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In a previous paper, the first author derived an explicit quantitative version of
a theorem due to Borwein, Reich, and Shafrir on the asymptotic behaviour of
Mann iterations of nonexpansive mappings of convex sets C in normed linear
spaces. This quantitative version, which was obtained by a logical analysis of the
ineffective proof given by Borwein, Reich, and Shafrir, could be used to obtain
strong uniform bounds on the asymptotic regularity of such iterations in the
case of bounded C and even weaker conditions. In this paper, we extend these
results to hyperbolic spaces and directionally nonexpansive mappings. In partic-
ular, we obtain significantly stronger and more general forms of the main results
of a recent paper by W. A. Kirk with explicit bounds. As a special feature of
our approach, which is based on logical analysis instead of functional analysis,
no functional analytic embeddings are needed to obtain our uniformity results
which contain all previously known results of this kind as special cases.

1. Introduction

This paper continues the approach of applying methods from mathematical
logic to proofs in the metric fixed-point theory started by the first author in
[9, 13, 14]. In particular, [9, 14] were concerned with explicit bounds on the as-
ymptotic behaviour of the so-called Mann iterations of nonexpansive mappings
in the following setting.

Let (X,‖ · ‖) be a normed linear space, C ⊆ X convex, and f : C→ C nonex-
pansive, that is,

∀x, y ∈ C,
∥∥ f (x)− f (y)

∥∥≤ ‖x− y‖. (1.1)

Let (λn)n∈N be a sequence of real numbers in [0,1). Then, a Mann iteration
starting from x0 := x ∈ C is defined as (the special case of λn := 1/2 was already
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considered by Krasnosel’skiı̆ in [16])

xn+1 := (1− λn
)
xn + λn f

(
xn
)
. (1.2)

In [2], the following important result is proved. If (λn)n∈N is divergent in sum
and is bounded away from 1, then

∀x ∈ C,
∥∥xn− f

(
xn
)∥∥−→ rC( f ), (1.3)

where rC( f ) := inf{‖x− f (x)‖ | x ∈ C}.
In many cases, for example, for bounded C, rC( f ) can be shown to be 0,

that is, ‖xn − f (xn)‖ → 0, which (for bounded C) was first proved by Ishikawa
in the classical paper [6]. The special case of constant λk = λ also follows from
[3], which even proves uniform (in x) convergence. Later, [4] extended this to
uniformity in both x and f .

Using specially designed techniques from mathematical logic, the first au-
thor established in a series of papers general theorems on the extractability of
explicit bounds from large classes of prima facie ineffective existence proofs, to-
gether with procedures, to transform such proofs into new ones from which
these bounds can be read off (see [10, 11, 12] and, for a general survey, [15]).
The proof given by Borwein et al. in [2] of the result just cited happens to be of
the required form. In [14], as a result of the logical transformation of the proof,
a new quantitative version of the Borwein-Reich-Shafrir theorem was obtained.
From this version, explicit uniform bounds for the case of bounded C could sim-
ply be read off. These bounds only depend on the error ε, an upper bound for
the diameter of C, a distance by which (λn) stays away from 1, and a rate of diver-
gence of the sum of that sequence towards infinity. Subsequently (see [9]), this
could be extended to the case where not C as a whole is required to be bounded
but only some Mann iteration sequence.

The logical approach does not use any tools from functional analysis to es-
tablish these uniformity results which suggests that it should be possible to gen-
eralize the results to other settings in which the basic proof idea of the Borwein-
Reich-Shafrir theorem applies.

In this paper, we show that, indeed, all results from [14] (as well as the one
from [9] just mentioned) extend to the more general class of hyperbolic spaces
(in the sense of [18]) and (with minor changes in the assumptions) to the more
general class of directionally nonexpansive mappings (in the sense of [8]).

In particular, we prove significantly stronger forms of the main results in [8].
Although some of the proofs follow closely those in [14], we include them in this
paper for completeness.
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2. Hyperbolic spaces basic results

In this section, we present hyperbolic spaces, defined by Reich and Shafrir [18]
as an appropriate context for the study of operator theory in general, and of it-
erative processes for nonexpansive mappings in particular. This class of metric
spaces includes all normed linear spaces and Hadamard manifolds, as well as the
Hilbert ball equipped with the hyperbolic metric [7] and the Cartesian products
of Hilbert balls. Extensive information on hyperbolic spaces and a detailed treat-
ment of examples like the Hilbert ball can be found in [5] (see also [4, 7, 17, 19]).

A still more general class of metric spaces is the class of spaces of hyperbolic
type (see [4, 7]), which are contained in the class of convex metric spaces [20].
In particular, every hyperbolic space is a space of hyperbolic type.

In the following, we collect some basic facts on hyperbolic spaces which we
will need later. To make the paper self-contained we include the (short) proofs.

Let (X,ρ) be a metric space and let R denote the real line. We say that a map-
ping c : R→ X is a metric embedding of R into X if

ρ
(
c(s), c(t)

)= |s− t| (2.1)

for all real s and t. The image of R under a metric embedding will be called a
metric line.

Any isometry c : R→ X is a metric embedding and the metric line associ-
ated with it is X . In fact, a metric embedding is an isometry if and only if it is
surjective.

The image c([a,b])⊆ X of a real interval under a metric embedding c : R→ X
will be called a metric segment.

Let x, y ∈ X and let c : R→ X be a metric embedding. We say that the met-
ric line c(R) passes through x and y if x, y ∈ c(R) and that the metric segment
c([a,b]) joins x and y if (c(a)= x and c(b)= y) or (c(a)= y and c(b)= x).

In the sequel, we assume that (X,ρ) contains a nonempty family M of metric
lines such that for each pair of distinct points x and y in X , there is a unique
metric line which passes through x and y. Hence, there is a nonempty family
{ci}i∈I of metric embeddings such that for all x �= y ∈ X there is a unique i ∈ I
such that x, y ∈ ci(R).

Remark 2.1. Since M �= ∅, there is at least one metric embedding c : R→ X .
Since c is injective, it follows that card(X)≥ card(R)= ℵ1.

The following lemmas collect some simple facts. For the sake of completeness,
we prove them.

Lemma 2.2. For any x ∈ X , there is at least one metric line from M that passes
through x.

Proof. By the above remark, X is infinite, so there is y ∈ X , y �= x. Take now the
unique metric line that passes through x and y. �
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Lemma 2.3. For any distinct points x and y in X , there is a unique metric segment
joining them.

Proof. There is a unique i ∈ I such that x, y ∈ ci(R). Since ci is injective, there
are unique a,b ∈R, a �= b, such that ci(a)= x and ci(b)= y. Hence, the unique
metric segment joining x and y is ci([a,b]) if a < b or ci([b,a]) if b < a. �

We denote by [x, y] or [y,x] the unique metric segment joining two distinct
points x and y from X .

For any x ∈ X , by [x,x], we understand the singleton {x}. By Lemma 2.2,
there is c : R→ X and a ∈ R such that c(a) = x, hence {x} = c([a,a]). Thus,
[x,x] is a degenerate metric segment.

Lemma 2.4. Let x, y ∈ X , x �= y, and z,w ∈ [x, y]. Then,

(i) 0≤ ρ(x,z)≤ ρ(x, y);
(ii) if ρ(x,z)= ρ(x,w), then z =w.

Proof. Let [x, y]= c([a,b]).
(i) Let s ∈ [a,b] such that c(s) = z. If c(a) = x and c(b) = y, then ρ(x,z) =

ρ(c(a), c(s)) = |s− a| = s− a ≤ b− a = ρ(x, y). If c(a) = y and c(b) = x, then
ρ(x,z)= ρ(c(b), c(s))= |b− s| = b− s≤ b− a= ρ(x, y).

(ii) Since z,w ∈ [x, y], there are s1, s2 ∈ [a,b] such that c(s1)= z and c(s2)=w.
Suppose that c(a)= x and c(b)= y. It follows that ρ(x,z)= ρ(c(a), c(s1))= |a−
s1| = s1− a, and, similarly, ρ(x,w)= s2− a. Thus, ρ(x,z)= ρ(x,w) if and only if
s1− a= s2− a if and only if s1 = s2 if and only if z =w. �

Lemma 2.5. Let c : R→ X be a metric embedding, a≤ b∈R, and t ∈ [0,1]. Then,

ρ
(
c(a), c

(
(1− t)a+ tb

))= tρ
(
c(a), c(b)

)
,

ρ
(
c(b), c

(
(1− t)a+ tb

))= (1− t)ρ
(
c(a), c(b)

)
.

