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Theorems on the Fredholm alternative and well-posedness of the linear boundary value
problem u′(t)= �(u)(t) + q(t), h(u)= c, where � : C([a,b];R)→ L([a,b];R) and h : C([a,
b];R)→R are linear bounded operators, q ∈ L([a,b];R), and c ∈R, are established even
in the case when � is not a strongly bounded operator. The question on the dimension of
the solution space of the homogeneous equation u′(t)= �(u)(t) is discussed as well.

1. Introduction

The following notation is used throughout: N is the set of all natural numbers; R is the
set of all real numbers, R+ = [0,+∞[; Ent(x) is an entire part of x ∈R; C([a,b];R) is the
Banach space of continuous functions u : [a,b]→R with the norm ‖u‖C =max{|u(t)| :
t ∈ [a,b]}; C([a,b];R+) = {u ∈ C([a,b];R) : u(t) ≥ 0 for t ∈ [a,b]}; C̃([a,b];R) is the
set of absolutely continuous functions u : [a,b]→ R; L([a,b];R) is the Banach space of

Lebesgue integrable functions p : [a,b]→ R with the norm ‖p‖L =
∫ b
a |p(s)|ds; L([a,b];

R+)= {p ∈ L([a,b];R) : p(t)≥ 0 for t ∈ [a,b]}; mesA is the Lebesgue measure of the set
A; �ab is the set of measurable functions τ : [a,b]→ [a,b]; �ab is the set of linear bounded
operators � : C([a,b];R)→ L([a,b];R); �̃ab is the set of linear strongly bounded opera-
tors, that is, for each of the operators � ∈�ab, there exists η ∈ L([a,b];R+) such that∣∣�(v)(t)

∣∣≤ η(t)‖v‖C for t ∈ [a,b], v ∈ C
(
[a,b];R

)
; (1.1)

�ab is the set of linear nonnegative operators, that is, operators � ∈�ab mapping the set
C([a,b];R+) into the set L([a,b];R+). If � ∈�ab, then ‖�‖ = sup{‖�(v)‖L : ‖v‖C ≤ 1}.

Let t0 ∈ [a,b]. We will say that � ∈�ab is a t0-Volterra operator if for arbitrary a1 ∈
[a, t0], b1 ∈ [t0,b], and u∈ C([a,b];R) such that

u(t)= 0 for t ∈ [a1,b1
]
, (1.2)

we have

�(u)(t)= 0 for t ∈ [a1,b1
]
. (1.3)

Copyright © 2004 Hindawi Publishing Corporation
Abstract and Applied Analysis 2004:1 (2004) 45–67
2000 Mathematics Subject Classification: 34K06, 34K10
URL: http://dx.doi.org/10.1155/S1085337504309061

http://dx.doi.org/10.1155/S1085337504309061


46 On a BVP for scalar linear FDE

On the segment [a,b], consider the boundary value problem

u′(t)= �(u)(t) + q(t), (1.4)

h(u)= c, (1.5)

where � ∈�ab, h : C([a,b];R)→ R is a linear bounded functional, q ∈ L([a,b];R), and
c ∈R.

By a solution of (1.4) we understand a function u∈ C̃([a,b];R) satisfying the equality
(1.4) almost everywhere on [a,b]. By a solution of the problem (1.4), (1.5), we understand
a solution u of (1.4) which also satisfies the condition (1.5). Together with (1.4), (1.5), we
will consider the corresponding homogeneous problem

u′(t)= �(u)(t), (1.6)

h(u)= 0. (1.7)

From the general theory of boundary value problems for functional differential equa-

tions, it is known that if � ∈ �̃ab, then the problem (1.4), (1.5) has a Fredholm property
(see, e.g., [1, 2, 7, 8, 10]). More precisely, the following assertion is valid.

Theorem 1.1. Let � ∈ �̃ab. Then the problem (1.4), (1.5) is uniquely solvable if and only if
the corresponding homogeneous problem (1.6), (1.7) has only the trivial solution.

Theorem 1.1 allows us to introduce the following definition.

Definition 1.2. Let � ∈ �̃ab and let the problem (1.6), (1.7) have only the trivial solu-
tion. An operator Ω : L([a,b];R)→ C([a,b];R) which assigns to every q ∈ L([a,b];R) a
solution u of the problem (1.4), (1.7) is called Green operator of the problem (1.6), (1.7).

It follows from Theorem 1.1 that if � ∈ �̃ab and the problem (1.6), (1.7) has only the
trivial solution, then the Green operator is well defined. Evidently, Green operator is lin-
ear. Moreover, the following theorem is valid (see, e.g., [1, 2, 7, 8]).

Theorem 1.3. Let � ∈ �̃ab and let the problem (1.6), (1.7) have only the trivial solution.
Then the Green operator of the problem (1.6), (1.7) is a linear bounded operator.

In [7, 8] the question on the well-posedness of linear boundary value problem for
systems of functional differential equations is studied. Theorem 1.3 can also be derived
as a consequence of more general results on well-posedness obtained therein.

Note that both Theorems 1.1 and 1.3 claim that � ∈ �̃ab. This condition covers a quite
wide class of linear operators; for example, the equation with a deviating argument

u′(t)= p(t)u
(
τ(t)

)
+ q(t), (1.8)

where p,q ∈ L([a,b];R), τ ∈�ab, is a special case of (1.4) with

�(v)(t)
def= p(t)v

(
τ(t)

)
for t ∈ [a,b]. (1.9)

More generally, it is known (see [6, page 317]) that � ∈ �̃ab if and only if the operator �
admits the representation by means of a Stieltjes integral.
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On the other hand, Schaefer proved that there exists an operator � ∈�ab such that � �∈
�̃ab (see [9, Theorem 4]). Therefore, a question naturally arises to study boundary value
problem (1.4), (1.5) without the additional requirement (1.1). In particular, the question
whether Theorems 1.1 and 1.3 are valid for general operator � ∈�ab is interesting.

The first important step in this direction was made by Bravyi (see [3]), where Theorem

1.1 was proved for � ∈ �ab (i.e., without the additional assumption � ∈ �̃ab). Bravyi’s
proof essentially uses Nikol’ski’s theorem (see, e.g., [5, Theorem XIII.5.2, page 504]) and
it is concentrated on the question of Fredholm property. The question whether Theorem
1.3 is valid for the case when � ∈�ab remains open.

In the present paper, among others, we answer this question affirmatively. More pre-
cisely, in Section 2 we prove that the operator T : C([a,b];R)→ C([a,b];R) defined by

T(v)(t)
def= ∫ ta �(v)(s)ds for t∈[a,b] is compact provided that �∈�ab (see Proposition 2.9).

