s)h(s) f

(
y
(
s− τ(s)

))
ds−

∫ t1+T

t1
G(t,s)h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

≤ λ2

∣∣∣∣
∫ t2+T

t1+T
G
(
t2,s
)
h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

+ λ2

∣∣∣∣
∫ t1+T

t2

{
G
(
t2,s
)−G(t1,s

)}
h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

+ λ2

∣∣∣∣
∫ t2
t1
G
(
t1,s
)
h(s) f

(
y
(
s− τ(s)

))
ds
∣∣∣∣

≤ 2λ2A0 f (R)
∣∣t2− t1∣∣+ λ2 f (R)2T max

t∈[0,T]
h(t)

ε

6λ2T f (R)max0≤t≤T h(t)
< ε

(2.15)

for any y(t)∈ CR. This means that A(CR) is equicontinuous.
We now assert that Theorem 1.1(H2) holds. Indeed,

(Ay)(t)= λ
∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds

≤ λ f (‖y‖)
∫ t+T
t

G(t,s)h(s)ds

≤ λ f (r)
∫ t+T
t

G(t,s)h(s)ds≤ λ2A0 f (r) < r

(2.16)

for all y ∈ Cr , where the last inequality follows from (2.7).
In addition, we can show that the condition (H1) of Theorem 1.1 holds. Obviously,

ψ(y) is a concave continuous function on C with ψ(y) ≤ ‖y‖ for y ∈ CR. We notice
that if u(t)= (1/2)(L+K) for t ∈ (−∞,+∞), then u∈ {y ∈ C(ψ,L,K) : ψ(y) > L} which
implies that {y ∈ C(ψ,L,K) : ψ(y) > L} is nonempty. For y ∈ C(ψ,L,K), we have ψ(y)=
mint∈[0,T] y(t)≥ L and ‖y‖ ≤ K . In view of (S1)–(S4), we have

ψ(Ay)= λ min
t∈[0,T]

∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds≥ λB0 f (L) > λ1B0 f (L)= L (2.17)

for all y ∈ C(ψ,L,K).
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Finally, we prove condition (H3) in Theorem 1.1. Let y ∈ C(ψ,L,R) with ‖Ay‖ > K .
We notice that (2.8) implies

‖Ay‖ ≤ λM
∫ T

0
h(s) f

(
y
(
s− τ(s)

))
ds. (2.18)

Thus

ψ(Ay)= λ min
t∈[0,T]

∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds

≥ λN
∫ T

0
h(s) f

(
y
(
s− τ(s)

))
ds

≥ N

M
‖Ay‖ > N

M
K > L.

(2.19)

An application of Theorem 1.1 stated above now yields our proof. �

We remark that the assumptions of Theorem 2.1 are not vacuous as can be seen by
letting T = 3, a(t)≡ 1, h(t)≡ 1, and

f (x)=




x ln(1 + x), 0≤ x < 1,

ex − e+ ln2, 1≤ x < 6,√
x−√6 + e6− e+ ln2, x ≥ 6.

(2.20)

Then by taking r = 3/2, L= 5, K = 101, and R= 5.0135× 1041, we easily check that A0 =
1.0524, B0 = 5.239× 10−2 and all the conditions of Theorem 2.1 hold.

Theorem 2.2. Suppose (S1)–(S4) hold such that 0 < l1 < l2. Suppose there is a number L > 0
such that f (L) > 0 and 0 < l1 < l2 < B0 f (L)/(A0L). Let R, K , L, and r be four numbers such
that

R≥ K >
LM

N
≥ L > r > 0, (2.21)

f (R)
R

< l2 + ε, (2.22)

f (r)
r

< l1 + ε, (2.23)

where ε is a positive number such that

l2 + ε <
B0 f (L)
A0L

. (2.24)

Then for each λ∈ (L/(B0 f (L)),1/(A0l2)), (1.1) has at least three nonnegative periodic solu-
tions y1, y2, and y3 associated with λ such that y1(t) < r < y2(t) < L < y3(t)≤ R for t ∈R.

Proof. First of all, A0,B0 > 0 by (S2). Note further that if f (L) > 0, then by (S1), f (R) > 0
for any R greater than L. Let λ1 = L/(B0 f (L)) and λ2 = 1/(A0l2). Then λ1,λ2 > 0. Further-
more, 0 < λ1 < λ2 in view of the condition 0 < l1 < l2 < B0 f (L)/(A0L). For positive ε that
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satisfies (2.24) and any λ∈ (λ1,λ2), in view of (S4) (and the fact that λ≤ 1/(A0(l2 + ε))),
there is R≥ K > L such that (2.22) holds, and in view of (S3), there is r ∈ (0,L) such that
(2.23) holds.