(2.2)

Proof. This follows from ρ(c(a), c((1− t)a+ tb)) = |a− ((1− t)a+ tb)| = t|a−
b|= tρ(c(a), c(b)), and, similarly, ρ(c(b), c((1− t)a+ tb))=|b− ((1− t)a+ tb)|=
(1− t)|a− b| = (1− t)ρ(c(a), c(b)). �

Proposition 2.6. Let x, y ∈ X . For each t ∈ [0,1], there is a unique point z ∈
[x, y] such that

ρ(x,z)= tρ(x, y), ρ(y,z)= (1− t)ρ(x, y). (2.3)

Proof. If x= y, then, obviously, z=x= y. Suppose that x �= y. Let [x, y]=c([a,b]).
If c(a)= x and c(b)= y, then take z = c((1− t)a+ tb). If c(b)= x and c(a)= y,
then take z = c((1− t)b+ ta). Then, z ∈ [x, y] and z satisfies (2.3) by Lemma 2.5.
Unicity of z follows from Lemma 2.4(ii). �
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The unique point satisfying (2.3) will be denoted as (1− t)x⊕ ty. Then, for
any x ∈ X and t ∈ [0,1], (1− t)x⊕ tx = x.

If z ∈ [x, y] satisfies only one of conditions (2.3), then it is necessary that z =
(1− t)x⊕ ty. Hence, any point of the segment [x, y] satisfying one of conditions
(2.3) satisfies also the other.

Remark 2.7. Let x, y ∈ X , x �= y, and s, t ∈ [0,1]. Then,

(i) (1− t)x⊕ ty = (1− s)x⊕ sy if and only if s= t;
(ii) (1− t)x⊕ ty = ty⊕ (1− t)x.

Lemma 2.8. Let x, y ∈ X , x �= y. Then,

(i) [x, y]= {(1− t)x⊕ ty | t ∈ [0,1]};
(ii) the mapping f : [0,1]→ [x, y], f (t) = (1− t)x⊕ ty is continuous and bi-

jective;
(iii) ρ(x,z) + ρ(z, y)= ρ(x, y) for all z ∈ [x, y];
(iv) if z �= w ∈ X are such that ρ(x, y) ≤ ρ(z,w), then there is a unique v ∈

[z,w] such that ρ(z,v)= ρ(x, y).

Proof. (i) The inclusion ⊇ follows by definition.
For the converse inclusion ⊆, let z ∈ [x, y] and t = ρ(x,z)/ρ(x, y). Then, by

Lemma 2.4(i), t ∈ [0,1] and ρ(x,z)= tρ(x, y). It follows that z = (1− t)x⊕ ty.
(ii) Applying (i) and Remark 2.7(i), we immediately get that f is well defined

and bijective. Let c([a,b])= [x, y]. Then for all t ∈ [0,1], f (t)= c((1− t)a+ tb).
Since c is continuous and the map [0,1]→ [a,b], t → (1− t)a+ tb is also contin-
uous, it follows that f is continuous.

(iii) Let z ∈ [x, y]. By (i), there is t ∈ [0,1] such that z = (1− t)x⊕ ty, hence
ρ(x,z) + ρ(z, y)= tρ(x, y) + (1− t)ρ(x, y)= ρ(x, y).

(iv) Let t = ρ(x, y)/ρ(z,w), so t ∈ [0,1]. Let v = (1− t)z⊕ tw. Then v ∈ [z,w]
and ρ(z,v)= tρ(z,w)= ρ(x, y). �

Definition 2.9 [18]. A triple (X,ρ,M) is a hyperbolic space if

ρ
(

1
2
x⊕ 1

2
y,

1
2
x⊕ 1

2
z
)
≤ 1

2
ρ(y,z) (2.4)

for all x, y,z ∈ X .

Remark 2.10 [18]. Equation (2.4) is equivalent to

ρ
(

1
2
x⊕ 1

2
y,

1
2
w⊕ 1

2
z
)
≤ 1

2

(
ρ(x,w) + ρ(y,z)

)
(2.5)

for all x, y,z,w ∈ X .
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Proof. (2.5)⇒(2.4) is obvious, just take w = x. It remains to prove (2.4)⇒(2.5).
For any x, y,z,w ∈ X ,

ρ
(

1
2
x⊕ 1

2
y,

1
2
w⊕ 1

2
z
)
≤ ρ

(
1
2
x⊕ 1

2
y,

1
2
x⊕ 1

2
z
)

+ρ
(

1
2
x⊕ 1

2
z,

1
2
w⊕ 1

2
z
)

≤ 1
2

(
ρ(y,z) + ρ(x,w)

)
.

(2.6)

�

Let (X,ρ,M) be a hyperbolic space. A nonempty subset C ⊆ X is convex if
[x, y]∈ C for all x, y ∈ C. We denote by d(C) the diameter of C. Hence,

d(C)= sup
{
ρ(x, y) | x, y ∈ C

}
. (2.7)

The set C is bounded if d(C) <∞. A sequence (xn)n∈N ⊆ X is bounded if the set
{xn | n∈N} is bounded.

At a few places, we use the following fact.

Proposition 2.11 [5, 18]. Let (X,ρ,M) be a hyperbolic space. Then,

ρ
(
(1− t)x⊕ tz,(1− t)y⊕ tw

)≤ (1− t)ρ(x, y) + tρ(z,w) (2.8)

for all t ∈ [0,1] and x, y,z,w ∈ X .

Proof. The idea of the proof is presented in [5, pages 77, 104]. We first prove
the result for t = k/2n, where k,n∈N are such that k ≤ 2n. We use induction on
n. If n = 0, then k/2n = k and k ∈ {0,1}. If k = 0, then (2.8)⇔ (ρ(1x⊕ 0z,1y⊕
0w)≤ρ(x, y))⇔ (ρ(x, y)≤ρ(x, y)). If k=1, then (2.8)⇔ (ρ(0x⊕ 1z,0y ⊕ 1w) ≤
ρ(z,w))⇔ (ρ(z,w)≤ ρ(z,w)). Hence, (2.8) is true even with equality.

Now, suppose that (2.8) is true for t = k/2n. Hence,

ρ
((

1− k

2n

)
x⊕ k

2n
z,
(

1− k

2n

)
y⊕ k

2n
w
)
≤
(

1− k

2n

)
ρ(x, y) +

k

2n
ρ(z,w) (2.9)

for all k ∈N, k ≤ 2n and for all x, y,z,w ∈ X .
We have to prove (2.8) for t = k/2n+1, where k ∈ N, k ≤ 2n+1. If we denote

u := (1− k/2n+1)x⊕ (k/2n+1)z and v := (1− k/2n+1)y⊕ (k/2n+1)w, then we have
to prove

ρ(u,v)≤
(

1− k

2n+1

)
ρ(x, y) +

k

2n+1
ρ(z,w). (2.10)

First, we show (2.10) for k ≤ 2n, that is, k/2n ∈ [0,1]. Let α := (1− k/2n)x ⊕
(k/2n)z, β := (1− k/2n)y ⊕ (k/2n)w, α1 := (1/2)x⊕ (1/2)α, and β1 := (1/2)y ⊕
(1/2)β. Then, ρ(x,α1)= (1/2)ρ(x,α)= (k/2n+1)ρ(x,z)= ρ(x,u) and α1,u∈ [x,z]
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since u,α∈ [x,z] and α1 ∈ [x,α]. Applying Lemma 2.4(ii), it follows that u= α1.
We similarly get that v = β1. Now, applying (2.5) and the induction hypothesis,
it follows that

ρ(u,v)= ρ
(
α1,β1

)= ρ
(

1
2
x⊕ 1

2
α,

1
2
y⊕ 1

2
β
)
≤ 1

2

(
ρ(x, y) + ρ(α,β)

)
≤ 1

2
ρ(x, y) +

1
2

((
1− k

2n

)
ρ(x, y) +

k

2n
ρ(z,w)

)
=
(

1− k

2n+1

)
ρ(x, y) +

k

2n+1
ρ(z,w).