Based on this result and Riesz-Schauder theory, we give an alternative proof (different
from that in [3]) of Theorem 1.1 for � ∈�ab (see Theorem 2.1).

On the other hand, the compactness of the operator T allows us to study a question
on the well-posedness of boundary value problem (1.4), (1.5). Section 3 is devoted to
this question. As a special case of theorem on well-posedness, we obtain the validity of
Theorem 1.3 for � ∈�ab (see Corollary 3.3).

In Section 4, the question on dimension of solution space U of homogeneous equa-
tion (1.6) is discussed. Proposition 4.6 shows that if dimU ≥ 2, then there exists q ∈
L([a,b];R) such that the nonhomogeneous equation (1.4) has no solution. This “patho-
logical” behaviour of functional differential equations affirms the importance of the ques-
tion whether the solution space of the homogeneous equation (1.6) is one dimensional.
In Theorems 4.8 and 4.10, the nonimprovable effective sufficient conditions are estab-
lished guaranteeing that dimU = 1.

2. Fredholm property

Theorem 2.1. Let � ∈�ab. Then the problem (1.4), (1.5) is uniquely solvable if and only if
the corresponding homogeneous problem (1.6), (1.7) has only the trivial solution.

Analogously as in Section 1, we can introduce the notion of the Green operator of the
problem (1.6), (1.7).

Definition 2.2. Let � ∈ �ab and let the problem (1.6), (1.7) have only the trivial solu-
tion. An operator Ω : L([a,b];R)→ C([a,b];R) which assigns to every q ∈ L([a,b];R) a
solution u of the problem (1.4), (1.7) is called Green operator of the problem (1.6), (1.7).

Evidently, it follows from Theorem 2.1 that the Green operator is well defined.

Remark 2.3. From the proof of Theorem 2.1 and Riesz-Schauder theory, it follows that
if the problem (1.6), (1.7) has a nontrivial solution, then for every c ∈ R there exists
q ∈ L([a,b];R), respectively, for every q ∈ L([a,b];R) there exists c ∈ R, such that the
problem (1.4), (1.5) has no solution.

To prove Theorem 2.1 we will need several auxiliary propositions. First we recall some
definitions.
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Definition 2.4. Let X be a linear topological space, X∗ its dual space. A sequence {xn}+∞
n=1⊆

X is called weakly convergent if there exists x∈X such that ϕ(x)= limn→+∞ϕ(xn) for every
ϕ∈ X∗. The point x is called a weak limit of this sequence.

A set M ⊆ X is called weakly relatively compact if every sequence of points from M
contains a subsequence which is weakly convergent in X .

A sequence {xn}+∞
n=1 ⊆ X is called weakly fundamental if for every ϕ∈ X∗, a sequence

{ϕ(xn)}+∞
n=1 is fundamental.

A space X is called weakly complete if every weakly fundamental sequence from X
possesses a weak limit in X .

Let X and Y be Banach spaces and let T : X → Y be a linear bounded operator. The
operator T is said to be weakly completely continuous if it maps a unit ball of X into
weakly relatively compact subset of Y .

Definition 2.5. A set M ⊆ L([a,b];R) has a property of absolutely continuous integral
if for every ε > 0, there exists δ > 0 such that for an arbitrary measurable set E ⊆ [a,b]
satisfying the condition mesE ≤ δ, the following inequality is true:∣∣∣∣∫

E
p(s)ds

∣∣∣∣≤ ε for every p ∈M. (2.1)

Proofs of the following three assertions can be found in [4].

Lemma 2.6 [4, Theorem IV.8.6]. The space L([a,b];R) is weakly complete.

Lemma 2.7 [4, Theorem VI.7.6]. A linear bounded operator mapping the space C([a,b];R)
into a weakly complete Banach space is weakly completely continuous.

Lemma 2.8 [4, Theorem IV.8.11]. If a set M ⊆ L([a,b];R) is weakly relatively compact,
then it has a property of absolutely continuous integral.

The following proposition plays a crucial role in the proof of Theorem 2.1.

Proposition 2.9. Let � ∈�ab. Then the operator T : C([a,b];R)→ C([a,b];R) defined by

T(v)(t)
def=
∫ t

a
�(v)(s)ds for t ∈ [a,b] (2.2)

is compact.

Proof. Let M ⊆ C([a,b];R) be a bounded set. According to Arzelá-Ascoli lemma, it is
sufficient to show that the set T(M) = {T(v) : v ∈M} is bounded and equicontinuous.
Obviously,

∥∥T(v)
∥∥
C =max

{∣∣∣∣∫ t

a
�(v)(s)ds

∣∣∣∣ : t ∈ [a,b]
}

≤ ∥∥�(v)
∥∥
L ≤ ‖�‖ · ‖v‖C for v ∈M,

(2.3)

and thus, since � ∈�ab and M is bounded, the set T(M) is bounded.
Further, Lemmas 2.6 and 2.7 imply that the operator � is weakly completely continu-

ous, that is, a set �(M)= {�(v) : v ∈M} is weakly relatively compact. Therefore, according
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to Lemma 2.8, for every ε > 0, there exists δ > 0 such that

∣∣∣∣∫ t

s
�(v)(ξ)dξ

∣∣∣∣≤ ε for s, t ∈ [a,b], |t− s| ≤ δ, v ∈M. (2.4)

On the other hand,

∣∣T(v)(t)−T(v)(s)
∣∣= ∣∣∣∣∫ t

s
�(v)(ξ)dξ

∣∣∣∣ for s, t ∈ [a,b], v ∈ C
(
[a,b];R

)
, (2.5)

which, together with (2.4), results in∣∣T(v)(t)−T(v)(s)
∣∣≤ ε for s, t ∈ [a,b], |t− s| ≤ δ, v ∈M. (2.6)

Consequently, the set T(M) is equicontinuous. �

Proof of Theorem 2.1. Let X = C([a,b];R)×R be a Banach space containing elements
x = (u,α), where u∈ C([a,b];R) and α∈R, with a norm

‖x‖X = ‖u‖C + |α|. (2.7)

Let

q̂ =
(∫ t

a
q(s)ds,c

)
(2.8)

and define a linear operator T : X → X by setting

T(x)
def=
(
α+u(a) +

∫ t

a
�(u)(s)ds,α−h(u)

)
. (2.9)

Obviously, the problem (1.4), (1.5) is equivalent to the operator equation

x = T(x) + q̂ (2.10)

in the space X in the following sense: if x = (u,α)∈ X is a solution of (2.10), then α= 0,
u ∈ C̃([a,b];R), and u is a solution of (1.4), (1.5), and vice versa, if u ∈ C̃([a,b];R) is a
solution of (1.4), (1.5), then x = (u,0) is a solution of (2.10).