We now define for each λ ∈ (λ1,λ2) a continuous mapping A : C → C by (2.8) and a
functional ψ : C→ [0,+∞) by (2.9). As in the proof of Theorem 2.1, it is easy to see that
A is completely continuous on CR and maps CR into CR. For all y ∈ CR, we have

(Ay)(t)= λ
∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds

≤ λ f (‖y‖)
∫ t+T
t

G(t,s)h(s)ds

≤ λ f (R)
∫ t+T
t

G(t,s)h(s)ds

≤ λA0 f (R) < λA0
(
l2 + ε

)
R≤ R.

(2.25)

Furthermore, condition (H2) of Theorem 1.1 holds. Indeed, for y ∈ Cr , we have

(Ay)(t)= λ
∫ t+T
t

G(t,s)h(s) f
(
y
(
s− τ(s)

))
ds

≤ λ f (‖y‖)
∫ t+T
t

G(t,s)h(s)ds

≤ λ f (r)
∫ t+T
t

G(t,s)h(s)ds

≤ λA0 f (r)≤ λA0
(
l1 + ε

)
r < r.

(2.26)

Similarly, we can prove that the conditions (H1) and (H3) of Theorem 1.1 hold. An ap-
plication of Theorem 1.1 now yields our proof. �

Theorem 2.3. Suppose (S1) and (S2) hold and f (0) > 0. Suppose there exist four numbers
L, R, K , and r such that (2.6) and (2.7) hold. Then for each λ∈ (L/(B0 f (L)),R/(A0 f (R))],
(1.1) has at least three positive periodic solutions y1, y2, and y3 associated with λ such that
0 < y1(t) < r < y2(t) < L < y3(t)≤ R for t ∈R.

The proof is similar to Theorem 2.1 and is hence omitted.

3. Existence of triple solutions for (1.2)

Equation (1.2) can be regarded as a dual of (1.1). Therefore, dual existence theorems
can be found. Their proofs are obtained by arguments parallel to those for our previous
theorems. Therefore, only a short summary will be given. First, (1.2) is transformed into

x(t)= λ
∫ t+T
t

H(t,s)h(s) f
(
x
(
s− τ(s)

))
ds, (3.1)
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where

H(t,s)= exp
(− ∫ st a(u)du

)
1− exp

(− ∫ T0 a(u)du
) = exp

(∫ t+T
s a(u)du

)
exp

(∫ T
0 a(u)du

)− 1
, t ≤ s≤ t+T , (3.2)

which satisfies

M′ ≡ max
t,s∈[0,T]

H(t,s)≥H(t,s)≥ min
t,s∈[0,T]

H(t,s)≡N ′, t ≤ s≤ t+T. (3.3)

Let

A′ = max
t∈[0,T]

∫ t+T
t

H(t,s)h(s)ds,

B′ = min
t∈[0,T]

∫ t+T
t

H(t,s)h(s)ds.

(3.4)

Theorem 3.1. Suppose (S1)–(S4) hold such that l1 = l2 = 0. Suppose further that there is a
number L > 0 such that f (L) > 0. Let R, K , L, and r be four numbers such that

R≥ K >
LM′

N ′ ≥ L > r > 0,

f (r)
r

<
f (R)
R

<
B′ f (L)
A′L

.

(3.5)

Then for each λ∈ (L/(B′ f (L)),R/(A′ f (R))], there exist three nonnegative periodic solutions
x1, x2, and x3 of (1.2) associated with λ such that x1(t) < r < x2(t) < L < x3(t)≤ R for t∈ R.

Theorem 3.2. Suppose (S1)–(S4) hold such that 0 < l1 < l2. Suppose there is a number L > 0
such that f (L) > 0 and 0 < l1 < l2 < B′ f (L)/(A′L). Let R, K , L, and r be four numbers such
that

R≥ K >
LM′

N ′ ≥ L > r > 0,

f (R)
R

< l2 + ε,

f (r)
r

< l1 + ε,

(3.6)

where ε is a positive number such that

l2 + ε <
B′ f (L)
A′L

. (3.7)

Then for each λ∈ (L/(B′ f (L)),1/(A′l2)), (1.2) has at least three nonnegative periodic solu-
tions x1, x2, and x3 associated with λ such that x1(t) < r < x2(t) < L < x3(t)≤ R for t ∈R.

Theorem 3.3. Suppose (S1) and (S2) hold and f (0) > 0. Suppose there exist four numbers
L, R, K , and r such that (3.5) hold. Then for each λ∈ (L/(B′ f (L)),R/(A′ f (R))], (1.2) has
at least three positive periodic solutions x1, x2, and x3 associated with λ such that 0 < x1(t) <
r < x2(t) < L < x3(t)≤ R for t ∈R.
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