(2.11)

Now, suppose that 2n < k ≤ 2n+1 and let p := 2n+1 − k. Then p ≤ 2n, so we can
apply (2.10) for p. We obtain

ρ(u,v)= ρ
(

p

2n+1
x⊕

(
1− p

2n+1

)
z,

p

2n+1
y⊕

(
1− p

2n+1

)
w
)

= ρ
((

1− p

2n+1

)
z⊕ p

2n+1
x,
(

1− p

2n+1

)
w⊕ p

2n+1
y
)

≤
(

1− p

2n+1

)
ρ(z,w) +

p

2n+1
ρ(x, y)

=
(

1− k

2n+1

)
ρ(x, y) +

k

2n+1
ρ(z,w).

(2.12)

In the sequel, we use the fact that the set D := {k/2n | k,n∈N, k ≤ 2n} is dense
in [0,1]. Let t ∈ [0,1]. Then, there is (tp)p∈N ⊆D such that limp→∞ tp = t. For all
p ∈N,

ρ
((

1− tp
)
x⊕ tpz,

(
1− tp

)
y⊕ tpw

)≤ (1− tp
)
ρ(x, y) + tpρ(z,w). (2.13)

Letting p→∞ and using Lemma 2.8(ii) and the fact that ρ is continuous, we get
(2.8). �

Corollary 2.12. Let (X,ρ,M) be a hyperbolic space. Then, for all t ∈ [0,1] and
x, y,z ∈ X ,

ρ
(
(1− t)x⊕ tz, y

)≤ (1− t)ρ(x, y) + tρ(z, y). (2.14)

Proof. Apply (2.8) with w = y. �

We now present the related concept of metric space of hyperbolic type [4, 7]
(see also [20]).

Let (X,ρ) be a metric space and S a family of metric segments. We say that
(X,ρ,S) is of hyperbolic type if the following are satisfied:

(i) for each two points x, y ∈ X , there is a unique metric segment from S
that joins them, denoted as [x, y];
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(ii) if p,x, y,m∈ X and if m∈ [x, y] satisfies ρ(x,m)= tρ(x, y) for t ∈ [0,1],
then

ρ(p,m)≤ (1− t)ρ(p,x) + tρ(p, y). (2.15)

Proposition 2.13. Any hyperbolic space is of hyperbolic type.

Proof. Let (X,ρ,M) be a hyperbolic space. Let S be the family of all metric seg-
ments determined by the metric embeddings associated with M. Let x, y ∈M.
If x �= y, then (i) is satisfied, by Lemma 2.3. If x = y, then the unique metric
segment from S that joins x and x is [x,x]= {x}. We verify (ii). Since m∈ [x, y]
and ρ(x,m)= tρ(x, y)= ρ(x,(1− t)x⊕ ty), by Lemma 2.4(ii), we must have m=
(1− t)x⊕ ty. Now apply (2.14). �

In the sequel, let (λn)n∈N ⊆ [0,1).
Denote, for all i,n∈N,

Si,n :=
i+n−1∑
s=i

λs, Pi,n :=
i+n−1∏
s=i

1
1− λs

. (2.16)

Let (xn)n∈N and (yn)n∈N be two sequences in X such that for all n∈N,

xn+1 =
(
1− λn

)
xn⊕ λnyn. (2.17)

The following very important result was proved in [4] for spaces of hyperbolic
type. Hence, by Proposition 2.13, it is true also for hyperbolic spaces.

Proposition 2.14 [4]. Let (X,ρ,M) be a hyperbolic space. Suppose that (xn)n∈N

and (yn)n∈N satisfy for all n∈N,

ρ
(
yn, yn+1

)≤ ρ
(
xn,xn+1

)
. (2.18)

Then, the sequence (ρ(xn, yn))n∈N ⊆R is nonincreasing and, for all i,n∈N,

(
1 + Si,n

)
ρ
(
xi, yi

)≤ ρ
(
xi, yi+n

)
+Pi,n

[
ρ
(
xi, yi

)− ρ
(
xi+n, yi+n

)]
. (2.19)

We use in the sequel the following consequence of the above inequality.

Proposition 2.15 [2]. In the assumptions of Proposition 2.14,

Si,nρ
(
xi, yi

)≤ ρ
(
xi,xi+n

)
+Pi,n

[
ρ
(
xi, yi

)− ρ
(
xi+n, yi+n

)]
. (2.20)

Proof. Apply Proposition 2.14 and the fact that ρ(xi, yi+n)−ρ(xi, yi)≤ρ(xi,xi+n)+
ρ(xi+n, yi+n)− ρ(xi, yi) ≤ ρ(xi,xi+n); since (ρ(xn, yn))n∈N is nonincreasing, hence
ρ(xi+n, yi+n)− ρ(xi, yi)≤ 0. �
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Proposition 2.16 [4]. In addition to the assumptions of Proposition 2.14, assume
that

(i) the set {ρ(xn, yn+i) | n, i∈N} is bounded;
(ii) (λn)n∈N is divergent in sum;

(iii) there is b ∈ (0,1) such that λn ≤ b for all n∈N.

Then limn→∞ ρ(xn, yn)= 0.

Proof. This result is proved in [4] for any space of hyperbolic type. Applying
again Proposition 2.13, it follows that it is true for any hyperbolic space, too. �

Lemma 2.17. In the hypotheses of Proposition 2.14, the following are equivalent:

(i) (xn)n∈N is bounded;
(ii) (yn)n∈N is bounded;

(iii) the set {ρ(xn, yn+i) | n, i∈N} is bounded.

Proof. Let n, i∈N.
(i)⇒(ii). ρ(yn, yn+i) ≤ ρ(yn,xn) + ρ(xn,xn+i) + ρ(xn+i, yn+i) ≤ 2ρ(x0, y0) +

ρ(xn,xn+i) since (ρ(xn, yn))n∈N is nonincreasing, by Proposition 2.14.
(ii)⇒(iii). ρ(xn, yn+i)≤ ρ(xn, yn) + ρ(yn, yn+i)≤ ρ(x0, y0) + ρ(yn, yn+i).
(iii)⇒(i). ρ(xn,xn+i)≤ ρ(xn, yn+i) + ρ(yn+i,xn+i)≤ ρ(xn, yn+i) + ρ(x0, y0). �

Lemma 2.18. The following are equivalent:

(i) limsupn→∞ λn < 1;
(ii) there is b ∈ (0,1) such that λn ≤ b < 1 for all n∈N.

Proof. Obviously, since λn < 1 for all n∈N. �

Using these lemmas, we obtain the following reformulation of Proposition
2.16.

Theorem 2.19. Let (X,ρ,M) be a hyperbolic space and (λn)n∈N ⊆ [0,1). Suppose
that (λn)n∈N is divergent in sum and limsupn→∞ λn < 1.

Let (xn)n∈N and (yn)n∈N be two sequences in X which satisfy for all n∈N,

xn+1 =
(
1− λn

)
xn⊕ λnyn, ρ

(
yn, yn+1

)≤ ρ
(
xn,xn+1

)
. (2.21)

If (xn)n∈N is bounded, then limn→∞ ρ(xn, yn)= 0.

3. Uniform asymptotic regularity for directionally nonexpansive mappings

The main purpose of the present paper is to generalize the core results from
[9, 14] not only to hyperbolic spaces (which is largely straightforward) but at the
same time to directionally nonexpansive mappings, which requires quite some
care. Directionally nonexpansive mappings were considered in [8]. In this sec-
tion, we, in particular, strengthen the main results from [8].
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Definition 3.1 [8]. Let (X,ρ,M) be a hyperbolic space and C ⊆ X a nonempty
convex subset. A mapping f : C→ C is called directionally nonexpansive if

ρ
(
f (x), f (y)

)≤ ρ(x, y), (3.1)

for all x ∈ C and y ∈ [x, f (x)].

Recall that f : C→ C is called nonexpansive if for all x, y ∈ C,

ρ
(
f (x), f (y)

)≤ ρ(x, y). (3.2)

Obviously, any nonexpansive mapping is directionally nonexpansive, but the
converse fails as directionally nonexpansive mappings do not even need to be
continuous on the whole space.