According to Proposition 2.9, we have that the operator T is compact. From Riesz-
Schauder theory, it follows that (2.10) is uniquely solvable if and only if the corresponding
homogeneous equation

x = T(x) (2.11)

has only the trivial solution (see, e.g., [11, Theorem 2, page 221]). On the other hand,
(2.11) is equivalent to the problem (1.6), (1.7) in the above-mentioned sense. �

Following [7, 8] we introduce the following notation.
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Notation 2.10. Let t0 ∈ [a,b]. Define operators �k : C([a,b];R)→ C([a,b];R) and num-
bers λk as follows:

�0(v)(t)
def= v(t), �k(v)(t)

def=
∫ t

t0
�
(
�k−1(v)

)
(s)ds for t ∈ [a,b], k ∈N, (2.12)

λk = h
(
�0(1) + �1(1) + ···+ �k−1(1)

)
for k ∈N. (2.13)

If λk �= 0 for some k ∈N, then let

�k,0(v)(t)
def= v(t) for t ∈ [a,b],

�k,m(v)(t)
def= �m(v)(t)− h

(
�k(v)

)
λk

m−1∑
i=0

�i(1)(t) for t ∈ [a,b], m∈N.
(2.14)

Theorem 2.11. Let � ∈�ab and let there exist k,m∈N, m0 ∈N∪{0}, and α∈ [0,1[ such
that λk �= 0 and for every solution u of the problem (1.6), (1.7), the inequality

∥∥�k,m(u)
∥∥
C ≤ α

∥∥�k,m0 (u)
∥∥
C (2.15)

is fulfilled. Then the problem (1.4), (1.5) has a unique solution.

Remark 2.12. The proof of Theorem 2.11 is omitted since it is completely the same as
the proof of [8, Theorem 1.3.1] (see also [7, Theorem 1.2]). The only difference is that
instead of Theorem 1.1, Theorem 2.1 has to be used.

Theorem 2.11 implies the following corollary.

Corollary 2.13. Let � ∈�ab be a t0-Volterra operator. Then the problem

u′(t)= �(u)(t) + q(t), u
(
t0
)= c, (2.16)

with q ∈ L([a,b];R) and c ∈R, is uniquely solvable.

To prove this corollary we need the following lemma.

Lemma 2.14. Let � ∈�ab be a t0-Volterra operator and let �k (k ∈ N∪{0}) be operators
defined by (2.12). Then

lim
k→+∞

∥∥�k∥∥= 0. (2.17)

Proof. Let ε ∈]0,1[. According to Proposition 2.9, the operator �1, defined by (2.12) for
k = 1, is compact. Therefore, by virtue of Arzelà-Ascoli lemma, there exists δ > 0 such
that

∣∣∣∣∫ t

s
�(v)(ξ)dξ

∣∣∣∣= ∣∣�1(v)(t)− �1(v)(s)
∣∣≤ ε‖v‖C for |t− s| ≤ δ. (2.18)
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Let

n= Ent
(
b− t0
δ

)
, m= Ent

(
t0− a

δ

)
,

ti = t0 + iδ for i=−m,−m+ 1, . . . ,−1,1,2, . . . ,n,

t−m−1 = a, tn+1 = b,

(2.19)

and introduce the notation

∥∥�k(v)
∥∥
i =

∥∥�k(v)

∥∥
C([t0,ti];R) for i= 1,n+ 1,∥∥�k(v)
∥∥
C([ti,t0];R) for i=−m− 1,−1.

(2.20)

We will show that

∥∥�k(v)
∥∥
i ≤ αi(k)εk‖v‖C([a,b];R) for i= 1,n+ 1, k ∈N, (2.21)

where

αi(k)= γik
i−1 for i= 1,n+ 1,

γ1 = 1, γi+1 = iγi + i+ 1 for i= 1,n.
(2.22)

First note that

∥∥�1(v)
∥∥
i ≤ iε‖v‖C([a,b];R) for i= 1,n+ 1. (2.23)

Indeed, according to (2.18), it is clear that

∥∥�1(v)
∥∥
i =max

{∣∣∣∣∫ t

t0
�(v)(ξ)dξ

∣∣∣∣ : t ∈ [t0, ti
]}

≤
i−1∑
j=0

max
{∣∣∣∣∫ t

t j
�(v)(ξ)dξ

∣∣∣∣ : t ∈ [t j , t j+1
]}

≤ iε‖v‖C([a,b];R) for i= 1,n+ 1.

(2.24)

Further, on account of (2.18) and the fact that � is a t0-Volterra operator, we have

∣∣�k+1(v)(t)
∣∣= ∣∣∣∣∫ t

t0
�
(
�k(v)

)
(ξ)dξ

∣∣∣∣≤ ε
∥∥�k(v)

∥∥
1 for t ∈ [t0, t1

]
, k ∈N. (2.25)

Hence, by virtue of (2.23), we get

∥∥�k(v)
∥∥

1 ≤ εk‖v‖C([a,b];R) for k ∈N, (2.26)

that is, (2.21) holds for i= 1.
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Now let the inequality (2.21) hold for some i∈ {1,2, . . . ,n}. With respect to (2.18) and
the fact that � is a t0-Volterra operator, we have

∥∥�k+1(v)
∥∥
i+1 =max

{∣∣∣∣∫ t

t0
�
(
�k(v)

)
(ξ)dξ

∣∣∣∣ : t ∈ [t0, ti+1
]}

≤
i−1∑
j=0

max
{∣∣∣∣∫ t

t j
�
(
�k(v)

)
(ξ)dξ

∣∣∣∣ : t ∈ [t j , t j+1
]}

+ max
{∣∣∣∣∫ t

ti
�
(
�k(v)

)
(ξ)dξ

∣∣∣∣ : t ∈ [ti, ti+1
]}

≤ iε
∥∥�k(v)

∥∥
i + ε

∥∥�k(v)
∥∥
i+1

≤ iαi(k)εk+1‖v‖C([a,b];R) + ε
∥∥�k(v)

∥∥
i+1 for k ∈N.

(2.27)

Hence we get

∥∥�k+1(v)
∥∥
i+1 ≤ iαi(k)εk+1‖v‖C([a,b];R)

+ ε
[
iαi(k− 1)εk‖v‖C([a,b];R) + ε

∥∥�k−1(v)
∥∥
i+1

]
for k ∈N.