Example 3.2 (simplified by Paulo Oliva). Consider the normed space (R2,
‖ · ‖max) and the function

f : [0,1]2 −→ [0,1]2, f (x, y) :=
(1, y), if y > 0,

(0, y), if y = 0.
(3.3)

Clearly, f is directionally nonexpansive (even directionally constant) but dis-
continuous at (0,0).

In the following, (X,ρ,M) will be an arbitrary hyperbolic space, C ⊆ X a
nonempty convex subset of X , and f : C→ C a directionally nonexpansive map-
ping. Define [2]

rC( f ) := inf
{
ρ
(
x, f (x)

) | x ∈ C
}
. (3.4)

We consider the so-called Krasnosel’skĭı-Mann iteration starting from x ∈ C

x0 := x, xn+1 := (1− λn
)
xn⊕ λn f

(
xn
)
, (3.5)

where (λn)n∈N is a sequence of real numbers in [0,1).

Lemma 3.3. For all n∈N,

ρ
(
f
(
xn
)
, f
(
xn+1

))≤ ρ
(
xn,xn+1

)
. (3.6)

Proof. Since xn+1 ∈ [xn, f (xn)], we can apply the fact that f is directionally non-
expansive to obtain that ρ( f (xn), f (xn+1))≤ ρ(xn,xn+1). �

Thus, the sequences (xn)n∈N and ( f (xn))n∈N satisfy the hypotheses of
Proposition 2.14 with yn := f (xn). We get immediately the following results.

Proposition 3.4. The sequence (ρ(xn, f (xn)))n∈N ⊆ R is nonincreasing and for
all i,n∈N,

Si,nρ
(
xi, f

(
xi
))≤ ρ

(
xi,xi+n

)
+Pi,n

[
ρ
(
xi, f

(
xi
))− ρ

(
xi+n, f

(
xi+n

))]
. (3.7)
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Proof. Apply Lemma 3.3, Proposition 2.14, and Proposition 2.15. �

For nonexpansive mappings, the following proposition is due to [6] (normed
spaces) and [4] for hyperbolic spaces. Using Lemma 3.3, the proof from [4] ex-
tends to directionally nonexpansive mappings.

Proposition 3.5. Suppose that (λn)n∈N is divergent in sum and limsupn→∞ λn <
1. If (xn)n∈N is bounded, then limn→∞ ρ(xn, f (xn))= 0.

Proof. By Theorem 2.19 and Lemma 3.3. �

Corollary 3.6. Suppose that (λn)n∈N is divergent in sum and limsupn→∞ λn < 1.
If C is bounded, then for every x ∈ X , limn→∞ ρ(xn, f (xn))= 0.

Corollary 3.7. Suppose that (λn)n∈N is divergent in sum and limsupn→∞ λn < 1.
If C is bounded or—even weaker—there is x ∈ C such that (xn)n∈N is bounded,
then rC( f )= 0.

Let x∗ ∈ C and (x∗n )n∈N be the Krasnosel’skiı̆-Mann iteration that starts
from x∗.

The next inequality is due to [2].

Lemma 3.8. If f is nonexpansive, then for all n∈N,

ρ
(
xn+1,x

∗
n+1

)≤ ρ
(
xn,x

∗
n

)
. (3.8)

Proof. Applying inequality (2.8) and the definition of a nonexpansive mapping,
we get that

ρ
(
xn+1,x

∗
n+1

)= ρ
((

1− λn
)
xn⊕ λn f

(
xn
)
,
(
1− λn

)
x∗n ⊕ λn f

(
x∗n
))

≤ (1− λn
)
ρ
(
xn,x

∗
n

)
+ λnρ

(
f
(
xn
)
, f
(
x∗n
))

≤ (1− λn
)
ρ
(
xn,x

∗
n

)
+ λnρ

(
xn,x

∗
n

)
= ρ

(
xn,x

∗
n

)
.

(3.9)

�

Since, in general, x∗n �∈ [xn, f (xn)], we cannot prove the inequality

ρ
(
f
(
xn
)
, f
(
x∗n
))≤ ρ

(
xn,x

∗
n

)
, (3.10)

on which the proof of Lemma 3.8 is based for directionally nonexpansive map-
pings f . The absence of Lemma 3.8 causes some changes in the generalizations
of the main results from [9, 14] to directionally nonexpansive mappings carried
out below.

In [2], the following theorem is proved.
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Theorem 3.9 [2]. Let (X,‖ · ‖) be a normed linear space, C ⊆ X convex, and
f : C→ C nonexpansive. Let (λn)n∈N be a sequence of real numbers in [0,1), which
is divergent in sum and satisfies limsupn→∞ λn < 1. Then,

∥∥xn− f
(
xn
)∥∥ n→∞−−−−→ rC( f ), (3.11)

where (xn)n∈N is the Krasnosel’skĭı-Mann iteration starting from x ∈ C.

In [14], applying proofs transformations developed in the context of mathe-
matical logic (see [15]) to the proof of Theorem 3.8 from [2], the first author ob-
tained an effective quantitative version of that theorem (see also Remark 3.11).
From this quantitative version, various strong (effective) uniformity results for
the case of bounded C were derived (improving previous results in this direction
from [3, 4]), as well as (for the first time) for the more general case of bounded
(xn)n∈N (see [9]). Since these uniformity results were obtained by logical analysis
and, in particular, did not use any functional analytic embedding techniques (in
contrast to [3, 4]), this suggests that it should be possible to extend these results
to the more general setting of hyperbolic spaces and directionally nonexpansive
mappings. The main content of this paper is to show that this is indeed true to
a large extent. Whereas the extension to hyperbolic spaces does not cause any
problems at all, the absence of Lemma 3.8 for directionally nonexpansive map-
pings results in an additional hypothesis which, however, is trivially satisfied, for
example, in the bounded case.

Theorem 3.10. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty convex sub-
set, and f : C→ C a directionally nonexpansive mapping. Let (λn)n∈N be a sequence
in [0,1) which is divergent in sum and satisfies

∀n∈N, λn ≤ 1− 1
K
, (3.12)

for some K ∈N.
Let α : N×N→N be such that

∀i,n∈N,
(
α(i,n)≤ α(i+ 1,n)

)∧(n≤ i+α(i,n)−1∑
s=i

λs

)
. (3.13)

Let x,x∗ ∈ C and d > 0 be such that

∀n∈N, ρ
(
xn,x

∗
n

)≤ d, (3.14)

where (xn)n∈N and (x∗n )n∈N are the Krasnosel’skĭı-Mann iterations starting from x
and x∗.

Then,

∀ε > 0, ∀n≥ h(ε,x,d, f ,K,α), ρ
(
xn, f

(
xn
))

< ρ
(
x∗, f

(
x∗
))

+ ε (3.15)
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holds, where (n−· 1=max(0,n− 1))

h(ε,x,d, f ,K,α) := α̂
(⌈

2c( f ,x) · exp
(
K(M + 1)

)⌉−· 1,M
)
, (3.16)

whereM∈N is such thatM≥(1+2d)/ε, c( f ,x)∈R is such that c( f ,x)≥ρ(x, f (x)),
and α̂(0,n) := α̃(0,n), α̂(i+ 1,n) := α̃(α̂(i,n),n) with α̃(i,n) := i+α(i,n) (i,n∈N).

Proof. Most parts of the proof follow closely the one given in [14] for the non-
expansive case (and normed spaces). For completeness we present, nevertheless,
all details.

Let

γ := ρ
(
x∗, f

(
x∗
))
. (3.17)

Let ε > 0 be arbitrary and M ∈N be such that

M ≥ 1 + 2d
ε

. (3.18)

For example, M := �(1 + 2d)/ε�.
Let δ > 0 be so small that

δ exp
(
K(M + 1)

)
< 1. (3.19)

For example, δ := 1/(2exp(K(M + 1))).
Let i,n∈N. Then, reasoning as in [6],

Pi,n =
i+n−1∏
s=i

(
1 +

λs
1− λs

)

= exp

(
ln

i+n−1∏
s=i

(
1 +

λs
1− λs

))
= exp

( i+n−1∑
s=i

ln
(

1 +
λs

1− λs

))

≤ exp

( i+n−1∑
s=i

λs
1− λs

)
since ln(1 + x)≤ x for x ≥ 0

≤ exp

(
K

i+n−1∑
s=i

λs

)
= exp

(
K · Si,n

)

(3.20)

since λs ≤ 1− 1/K implies 1− λs ≥ 1/K , so 1/(1− λs)≤ K for all s∈N.
Hence, we have proved that for all i,n∈N,

Pi,n ≤ exp
(
K · Si,n

)
. (3.21)
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Define α∗ : N×N→N by

α∗(i,n) :=min
{
m∈N | n≤ Si,m

}
. (3.22)

Since (λn)n∈N is divergent in sum, it follows that for all i ∈ N, the sequence
(Si,m)m∈N is not bounded above; so for all n ∈ N, the set Ai,n := {m ∈ N | n ≤
Si,m} is nonempty; hence it has a least element. Thus, α∗ is well defined. We also
get that α∗(i,n)− 1 �∈ Ai,n, which means that Si,α∗(i,n)−1 < n, that is, Si,α∗(i,n) −
λi+α∗(i,n)−1 < n, so Si,α∗(i,n) < n+ λi+α∗(i,n)−1 < n+ 1. Hence, for all i,n∈N,

n≤ Si,α∗(i,n) < n+ 1. (3.23)

Consider the Krasnosel’skiı̆-Mann iteration (x∗n )n∈N starting from x∗. Then,

ρ
(
x∗i ,x

∗
i+n

)≤ i+n−1∑
s=i

ρ
(
x∗s ,x

∗
s+1

)= i+n−1∑
s=i

λsρ
(
x∗s , f

(
x∗s
))

≤
( i+n−1∑

s=i
λs

)
ρ
(
x∗i , f

(
x∗i
))= Si,n · ρ

(
x∗i , f

(
x∗i
))

≤ Si,n · ρ
(
x∗, f

(
x∗
))

(3.24)

since, by Proposition 3.4, (ρ(x∗n , f (x∗n )))n∈N is nonincreasing. Hence, for all i,n∈
N,

ρ
(
x∗i ,x

∗
i+n

)≤ Si,n · ρ
(
x∗, f

(
x∗
))
. (3.25)

Consider now the Krasnosel’skiı̆-Mann iteration (xn)n∈N starting from x. Apply-
ing again Proposition 3.4, we get that the sequence (ρ(xn, f (xn)))n∈N is nonin-
creasing and, since it is bounded below by 0, it is convergent and hence Cauchy.
Thus, for δ satisfying (3.19), there exists an i such that

ρ
(
xi, f

(
xi
))− ρ

(
xi+α∗(i,M), f

(
xi+α∗(i,M)

))≤ δ. (3.26)

In the sequel, we consider an i satisfying (3.26).
Applying Proposition 3.4 and (3.26), we get that

Si,α∗(i,M) · ρ
(
xi, f

(
xi
))≤ ρ

(
xi,xi+α∗(i,M)

)
+ δ ·Pi,α∗(i,M)

≤ ρ
(
xi,x

∗
i

)
+ ρ
(
x∗i ,x

∗
i+α∗(i,M)

)
+ ρ
(
x∗i+α∗(i,M),xi+α∗(i,M)

)
+ δ ·Pi,α∗(i,M)

≤ 2d+ Si,α∗(i,M) · ρ
(
x∗, f

(
x∗
))

+ δ ·Pi,α∗(i,M) by the hypothesis and (3.25)

= 2d+ Si,α∗(i,M) · γ+ δ ·Pi,α∗(i,M) by (3.17).

(3.27)
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That is, we have got

Si,α∗(i,M) · ρ
(
xi, f

(
xi
))≤ 2d+ Si,α∗(i,M) · γ+ δ ·Pi,α∗(i,M). (3.28)

We now prove

ρ
(
xi, f

(
xi
))

< γ+ ε. (3.29)

Suppose that ρ(xi, f (xi))≥ γ+ ε. It follows that

Si,α∗(i,M)(γ+ ε)≤ Si,α∗(i,M) · ρ
(
xi, f

(
xi
))

; (3.30)

so applying (3.28), we get that

Si,α∗(i,M)(γ+ ε)≤ 2d+ Si,α∗(i,M) · γ+ δ ·Pi,α∗(i,M). (3.31)

Hence,

Si,α∗(i,M) · ε ≤ 2d+ δ ·Pi,α∗(i,M). (3.32)

It follows that

1 + 2d ≤M · ε by (3.18)

≤ Si,α∗(i,M) · ε by (3.23)

≤ 2d+ δ ·Pi,α∗(i,M) by (3.32)

≤ 2d+ δ · exp
(
K · Si,α∗(i,M)

)
by (3.21)

< 2d+ δ · exp
(
K(M + 1)

)
by (3.23)

< 2d+ 1 by (3.19).

(3.33)

That is, we have got a contradiction.
Hence, we have proved that if i∈N is such that

ρ
(
xi, f

(
xi
))− ρ

(
xi+α∗(i,M), f

(
xi+α∗(i,M)

))≤ δ, (3.34)

then

ρ
(
xi, f

(
xi
))

< γ+ ε. (3.35)

Define α̃∗, α̂∗ : N×N→N by

α̃∗(k,n) := k+α∗(k,n),

α̂∗(0,n) := α̃∗(0,n),

α̂∗(k+ 1,n) := α̃∗
(
α̂∗(k,n),n

)
.

(3.36)
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Since α̂∗(k + 1,n) = α̃∗(α̂∗(k,n),n) = α̂∗(k,n) + α∗(α̂∗(k,n),n) ≥ α̂∗(k,n), it
follows that for all k,n∈N,

α̂∗(k,n)≤ α̂∗(k+ 1,n). (3.37)

Claim 1. Let j := �ρ(x, f (x))/δ�−· 1. For all n∈N,

∃k ≤ j, ρ
(
xα̂∗(k,n), f

(
xα̂∗(k,n)

))− ρ
(
xα̂∗(k+1,n), f

(
xα̂∗(k+1,n)

))≤ δ. (3.38)

Proof of Claim 1. Let n∈N and for every k ∈N let

Tk := ρ
(
xα̂∗(k,n), f

(
xα̂∗(k,n)

))− ρ
(
xα̂∗(k+1,n), f

(
xα̂∗(k+1,n)

))
. (3.39)

Suppose that the claim is false. Then, Tk > δ for all k ≤ j, so
∑ j

k=0Tk > δ · ( j + 1),
that is,

ρ
(
xα̂∗(0,n), f

(
xα̂∗(0,n)

))− ρ
(
xα̂∗( j+1,n), f

(
xα̂∗( j+1,n)

))
> δ · ( j + 1)= δ ·

⌈
ρ
(
x, f (x)

)
δ

⌉
≥ ρ

(
x, f (x)

)
.

(3.40)

From this we get that

ρ
(
xα̂∗(0,n), f

(
xα̂∗(0,n)

))
> ρ
(
x, f (x)

)
, (3.41)

which is a contradiction to the fact that the sequence (ρ(xn, f (xn)))n∈N is non-
increasing and finishes the proof of the claim.

Let k satisfy (3.38) with n :=M and let i := α̂∗(k,M). Applying (3.38) and
the definition of α̂∗, it follows immediately that i satisfies (3.34). Hence, i also
satisfies (3.35).

Let c( f ,x)∈R be such that c( f ,x)≥ ρ(x, f (x)). Let

h
(
ε,x,d, f ,K,α∗

)
:= α̂∗

(⌈
2c( f ,x) · exp

(
K(M + 1)

)⌉−· 1,M
)
. (3.42)

Since we can put δ := 1/(2exp(K(M + 1))), we get that

ρ
(
x, f (x)

)
δ

= 2ρ
(
x, f (x)

) · exp
(
K(M + 1)

)
≤ 2c( f ,x) · exp

(
K(M + 1)

)
.