(2.28)

To continue this procedure, on account of (2.23), we obtain

∥∥�k+1(v)
∥∥
i+1 ≤

[
i+ 1 + i

(
αi(1) + ···+αi(k)

)]
εk+1‖v‖C([a,b];R) for k ∈N. (2.29)

With respect to (2.22), we get

i+ 1 + i
k∑
j=1

αi( j)= i+ 1 + iγi
(
1i−1 + 2i−1 + ···+ ki−1)≤ i+ 1 + iγikk

i−1

= i+ 1 + iγik
i ≤ (i+ 1 + iγi

)
ki = γi+1k

i ≤ αi+1(k+ 1).

(2.30)

Therefore, from (2.29), it follows that

∥∥�k+1(v)
∥∥
i+1 ≤ αi+1(k+ 1)εk+1‖v‖C([a,b];R) for k ∈N. (2.31)

Thus, by induction, we have proved that (2.21) holds.
In an analogous way, it can be shown that

∥∥�k(v)
∥∥
i ≤ αi(k)εk‖v‖C([a,b];R) for i=−m− 1,−1, k ∈N, (2.32)

where

αi(k)= γik
|i|−1 for i=−m− 1,−1,

γ−1 = 1, γi−1 = |i|γi + |i|+ 1 for i=−m,−1.
(2.33)
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Now from (2.21), (2.22), (2.32), and (2.33), it follows that there exists γ ∈ N (indepen-
dent of k) such that∥∥�k(v)

∥∥
C([a,b];R) ≤

∥∥�k(v)
∥∥−m−1 +

∥∥�k(v)
∥∥
n+1

≤ γkn+mεk‖v‖C([a,b];R) for k ∈N.
(2.34)

Hence, since ε < 1, it follows that (2.17) holds. �

Proof of Corollary 2.13. Let h(v)
def= v(t0). Obviously, for every k,m∈N, we have λk = 1,

h
(
�k(v)

)= 0, �k,m(v)(t)= �m(v)(t) for t ∈ [a,b], v ∈ C
(
[a,b];R

)
. (2.35)

According to Lemma 2.14, we can choose m∈N such that∥∥�m∥∥ < 1. (2.36)

Thus the inequality (2.15) holds with m0 = 0 and α= ‖�m‖. �

For t0-Volterra operators, Theorem 2.11 can be inverted. More precisely, the following
assertion is valid.

Theorem 2.15. Let � ∈�ab be a t0-Volterra operator. Then the problem (1.4), (1.5) has a
unique solution if and only if there exist k,m∈N such that λk �= 0 and∥∥�k,m

∥∥ < 1. (2.37)

Proof. Let inequality (2.37) hold for some k,m ∈ N. Obviously, for every u ∈ C([a,b];
R) (consequently, also for every solution of (1.6), (1.7)), we have∥∥�k,m(u)

∥∥
C ≤

∥∥�k,m
∥∥‖u‖C. (2.38)

Therefore, the assumptions of Theorem 2.11 are fulfilled with m0 = 0 and α = ‖�k,m‖.
Consequently, the problem (1.4), (1.5) has a unique solution.

Assume now that the problem (1.6), (1.5) is uniquely solvable. According to Theorem
2.1, the problem (1.6), (1.7) has only the trivial solution.

Let u0 be a solution of the problem

u′(t)= �(u)(t), u
(
t0
)= 1, (2.39)

the existence of which is guaranteed by Corollary 2.13. Obviously,

h
(
u0
) �= 0, (2.40)

since otherwise the function u0 would be a nontrivial solution of the problem (1.6), (1.7).
Let

un(t)=
n−1∑
i=0

�i(1)(t) for t ∈ [a,b], n∈N. (2.41)
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From (2.39) it follows that

u0(t)= 1 + �1(u0
)
(t) for t ∈ [a,b]. (2.42)

Hence we have

u0(t)= 1 + �1(1 + �1(u0
))

(t)= �0(1)(t) + �1(1)(t) + �2(u0
)
(t) for t ∈ [a,b]. (2.43)

To continue this process, we obtain

u0(t)=
n−1∑
i=0

�i(1)(t) + �n
(
u0
)
(t) for t ∈ [a,b], n∈N. (2.44)

Hence, on account of (2.41) and Lemma 2.14, we get

lim
n→+∞

∥∥u0−un
∥∥
C = 0. (2.45)

Since λn = h(un) for n ∈ N and h is a continuous functional, we have, with respect to
(2.40) and (2.45), that

lim
n→+∞λn = h

(
u0
) �= 0. (2.46)

Therefore, there exist k0 ∈N and δ > 0 such that

∣∣λi∣∣≥ δ for i≥ k0. (2.47)

Hence, by virtue of (2.45), it follows that there exists ρ ∈ ]0,+∞[ such that

1∣∣λi∣∣∥∥uj

∥∥
C‖h‖ ≤ ρ for i≥ k0, j ∈N. (2.48)

According to Lemma 2.14, there exist k > k0 and m∈N such that

∥∥�k∥∥≤ 1
2ρ

,
∥∥�m∥∥ < 1

2
. (2.49)

Furthermore, in view of (2.14), we have

∥∥�k,m
∥∥≤ ∥∥�m∥∥+

∥∥um∥∥C∣∣λk∣∣ ‖h‖∥∥�k∥∥, (2.50)

which, together with (2.48) and (2.49), implies that (2.37) holds. �

Remark 2.16. For the case when � ∈ �̃ab, Theorem 2.15 is proved in [8] (see also [7]).
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3. Well-posedness

Together with the problem (1.4), (1.5), for every k ∈N, consider the perturbed boundary
value problem

u′(t)= �k(u)(t) + qk(t), hk(u)= ck, (3.1)

where �k ∈�ab, hk : C([a,b];R)→R is a linear bounded functional, qk ∈ L([a,b];R), and
ck ∈R.

The question on well-posedness of general linear boundary value problem for func-

tional differential equation under the assumptions � ∈ �̃ab and �k ∈ �̃ab is studied in
[7, 8] (see also references in [8, page 70]). In this section we will show that the theo-
rems on well-posedness established in [7, 8] are valid also for the case when � ∈�ab and
�k ∈�ab.

Notation 3.1. Let � ∈�ab. Denote by M� the set of functions y ∈ C̃([a,b];R) admitting
the representation

y(t)= z(a) +
∫ t

a
�(z)(s)ds for t ∈ [a,b], (3.2)

where z ∈ C([a,b];R) and ‖z‖C = 1.