(3.43)
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Hence,

k ≤
⌈
ρ
(
x, f (x)

)
δ

⌉
−· 1≤ ⌈2c( f ,x) · exp

(
K(M + 1)

)⌉−· 1. (3.44)

Applying (3.37), it follows that i ≤ h(ε,x,d, f ,K,α∗). Now, using the fact that i
satisfies (3.35), we immediately get that

∀n≥ h
(
ε,x, f ,d,K,α∗

)
,

(
ρ
(
xn, f

(
xn
))

< ρ
(
x∗, f

(
x∗
))

+ ε
)
. (3.45)

Hence, we have obtained the conclusion of the theorem with α∗ instead of α. We
now show that we can replace α∗ with α satisfying the more flexible requirement
from the hypothesis

∀i,n∈N,
(
α(i,n)≤ α(i+ 1,n)

)∧(n≤ i+α(i,n)−1∑
s=i

λs

)
. (3.46)

Since n≤ Si,α(i,n), by the definition of α∗ it follows that for all i,n∈N,

α∗(i,n)≤ α(i,n). (3.47)

We now prove that for all i,n∈N,

α̂∗(i,n)≤ α̂(i,n). (3.48)

We use induction on i. For i= 0, we get that

α̂∗(0,n)= α̃∗(0,n)= α∗(0,n)≤ α(0,n)= α̃(0,n)= α̂(0,n). (3.49)

Suppose that α̂∗(i,n)≤ α̂(i,n). Using (3.47) and the fact that, by the hypothesis,
α is nondecreasing in the first argument, we get that α̂∗(i+ 1,n)= α̃∗(α̂∗(i,n),n)
= α̂∗(i,n) + α∗(α̂∗(i,n),n) ≤ α̂(i,n) + α(α̂∗(i,n),n) ≤ α̂(i,n) + α(α̂(i,n),n) =
α̃(α̂(i,n),n)= α̂(i+ 1,n). It follows that

h
(
ε,x,d, f ,K,α∗

)= α̂∗
(⌈

2c( f ,x) · exp
(
K(M + 1)

)⌉−· 1,M
)

≤ α̂
(⌈

2c( f ,x) · exp
(
K(M + 1)

)⌉−· 1,M
)

= h(ε,x,d, f ,K,α).

(3.50)
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Finally, applying (3.45), we obtain

∀n≥ h(ε,x,d, f ,K,α), ρ
(
xn, f

(
xn
))

< ρ
(
x∗, f

(
x∗
))

+ ε. (3.51)

�

Remark 3.11. If f is nonexpansive, then applying Lemma 3.8, it follows that the
sequence (ρ(xn,x∗n ))n∈N is nonincreasing; so letting d := ρ(x,x∗), we get that

∀n∈N, ρ
(
xn,x

∗
n

)≤ d. (3.52)

Hence, Theorem 3.10 holds with

h
(
ε,x,x∗, f ,K,α

)= α̂
(⌈

2c( f ,x) · exp
(
K(M + 1)

)⌉−· 1,M
)
, (3.53)

whereM ∈N is such thatM ≥ (1 + 2ρ(x,x∗))/ε and c( f ,x), α̃, and α̂ are as above.
It is this restricted form (for normed spaces) of Theorem 3.10 which is proved

in [14].

The following remarks from [14] apply in our context as well.

Remark 3.12. Let α : N×N→N be such that

∀i,n∈N, n≤
i+α(i,n)−1∑

s=i
λs. (3.54)

Define α+ : N×N→N by

α+(i,n) :=max
j≤i

α( j,n). (3.55)

Then, α+ is nondecreasing in the first argument and also satisfies (3.54) so that
Theorem 3.10 holds with h(ε,x,d, f ,K,α+).

Remark 3.13. A function α satisfying the conditions of Theorem 3.10 can be
easily computed from a function β : N→N satisfying the weaker requirement

∀n, n≤
β(n)∑
s=0

λs. (3.56)

Just define β′(i,n) := β(n+ i)− i+ 1 and β+(i,n) :=max j≤i β′( j,n).
Then, β+ satisfies the conditions imposed on α so that Theorem 3.10 holds

with h(ε,x,d, f ,K,β+), where β satisfies (3.56).
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Proof. We only have to verify that β′ satisfies condition (3.54) from Remark 3.12.
Let i,n∈N. Then,

i+β′(i,n)−1∑
s=i

λs =
β(n+i)∑
s=i

λs =
β(n+i)∑
s=0

λs−
i−1∑
s=0

λs ≥ n+ i−
i−1∑
s=0

λs > n+ i− i= n, (3.57)

since λs < 1 for all s∈N. �

Just note that as a corollary to Theorem 3.10, we get the following (nonquan-
titative) strengthened version of the original Borwein-Reich-Shafrir theorem.

Corollary 3.14. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty con-
vex subset, and f : C → C a directionally nonexpansive mapping. Let (λn)n∈N be
a sequence in [0,1) which is divergent in sum and satisfies that limsupn→∞ λn < 1.
Then, for all x ∈ C if

∀ε > 0, ∃x∗ ∈ C
(
ρ
(
xn,x

∗
n

)
bounded∧ ρ

(
x∗, f

(
x∗
))≤ rC( f ) + ε

)
, (3.58)

then

ρ
(
xn, f

(
xn
)) n→∞−−−−→ rC( f ). (3.59)

The main application of the quantitative version of the Borwein-Reich-Shafrir
theorem given in [14] was a fully uniform bound on the asymptotic regularity
‖xn− f (xn)‖→ 0 in the case of bounded C. “Fully uniform” here means that the
rate of convergence depends only on the error ε, an upper bound d for the di-
ameter of C, and the quantities K , α on λk but not on x, f , or any special features
of C. Uniformity in x (for constant λk := λ) was first established in [3]. In [4],
uniformity in x and f has been proved for general λk, but no uniformity in C or
λk. Moreover, no effective bounds were obtained. Recently (see [8, Theorem 1]),
Kirk has established uniformity in x, f for directionally nonexpansive mappings
in the case of constant λk := λ. All these results are based on functional analytic
embeddings. We now show that the results obtained in [14] by logical analysis
of the proof of Theorem 3.9 extend even with the same numerical bounds to the
case of hyperbolic spaces and directionally nonexpansive mappings (containing
Theorem 1 from [8] just mentioned as a special case). This is due to the fact
that the only additional assumption that ∀n∈ N(ρ(xn,x∗n )≤ d), which we had
to impose in the directionally nonexpansive case, holds trivially for sets C whose
diameter is bounded by d. The proofs of Corollaries 3.15, 3.17, 3.18, and 3.20
follow the ones in [14] for the corresponding results in the case of nonexpansive
mappings in normed spaces except that we now have to use our more general
Theorem 3.10.

Corollary 3.15. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty convex
bounded subset with diameter d(C) <∞, and f : C→ C a directionally nonexpan-
sive mapping. Let (λn)n∈N be a sequence in [0,1), which is divergent in sum and
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satisfies

∀n∈N, λn ≤ 1− 1
K
, (3.60)

for some K ∈N.
Let α : N×N→N be such that

∀i,n∈N,
(
α(i,n)≤ α(i+ 1,n)

)∧(n≤ i+α(i,n)−1∑
s=i

λs

)
. (3.61)

Then,

∀x ∈ C, ∀ε > 0, ∀n≥ h(ε,d,K,α), ρ
(
xn, f

(
xn
))≤ ε (3.62)

holds, where

h(ε,d,K,α) := α̂
(⌈

2d · exp
(
K(M + 1)

)⌉− 1,M
)
, (3.63)

where d ∈ R is such that d ≥ d(C), M ∈ N is such that M ≥ (1 + 2d)/ε, and
α̂(0,n) := α̃(0,n), α̂(i+ 1,n) := α̃(α̂(i,n),n) with α̃(i,n) := i+α(i,n).

Proof. Let x ∈ C and ε > 0. Let d ≥ d(C). Then, for every x∗ ∈ C, we have that
ρ(xn,x∗n )≤d(C)≤d for all n∈N. Hence, for every x∗∈C, we can apply Theorem
3.10 to get

∀n≥ h(ε,x,d, f ,K,α), ρ
(
xn, f

(
xn
))

< ρ
(
x∗, f

(
x∗
))

+ ε, (3.64)

where

h(ε,x,d, f ,K,α) := α̂
(⌈

2c( f ,x) · exp
(
K(M + 1)

)⌉−· 1,M
)
, (3.65)

where M ∈ N is such that M ≥ (1 + 2d)/ε, c( f ,x) ∈ R is such that c( f ,x) ≥
ρ(x, f (x)), and α̃, α̂ are defined as above.

Since d ≥ d(C)≥ ρ(x, f (x)), we can take c(x, f ) := d.
Thus, we get that

h(ε,x,d, f ,K,α)= α̂
(⌈

2d · exp
(
K(M + 1)

)⌉− 1,M
)= h(ε,d,K,α). (3.66)

Let n≥ h(ε,d,K,α). It follows that

∀x∗ ∈ C, ρ
(
xn, f

(
xn
))

< ρ
(
x∗, f

(
x∗
))

+ ε, (3.67)

hence

ρ
(
xn, f

(
xn
))≤ inf

{
ρ
(
x∗, f

(
x∗
)) | x∗ ∈ C

}
+ ε, (3.68)
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that is,

ρ
(
xn, f

(
xn
))≤ rC( f ) + ε. (3.69)

Now, apply the fact that rC( f )= 0, by Corollary 3.7. �

Remark 3.16. In Corollary 3.15, the bound h(ε,d,K,α) can be replaced by h(ε/d,
1,K,α) just by applying the old bound to the modified hyperbolic space, where
ρd(x, y) := (1/d)ρ(x, y) and cd(s) := c(d · s).

Corollary 3.17. Let d,ε > 0, K ∈ N and β : N→ N be an arbitrary mapping.
Then, there exists an N ∈N such that for any hyperbolic space (X,ρ,M), any non-
empty bounded convex set C ⊆ X such that d(C)≤ d, any directionally nonexpan-

sive mapping f : C→ C, any sequence λn ∈ [0,1− 1/K] satisfying n≤∑β(n)
s=0 λs (for

all n∈N), and any x ∈ C, the following holds:

∀n≥N, ρ
(
xn, f

(
xn
))≤ ε. (3.70)

Proof. From n≤∑β(n)
s=0 λs for all n∈N, it follows that (λn)n∈N is divergent in sum.

Apply Remark 3.13 and Corollary 3.15. �

Corollary 3.18. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty convex
bounded subset with diameter d(C) <∞, and f : C → C a directionally nonex-
pansive mapping. Let K ∈N, K ≥ 2 and (λn)n∈N be a sequence in [1/K,1− 1/K].
Then, the following holds:

∀x ∈ C, ∀ε > 0, ∀n≥ h(ε,d,K), ρ
(
xn, f

(
xn
))≤ ε, (3.71)

where

h(ε,d,K) := K ·M · ⌈2d · exp
(
K(M + 1)

)⌉
(3.72)

with d ∈R, d ≥ d(C) and M ∈N, M ≥ (1 + 2d)/ε.

Proof. Define α : N×N→N by

α(i,n)= Kn. (3.73)

Then,
∑i+α(i,n)−1

s=i λs ≥
∑i+α(i,n)−1

s=i 1/K = (1/K)α(i,n)= n and α(i,n)= α(i+ 1,n)=
Kn, so α satisfies the conditions of Corollary 3.15.

We also get immediately that

α̃(i,n)= i+α(i,n)= i+Kn,

α̂(i,n)= K(i+ 1)n.
(3.74)
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Applying Corollary 3.15, it follows that

∀x ∈ C, ∀ε > 0, ∀n≥ h(ε,d,K,α), ρ
(
xn, f

(
xn
))≤ ε, (3.75)

where

h(ε,d,K,α)= α̂
(⌈

2d · exp
(
K(M + 1)

)⌉− 1,M
)

= K ·M · ⌈2d · exp
(
K(M + 1)

)⌉
= h(ε,d,K).

(3.76)

�

Remark 3.19. (1) We could have also used in the proof of the above corollary
Remark 3.13 for the function β : N→N defined by

β(n)= Kn−· 1 (3.77)

instead of Corollary 3.15. However, this would have resulted in a much less good
bound

h(ε,d,K)= K

K − 1
·M · (K �2d·exp(K(M+1))�−1− 1

)
, (3.78)

where d ≥ d(C) and M ∈N, M ≥ (1 + 2d)/ε.
(2) For the special case of constant λn = λ∈ (0,1), normed spaces, and non-

expansive functions, the exponential bound in Corollary 3.18 is not optimal. In
fact, [1] establishes—using an extremely complicated proof involving computer-
aided calculations—an optimal quadratic bound in this special case. However,
even for normed spaces and nonexpansive mappings, the bounds in the present
paper and [14] are the only effective bounds known at all for the nonconstant
sequences λn.

The next corollary strengthens Theorem 1 in [8].

Corollary 3.20. Let d,ε > 0 and K ∈ N, K ≥ 2. Then, there exists an N ∈ N

such that for any hyperbolic space (X,ρ,M), any nonempty bounded convex set
C ⊆ X such that d(C) ≤ d, any directionally nonexpansive mapping f : C → C,
any sequence (λn)n∈N in [1/K,1− 1/K], and any x ∈ C, the following holds:

∀n≥N, ρ
(
xn, f

(
xn
))≤ ε. (3.79)

Proof. Apply Corollary 3.18. �

In [9, Theorem 2.5], the first author extended (for normed spaces and nonex-
pansive mappings) Corollary 3.15 to the situation where C is no longer required
to be bounded but only the existence of a point x∗ ∈ C, whose iteration sequence
(x∗n )n∈N is bounded, is assumed. We obtained a fully uniform bound which only
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depends on an upper bound d on ‖x− x∗‖ and ‖x∗n ‖ (and ε,K,α). This is of
interest since the functional analytic embedding techniques from [4, 8] seem to
require that C be bounded. Using the results above, it is easy to see that Theorem
2.5 from [9] extends to hyperbolic spaces.

Theorem 3.21. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty convex
subset, and f : C → C a nonexpansive mapping, and let (λn)n∈N, α, and K be as
before. Let d > 0, x,x∗ ∈ C be such that

ρ
(
x,x∗

)≤ d∧∀n,m∈N
(
ρ
(
x∗n ,x

∗
m

)≤ d
)
. (3.80)

Then,

∀ε > 0, ∀n≥ h(ε,d,K,α), ρ
(
xn, f

(
xn
))≤ ε, (3.81)

holds, where

h(ε,d,K,α) := α̂
(⌈

12d · exp
(
K(M + 1)

)⌉− 1,M
)
, (3.82)

M ∈N is such that M ≥ (1 + 6d)/ε, and α̂ as before.

Proof. It is the same as in the proof of Theorem 2.5 in [9] using Remark 3.11
and Proposition 3.5. �

For the case of directionally nonexpansive mappings, however, the additional
assumption in our Theorem 3.10 causes various problems and changes in the
proofs. In the following, we only consider the case where (xn)n∈N itself is
bounded (i.e., x = x∗). We need an additional assumption which for the case of
the constant λk := λ, though is redundant. The proof differs significantly from
that given in [9] since the argument which was used there to derive the bound
ρ(x, f (x))≤ 6d in the nonexpansive case does not seem to hold for directionally
nonexpansive mappings. However, a different bound can be obtained depending
on α.

For any k ∈N, we define the sequence ((xk)m)m∈N by

(
xk
)

0 = xk,
(
xk
)
m+1 =

(
1− λm

)(
xk
)
m⊕ λm f

((
xk
)
m

)
. (3.83)

Hence, for any k ∈ N, ((xk)m)m∈N is the Krasnosel’skiı̆-Mann iteration starting
with xk.