Theorem 3.2. Let the problem (1.4), (1.5) have a unique solution u,

sup
{∣∣∣∣∫ t

a

[
�k(y)(s)− �(y)(s)

]
ds
∣∣∣∣ : t ∈ [a,b], y ∈M�k

}
−→ 0 as k −→ +∞, (3.3)

and let, for every y ∈ C̃([a,b];R),

lim
k→+∞

(
1 +
∥∥�k∥∥)∫ t

a

[
�k(y)(s)− �(y)(s)

]
ds= 0 uniformly on [a,b]. (3.4)

Let, moreover,

lim
k→+∞

(
1 +
∥∥�k∥∥)∫ t

a

[
qk(s)− q(s)

]
ds= 0 uniformly on [a,b], (3.5)

lim
k→+∞

hk(y)= h(y) for y ∈ C
(
[a,b];R

)
, (3.6)

lim
k→+∞

ck = c. (3.7)

Then there exists k0 ∈ N such that for every k > k0 the problem (3.1) has a unique solution
uk and

lim
k→+∞

∥∥uk −u
∥∥
C = 0. (3.8)

From Theorem 3.2, the following corollary immediately follows.
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Corollary 3.3. Let � ∈ �ab and the problem (1.6), (1.7) have only the trivial solution.
Then the Green operator of the problem (1.6), (1.7) is continuous.

To prove Theorem 3.2, we need two lemmas, the first of them immediately follows
from Arzelà-Ascoli lemma and Proposition 2.9.

Lemma 3.4. Let � ∈�ab and

�̂(y)(t)
def=
∫ t

a
�(y)(s)ds for t ∈ [a,b]. (3.9)

Let, moreover, {xn}+∞
n=1 ⊂ C([a,b];R) be a bounded sequence. Then the sequence {�̂(xn)}+∞

n=1

contains a uniformly convergent subsequence.

Lemma 3.5. Let the problem (1.6), (1.7) have only the trivial solution and let the sequences of
operators �k ∈�ab and linear bounded functionals hk : C([a,b];R)→ R satisfy conditions
(3.3) and (3.6). Then there exist k0 ∈ N and r > 0 such that an arbitrary z ∈ C̃([a,b];R)
admits the estimate

‖z‖C ≤ rρk(z) for k > k0, (3.10)

where

ρk(z)= ∣∣hk(z)
∣∣+ max

{(
1 +
∥∥�k∥∥)∣∣∣∣∫ t

a

[
z′(s)− �k(z)(s)

]
ds
∣∣∣∣ : t ∈ [a,b]

}
. (3.11)

Proof. Note first that according to Banach-Steinhaus theorem and the condition (3.6),
the sequence {‖hk‖}+∞

k=1 is bounded, that is, there exists r0 > 0 such that∣∣hk(y)
∣∣≤ r0‖y‖C for y ∈ C

(
[a,b];R

)
. (3.12)

Let, for y ∈ C([a,b];R),

�̂(y)(t)=
∫ t

a
�(y)(s)ds, �̂k(y)(t)=

∫ t

a
�k(y)(s)ds for k ∈N. (3.13)

Obviously, �̂ : C([a,b];R)→ C([a,b];R) and �̂k : C([a,b];R)→ C([a,b];R) for k ∈N are
linear bounded operators and ∥∥�̂k∥∥≤ ∥∥�k∥∥ for k ∈N. (3.14)

With respect to our notation, the condition (3.3) can be rewritten as follows:

sup
{∥∥�̂k(y)− �̂(y)

∥∥
C : y ∈M�k

}−→ 0 as k −→ +∞. (3.15)

Assume on the contrary that the lemma is not valid. Then there exist an increasing
sequence of natural numbers {km}+∞

m=1 and a sequence of functions zm ∈ C̃([a,b];R),
m∈N, such that ∥∥zm∥∥C > mρkm

(
zm
)

for m∈N. (3.16)
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Let

ym(t)= zm(t)∥∥zm∥∥C , vm(t)=
∫ t

a

[
y′m(s)− �km

(
ym
)
(s)
]
ds for t ∈ [a,b], (3.17)

y0m(t)= ym(t)− vm(t) for t ∈ [a,b], (3.18)

wm(t)= �̂km
(
y0m
)
(t)− �̂

(
y0m
)
(t) + �̂km

(
vm
)
(t) for t ∈ [a,b]. (3.19)

Obviously,

∥∥ym∥∥C = 1 for m∈N, (3.20)

y0m(t)= ym(a) + �̂km
(
ym
)
(t) for t ∈ [a,b], m∈N, (3.21)

y0m(t)= ym(a) + �̂
(
y0m
)
(t) +wm(t) for t ∈ [a,b], m∈N. (3.22)

On the other hand, from (3.14) and (3.17), by virtue of (3.16), we get

∥∥vm∥∥C ≤ ρkm
(
zm
)∥∥zm∥∥C(1 +
∥∥�km∥∥) < 1

m
(
1 +
∥∥�km∥∥) for m∈N, (3.23)

∥∥�̂km(vm)∥∥C ≤ ∥∥�km∥∥ ·∥∥vm∥∥C <
1
m

for m∈N. (3.24)

From (3.20) and (3.21), it follows that y0m ∈M�km , and therefore, in view of (3.15), we
have

lim
m→+∞

∥∥�̂km(y0m
)− �̂

(
y0m
)∥∥

C = 0. (3.25)

On account of (3.24) and (3.25), equality (3.19) implies that

lim
m→+∞

∥∥wm

∥∥
C = 0, (3.26)

and with respect to (3.18), (3.20), and (3.23),

∥∥y0m
∥∥
C ≤

∥∥ym∥∥C +
∥∥vm∥∥C ≤ 2 for m∈N. (3.27)

According to Lemma 3.4, without loss of generality, we can assume that

lim
m→+∞ y0m(t)= y0(t) uniformly on [a,b]. (3.28)

With respect to (3.18), (3.20), (3.22), (3.23), and (3.26),

lim
m→+∞

∥∥ym− y0
∥∥
C = 0, (3.29)∥∥y0

∥∥
C = 1, y0(t)= y0(a) + �̂

(
y0
)
(t) for t ∈ [a,b]. (3.30)

Consequently, y0 is a nontrivial solution of (1.6).
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On the other hand, from (3.12) and (3.16), we get∣∣hkm(y0
)∣∣≤ ∣∣hkm(y0− ym

)∣∣+
∣∣hkm(ym)∣∣

≤ r0
∥∥y0− ym

∥∥
C +

1∥∥zm∥∥C
∣∣hkm(zm)∣∣

≤ r0
∥∥y0− ym

∥∥
C +

1
m

for m∈N.

(3.31)

Hence, on account of (3.6) and (3.29), we obtain

h
(
y0
)= 0. (3.32)

Thus y0 is a nontrivial solution of the problem (1.6), (1.7), which contradicts the assump-
tion of Lemma 3.5. �

Proof of Theorem 3.2. Let r and k0 be numbers, the existence of which is guaranteed by
Lemma 3.5. Then, obviously, for every k > k0, the problem

u′(t)= �k(u)(t), hk(u)= 0, (3.33)

has only the trivial solution. According to Theorem 2.1, for every k > k0, the problem
(3.1) is uniquely solvable.

We will show that if u and uk are solutions of the problems (1.4), (1.5), and (3.1),
respectively, then (3.8) holds. Let

vk(t)= uk(t)−u(t) for t ∈ [a,b]. (3.34)

Then, for every k > k0,

v′k(t)= �k
(
vk
)
(t) + q̃k(t) for t ∈ [a,b], hk

(
vk
)= c̃k, (3.35)

where

q̃k(t)= �k(u)(t)− �(u)(t) + qk(t)− q(t) for t ∈ [a,b],

c̃k = ck −hk(u).
(3.36)

Now, by virtue of (3.4), (3.5), (3.6), and (3.7), we have

δk =
(
1 +
∥∥�k∥∥)max

{∣∣∣∣∫ t

a
q̃k(s)ds

∣∣∣∣ : t ∈ [a,b]
}
−→ 0 as k −→ +∞, (3.37)

lim
k→+∞

c̃k = 0. (3.38)

According to Lemma 3.5, (3.35), and (3.37),

∥∥vk∥∥C ≤ r
(∣∣c̃k∣∣+ δk

)
for k > k0. (3.39)
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Hence, in view of (3.37) and (3.38), we obtain

lim
k→+∞

∥∥vk∥∥C = 0, (3.40)

and, consequently, (3.8) holds. �

4. On dimension of the solution set of homogeneous equation

Notation 4.1. Let U be the solution set of the homogeneous equation (1.6). Obviously, U
is a linear vector space.

According to Theorem 2.1, we have U �= {0}, that is, dimU ≥ 1. Moreover, the follow-
ing assertion is valid.

Theorem 4.2. The space U is finite dimensional.

Proof. Let T : C([a,b];R)→ C([a,b];R) be an operator defined by

T(v)(t)
def= v(a) +

∫ t

a
�(v)(s)ds for t ∈ [a,b]. (4.1)

Evidently, the operator T is linear. According to Proposition 2.9, the operator T is com-
pact as well. Obviously, (1.6) is equivalent to the operator equation (2.11) in the following
sense: if u∈ C̃([a,b];R) is a solution of (1.6), then x = u is a solution of (2.11), and vice
versa, if x ∈ C([a,b];R) is a solution of (2.11), then x ∈ C̃([a,b];R) and u = x is a so-
lution of (1.6). In other words, the set U is also a solution set of the operator equation
(2.11).

On the other hand, since T is a linear compact operator, from Riesz-Schauder theory,
it follows that the solution space of (2.11) is finite-dimensional. Therefore, dimU < +∞.

�

Remark 4.3. Example 5.1 below shows that dimU can be any natural number, even in the

case when � ∈ �̃ab.

Proposition 4.4. The equality dimU = 1 holds if and only if there exists ξ ∈ [a,b] such
that the problem

u′(t)= �(u)(t), u(ξ)= 0 (4.2)

has only the trivial solution.

Proof. Let dimU = 1 and let problem (4.2) have a nontrivial solution uξ for every ξ ∈
[a,b]. Choose t0 ∈]a,b] such that ua(t0) �= 0. Then, obviously, functions ua and ut0 are
linearly independent solutions of (1.6), which contradicts the assumption dimU = 1.

Now assume that there exists ξ ∈ [a,b] such that the problem (4.2) has only the trivial
solution and dimU ≥ 2. Let u1,u2 ∈U be linearly independent. Obviously,

u1(ξ) �= 0, u2(ξ) �= 0. (4.3)
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Let

u(t)= u2(ξ)u1(t)−u1(ξ)u2(t) for t ∈ [a,b]. (4.4)

Then u is a solution of the problem (4.2), and so

u2(ξ)u1(t)−u1(ξ)u2(t)= 0 for t ∈ [a,b]. (4.5)

However, the last equality, together with (4.3), contradicts the linear independence of
u1 and u2. �

Remark 4.5. From Proposition 4.4 and Theorem 2.1, it follows that if dimU = 1, then
for every q ∈ L([a,b]R), the nonhomogeneous equation (1.4) has at least one solution
(in fact, it possesses infinitely many solutions). If dimU ≥ 2, the situation is substantially
different. More precisely, the following assertion holds.

Proposition 4.6. Let dimU ≥ 2. Then there exists q ∈ L([a,b];R) such that the nonho-
mogeneous equation (1.4) has no solution.

Proof. According to Proposition 4.4, and the condition dimU ≥ 2, for every ξ ∈ [a,b] the
problem (4.2) has a nontrivial solution uξ . Therefore, by virtue of Remark 2.3, for every
ξ ∈ [a,b], there exists qξ ∈ L([a,b];R) such that the problem

u′(t)= �(u)(t) + qξ(t), u(ξ)= 0, (4.6)

has no solution. Choose t0 ∈]a,b] such that

ua
(
t0
) �= 0. (4.7)

We will show that an equation

u′(t)= �(u)(t) + qt0 (t) (4.8)

has no solution. Assume on the contrary that u is a solution of (4.8). Obviously, a function
v defined by

v(t)= u(t)− u
(
t0
)

ua
(
t0
)ua(t) for t ∈ [a,b] (4.9)

satisfies

v′(t)= �(v)(t) + qt0 (t) for t ∈ [a,b],

v
(
t0
)= 0,

(4.10)

which is a contradiction with a choice of qt0 . �
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Remark 4.7. From Proposition 4.6 and Theorem 2.1, it follows that if dimU ≥ 2, then
for every linear bounded functional h : C([a,b];R)→ R, the problem (1.6), (1.7) has a
nontrivial solution.

Theorem 4.8. Let the operator � admit the representation � = �0− �1, where �0,�1 ∈�ab,
and

∫ b

a
�0(1)(s)ds < 1, (4.11)

∫ b

a
�1(1)(s)ds < 2 + 2

√
1−

∫ b

a
�0(1)(s)ds. (4.12)

Then dimU = 1.