Remark 3.22. The sequence ((xk)m)m∈N is not in general a subsequence of
(xn)n∈N. But if (λn)n∈N is a constant sequence, λn = λ, then (xk)m = xk+m for
all m,k ∈N, hence ((xk)m)m∈N is a subsequence of (xn)n∈N.
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Theorem 3.23. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty convex sub-
set, and f : C→ C a directionally nonexpansive mapping. Let (λn)n∈N be a sequence
in [0,1) which is divergent in sum and satisfies

∀n∈N, λn ≤ 1− 1
K
, (3.84)

for some K ∈N.
Let α : N×N→N be such that

∀i,n∈N,
(
α(i,n)≤ α(i+ 1,n)

)∧(n≤ i+α(i,n)−1∑
s=i

λs

)
. (3.85)

Let d > 0 and x ∈ C such that

∀n,k,m∈N, ρ
(
xn,
(
xk
)
m

)
≤ d. (3.86)

Then,

∀ε > 0, ∀n≥ h(ε,d,K,α), ρ
(
xn, f

(
xn
))≤ ε (3.87)

holds, where

h(ε,d,K,α) := α(0,1) + α̂∗
(⌈

2d ·α(0,1) · exp
(
K(M + 1)

)⌉− 1,M
)
, (3.88)

where M ∈ N is such that M ≥ (1 + 2d)/ε, α̂∗(0,n) := α̃∗(0,n), α̂∗(i + 1,n) :=
α̃∗(α̂∗(i,n),n) with α̃∗(i,n) := i+α∗(i,n), α∗(i,n) := α(i+α(0,1),n) (i,n∈N).

Proof. The sequence (xn)n∈N is bounded since

∀m,n∈N, ρ
(
xn,xm

)= ρ
(
xn,
(
x0
)
m

)
≤ d. (3.89)

By the hypothesis on α, we have that
∑α(0,1)−1

s=0 λs ≥ 1. From this, it is easy to see
that there is N ∈N, N ≤ α(0,1)− 1 such that

λN ≥ 1
α(0,1)

. (3.90)

It follows that

ρ
(
xα(0,1), f

(
xα(0,1)

))≤ ρ
(
xN , f

(
xN
))= 1

λN
ρ
(
xN ,xN+1

)≤ d ·α(0,1). (3.91)

Let µn = λα(0,1)+n for all n∈N. It is obvious that (µn)n∈N is divergent in sum and
µn ≤ 1− 1/K for all n∈N.



U. Kohlenbach and L. Leuştean 473

Consider the sequence (yn)n∈N defined by

y0 := y := xα(0,1), yn+1 := (1−µn
)
yn⊕µn f

(
yn
)
. (3.92)

Hence, (yn)n∈N is the Krasnosel’skiı̆-Mann iteration associated with (µn)n∈N,
starting with xα(0,1). It follows by an easy induction on n that

yn = xα(0,1)+n, (3.93)

so

∀m,n∈N, ρ
(
yn, ym

)= ρ
(
xα(0,1)+n,xα(0,1)+m

)≤ d. (3.94)

Thus, we can apply Proposition 3.5 to get that limn→∞ ρ(yn, f (yn))= 0. It follows
that

∀δ > 0, ∃Nδ, ∀n≥Nδ, ρ
(
yn, f

(
yn
))

< δ. (3.95)

Let y∗ := yNδ . Then, by the hypothesis,

∀n∈N, ρ
(
yn, y

∗
n

)= ρ
(
xα(0,1)+n,

(
xNδ+α(0,1)

)
n

)
≤ d. (3.96)

Define for all i,n∈N

α∗(i,n) := α
(
i+α(0,1),n

)
. (3.97)

It follows immediately that α∗(i,n)≤ α∗(i+ 1,n) and that

i+α∗(i,n)−1∑
s=i

µs =
i+α(i+α(0,1),n)−1∑

s=i
λα(0,1)+s =

i+α(0,1)+α(i+α(0,1),n)−1∑
s=i+α(0,1)

λs ≥ n. (3.98)

This satisfies the hypotheses of Theorem 3.10 with µn, α∗, y, y∗ instead of λn, α,
x, x∗, so we can apply it to get

∀ε > 0, ∀n≥ h∗
(
ε, y,d, f ,K,α∗

)
, ρ

(
yn, f

(
yn
))

< ρ
(
y∗, f

(
y∗
))

+ ε, (3.99)

where

h∗
(
ε, y,d, f ,K,α∗

)
:= α̂∗

(⌈
2c( f , y) · exp

(
K(M + 1)

)⌉−· 1,M
)
, (3.100)

where M ∈ N is such that M ≥ (1 + 2d)/ε and c( f , y) ∈ R is such that c( f , y) ≥
ρ(y, f (y)).
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By (3.91), we have that

ρ
(
y, f (y)

)= ρ
(
xα(0,1), f

(
xα(0,1)

))≤ d ·α(0,1), (3.101)

so we can take c( f , y) := d ·α(0,1).
We get that

h∗
(
ε, y,d, f ,K,α∗

)= α̂∗
(⌈

2d ·α(0,1) · exp
(
K(M + 1)

)⌉− 1,M
)

= h∗(ε,d,K,α)
(3.102)

since α∗ is defined in terms of α.
Now applying (3.95), it follows that

∀ε > 0, ∀n≥ h∗(ε,d,K,α), ρ
(
yn, f

(
yn
))

< δ + ε. (3.103)

Since (3.103) is true for every δ > 0, we obtain

∀ε > 0, ∀n≥ h∗(ε,d,K,α), ρ
(
yn, f

(
yn
))≤ ε, (3.104)

that is,

∀ε > 0, ∀n≥ h∗(ε,d,K,α), ρ
(
xα(0,1)+n, f

(
xα(0,1)+n

))≤ ε. (3.105)

Finally, letting h(ε,d,K,α) := α(0,1) +h∗(ε,d,K,α), we get

∀ε > 0, ∀n≥ h(ε,d,K,α), ρ
(
xn, f

(
xn
))≤ ε. (3.106)

�

As already mentioned, the condition

∀n,k,m∈N, ρ
(
xn,
(
xk
)
m

)
≤ d (3.107)

is equivalent to the boundedness of (xn) by d

∀n,m∈N, ρ
(
xn,xm

)≤ d (3.108)

in the case of constant λn = λ. Hence, we obtain the following strong uniform
version of [8, Theorem 2] (note that [8, Theorem 2] does not state any unifor-
mity of the convergence at all).
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Corollary 3.24. Let (X,ρ,M) be a hyperbolic space, C ⊆ X a nonempty convex
subset, and f : C → C a directionally nonexpansive mapping. Let d > 0, K ∈ N,
K ≥ 2, and λ ∈ [1/K,1− 1/K]. Let λn := λ for all n ∈ N. Let x ∈ C such that
ρ(xn,xm)≤ d for all m,n∈N. Then,

∀ε > 0, ∀n≥ h(ε,d,K), ρ
(
xn, f

(
xn
))≤ ε (3.109)

holds, where

h(ε,d,K) := K +K ·M · ⌈2d ·K · exp
(
K(M + 1)

)⌉
, M ∈N, M ≥ 1 + 2d

ε
.

(3.110)

Proof. Obviously, (λn)n∈N is divergent in sum.
Define α : N×N→N by

α(i,n)= Kn. (3.111)

Then, α(i,n)= α(i+ 1,n)= Kn and

i+α(i,n)−1∑
s=i

λs ≥
i+α(i,n)−1∑

s=i

1
K
= 1

K
·α(i,n)= n. (3.112)

It is an easy exercise to see that

α∗(i,n)= α
(
i+α(0,1),n

)= Kn= α(i,n),

α̃∗(i,n)= α̃(i,n)= i+α(i,n)= i+Kn,

α̂∗(i,n)= α̂(i,n)= K(i+ 1)n.

(3.113)

Since λn = λ for all n∈N, it follows that (xk)m = xk+m, hence for all m,n,k ∈N,

ρ
(
xn,
(
xk
)
m

)
= ρ

(
xn,xk+m

)≤ d. (3.114)

Hence, we can apply Theorem 3.23 to obtain

∀ε > 0, ∀n≥ h(ε,d,K,α), ρ
(
xn, f

(
xn
))≤ ε, (3.115)
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where M ∈N is such that M ≥ (1 + 2d)/ε and

h(ε,d,K,α) := α(0,1) + α̂∗
(⌈

2d ·α(0,1) · exp
(
K(M + 1)

)⌉− 1,M
)

= K +K ·M · ⌈2d ·K · exp
(
K(M + 1)

)⌉
= h(ε,d,K).

(3.116)

�

Remark 3.25. Inspection of the proofs in this paper shows that the only places
where we used the requirement (2.4) from the definition of hyperbolic spaces
was in Lemma 3.8, which, in turn, was only used in Remark 3.11, as well as the
proof of Theorem 3.21. Thus, all other results in this paper even hold for spaces
of hyperbolic type in the sense of [4].
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