To prove Theorem 4.8, we need the following lemma.

Lemma 4.9. Let the assumptions of Theorem 4.8 be fulfilled and let u be a nontrivial solution
of (1.6) satisfying

u(a)= u(b). (4.13)

Then

u(t) �= 0 for t ∈ [a,b]. (4.14)

Proof. Suppose on the contrary that (4.14) is not valid. Let

M =max
{
u(t) : t ∈ [a,b]

}
, m=−min

{
u(t) : t ∈ [a,b]

}
, (4.15)

and choose tM , tm ∈ [a,b] such that

u
(
tM
)=M, u

(
tm
)=−m. (4.16)

Obviously, tM �= tm, M ≥ 0, and m ≥ 0. Without loss of generality, we can assume that
tM < tm. The integration of (1.6) from tM to tm, with respect to (4.15), (4.16), and the
assumption �0,�1 ∈�ab, yields

M +m=
∫ tm

tM
�1(u)(s)ds−

∫ tm

tM
�0(u)(s)ds≤MA+mB, (4.17)

where

A=
∫ tm

tM
�1(1)(s)ds, B =

∫ tm

tM
�0(1)(s)ds. (4.18)
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On the other hand, the integration of (1.6) from a to tM and from tm to b, on account of
(4.15), (4.16), and the assumption �0,�1 ∈�ab, results in

M−u(a)=
∫ tM

a
�0(u)(s)ds−

∫ tM

a
�1(u)(s)ds

≤M
∫ tM

a
�0(1)(s)ds+m

∫ tM

a
�1(1)(s)ds,

u(b) +m=
∫ b

tm
�0(u)(s)ds−

∫ b

tm
�1(u)(s)ds

≤M
∫ b

tm
�0(1)(s)ds+m

∫ b

tm
�1(1)(s)ds.

(4.19)

Summing the last two inequalities and taking into account (4.13), we obtain

M +m≤MC+mD, (4.20)

where

C =
∫ tM

a
�0(1)(s)ds+

∫ b

tm
�0(1)(s)ds,

D =
∫ tM

a
�1(1)(s)ds+

∫ b

tm
�1(1)(s)ds.

(4.21)

From (4.17) and (4.20), we get

m(1−B)≤M(A− 1), M(1−C)≤m(D− 1). (4.22)

According to (4.11), (4.18), and (4.21),

C < 1, B < 1. (4.23)

Therefore, from (4.22), we obtain m > 0 and M > 0, since otherwise it would be m = 0
and M = 0. Further, from (4.22), it follows that

A > 1, D > 1, (4.24)

(1−B)(1−C)≤ (A− 1)(D− 1). (4.25)

Note that

(1−B)(1−C)≥ 1−B−C = 1−
∫ b

a
�0(1)(s)ds,

(A− 1)(D− 1)≤ 1
4

(A+D− 2)2 = 1
4

(∫ b

a
�1(1)(s)ds− 2

)2

.

(4.26)
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Thus inequality (4.25) yields

1−
∫ b

a
�0(1)(s)ds≤ 1

4

(∫ b

a
�1(1)(s)ds− 2

)2

, (4.27)

which, together with (4.18), (4.21), and (4.24), contradicts (4.12). �

Proof of Theorem 4.8. Assume that dimU≥2. Then, according to Remark 4.7, the bound-
ary value problems

u′(t)= �(u)(t), u(a)= u(b),

v′(t)= �(v)(t), v(b)= 0,
(4.28)

have nontrivial solutions u and v, respectively. With respect to Lemma 4.9, without loss
of generality, we can assume that

u(t) > 0 for t ∈ [a,b],

v(a) > 0.
(4.29)

Let

w(t)= λu(t)− v(t) for t ∈ [a,b], (4.30)

where

λ=max
{
v(t)
u(t)

: t ∈ [a,b]
}
. (4.31)

Obviously, w �≡ 0,

w(t)≥ 0 for t ∈ [a,b], (4.32)

w(a) < w(b), (4.33)

and there exist t0 ∈ [a,b[ and t1 ∈]a,b] such that t0 �= t1 and

w
(
t0
)= 0, w

(
t1
)= ‖w‖C. (4.34)

Since w is a solution of (1.6), �1 ∈�ab, and inequality (4.32) holds, we have

w′(t)≤ �0(w)(t) for t ∈ [a,b]. (4.35)

First suppose that t0 < t1. The integration of (4.35) from t0 to t1, on account of (4.34),
yields

‖w‖C ≤
∫ t1

t0
�0(w)(s)ds≤ ‖w‖C

∫ b

a
�0(1)(s)ds. (4.36)

Hence, since w �≡ 0, it follows that
∫ b
a �0(1)(s)ds≥ 1, which contradicts (4.11).
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Suppose now that t1 < t0. The integration of (4.35) from a to t1 and from t0 to b, in
view of (4.34), results in

‖w‖C −w(a)≤
∫ t1

a
�0(w)(s)ds≤ ‖w‖C

∫ t1

a
�0(1)(s)ds,

w(b)≤
∫ b

t0
�0(w)(s)ds≤ ‖w‖C

∫ b

t0
�0(1)(s)ds.

(4.37)

Summing the last two inequalities and taking into account (4.33), we obtain

‖w‖C ≤ ‖w‖C
(∫ t1

a
�0(1)(s)ds+

∫ b

t0
�0(1)(s)ds

)
≤ ‖w‖C

∫ b

a
�0(1)(s)ds. (4.38)

Hence, since w �≡ 0, we get
∫ b
a �0(1)(s)ds≥ 1, which contradicts (4.11). �

The following assertion can be proved analogously.

Theorem 4.10. Let the operator � admit the representation � = �0− �1, where �0,�1 ∈�ab,
and ∫ b

a
�1(1)(s)ds < 1,

∫ b

a
�0(1)(s)ds < 2 + 2

√
1−

∫ b

a
�1(1)(s)ds.

(4.39)

Then dimU = 1.

Remark 4.11. Theorems 4.8 and 4.10 are nonimprovable in a certain sense. More pre-
cisely, neither one of the strict inequalities (4.11), (4.12), and (4.39) can be replaced by
the nonstrict one (see Example 5.2).

Remark 4.12. It is known (see [6, Theorem VII.1.27, page 234]) that � ∈ �̃ab if and only
if � admits the representation � = �0− �1, where �0,�1 ∈�ab. Therefore Theorems 4.8 and

4.10 actually claim that � ∈ �̃ab.

5. Examples

Example 5.1. Let n∈N, ti ∈ [a,b] (i= 0,n) be such that t0 = a, tn = b, ti−1 < ti (i= 1,n),
and let ξi ∈]ti−1, ti[ and ui ∈ C̃([a,b];R) (i= 1,n) be such that

ui
(
ξi
)= 1, ui(t)= 0 for t ∈ [a,b] \ ]ti−1, ti

[
, i= 1,n. (5.1)

Let

p(t)= u′i (t), τ(t)= ξi for t ∈ ]ti−1, ti
[
, i= 1,n. (5.2)

Obviously, p ∈ L([a,b];R), τ ∈�ab, and the functions u1, . . . ,un are linearly independent
solutions of an equation with a deviating argument

u′(t)= p(t)u
(
τ(t)

)
. (5.3)
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Let u be an arbitrary solution of (5.3). Clearly,

u′(t)= u′i (t)u
(
ξi
)

for t ∈ [ti−1, ti
]
, i= 1,n. (5.4)

The integration of these equalities from ti−1 to t, with respect to ui(ti−1)= 0, yields

u(t)= u
(
ti−1
)

+u
(
ξi
)
ui(t) for t ∈ [ti−1, ti

]
, i= 1,n. (5.5)

Hence, for t = ξi, since ui(ξi)= 1, we obtain u(ti−1)= 0 (i= 1,n), and, consequently,

u(t)= u
(
ξi
)
ui(t) for t ∈ [ti−1, ti

]
, i= 1,n. (5.6)

Now it is obvious that

u(t)=
n∑
i=1

αiui(t) for t ∈ [a,b], (5.7)

where αi = u(ξi). Thus the solution space of (5.3) has dimension n.

Example 5.2. Let W be a set of pairs (x, y)∈R+×R+ such that either

x < 1, y < 2 + 2
√

1− x, (5.8)

or

y < 1, x < 2 + 2
√

1− y. (5.9)

By virtue of Theorems 4.8 and 4.10, if �=�0−�1, where �0,�1∈�ab are such that (‖�0(1)‖L,
‖�1(1)‖L)∈W , then dimU=1. We will show that for every x0, y0 ∈R+ such that (x0, y0) �∈
W there exists � ∈ �̃ab satisfying � = �0− �1, �0,�1 ∈�ab,

x0 =
∫ b

a
�0(1)(s)ds, y0 =

∫ b

a
�1(1)(s)ds, (5.10)

and dimU ≥ 2.
First, let x0 ∈ [0,1[, y0 ≥ 2 + 2

√
1− x0, ci ∈]a,b[ (i= 1,2,3,4), a < c1 < c2 < c3 < c4 < b,

and choose p,g ∈ L([a,b];R+) such that

∫ c1

a
g(s)ds= 1,

∫ c2

c1

g(s)ds= y0−
(
2 + 2

√
1− x0

)
,

∫ c3

c2

g(s)ds= 0,∫ c4

c3

g(s)ds= √1− x0,
∫ b

c4

g(s)ds= 1 +
√

1− x0,∫ c2

a
p(s)ds= 0,

∫ c3

c2

p(s)ds= x0,
∫ b

c3

p(s)ds= 0.

(5.11)
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Let τ ≡ c4,

µ(t)=


a for t ∈ [a,c1

[
,

c1 for t ∈ [c1,c2
[
,

b for t ∈ [c2,c4
[
,

c4 for t ∈ [c4,b
]
,

(5.12)

and define

�0(v)(t)
def= p(t)v

(
τ(t)

)
, �1(v)(t)

def= g(t)v
(
µ(t)

)
for t ∈ [a,b],

�(v)(t)
def= �0(v)(t)− �1(v)(t) for t ∈ [a,b].

(5.13)

Then (5.10) is fulfilled and (1.6) has two linearly independent solutions:

u1(t)=



−√1− x0 +
√

1− x0

∫ t

a
g(s)ds for t ∈ [a,c1

[
,

0 for t ∈ [c1,c2
[
,∫ t

c2

p(s)ds for t ∈ [c2,c3
[
,

x0 +
√

1− x0

∫ t

c3

g(s)ds for t ∈ [c3,c4
[
,

1−
∫ t

c4

g(s)ds for t ∈ [c4,b
]
,

u2(t)=
−
√

1− x0 +
√

1− x0

∫ t

a
g(s)ds for t ∈ [a,c1

[
,

0 for t ∈ [c1,b
]
.

(5.14)

Now let x0 ≥ 1, y0 ≥ 1, and c ∈]a,b[. Choose p,g ∈ L([a,b];R+) such that∫ c

a
p(s)ds= x0− 1,

∫ b

c
p(s)ds= 1,∫ c

a
g(s)ds= 1,

∫ b

c
g(s)ds= y0− 1,

(5.15)

and let

τ(t)=
c for t ∈ [a,c[,

b for t ∈ [c,b],
µ(t)=

a for t ∈ [a,c[,

c for t ∈ [c,b].
(5.16)

Define operators �0, �1, and � by (5.13). Then (5.10) is fulfilled and (1.6) has two linearly
independent solutions:

u1(t)=


0 for t ∈ [a,c[,∫ t

c
p(s)ds for t ∈ [c,b],

u2(t)=

∫ c

t
g(s)ds for t ∈ [a,c[,

0 for t ∈ [c,b].

(5.17)
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At last, mention that in the case when y0 ∈ [0,1[ and x0 ≥ 2 + 2
√

1− y0, the operator
� satisfying � = �0− �1 with �0,�1 ∈�ab, such that (5.10) holds and (1.6) has two linearly
independent solutions, can be constructed in an analogous way as above.

Acknowledgment

The first author was supported by the Grant 201/00/D058 of the Grant Agency of the
Czech Republic, the second author was supported by the Research Intention Grant
J07/98:143100001 of Ministry of Education of the Czech Republic.

References

[1] N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of
Functional-Differential Equations, Nauka, Moscow, 1991 (Russian).

[2] , Methods of Modern Theory of Linear Functional Differential Equations, R&C Dynamics,
Moscow, 2000 (Russian).

[3] E. Bravyi, A note on the Fredholm property of boundary value problems for linear functional dif-
ferential equations, Mem. Differential Equations Math. Phys. 20 (2000), 133–135.

[4] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathe-
matics, vol. 7, Interscience Publishers, New York, 1958.

[5] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Izdat. Nauka, Moscow, 1977 (Russian).
[6] L. V. Kantorovich, B. Z. Vulih, and A. G. Pinsker, Functional Analysis in Partially Ordered Spaces,

Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1950 (Russian).
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