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A definition of oblique projections onto closed convex sets that use seminorms
induced by diagonal matrices which may have zeros on the diagonal is intro-
duced. Existence and uniqueness of such projections are secured via directional
affinity of the sets with respect to the diagonal matrices involved. A block-
iterative algorithmic scheme for solving the convex feasibility problem, employ-
ing seminorm-induced oblique projections, is constructed and its convergence
for the consistent case is established. The fully simultaneous algorithm converges
also in the inconsistent case to the minimum of a certain proximity function.

1. Introduction

The motivation of this paper comes from the recent work of Censor et al. [14, 15]
who used generalized oblique projections for the solution of large and sparse
systems of linear equations arising in the fully discretized approach to the prob-
lem of image reconstruction from projections, see, for example, Herman [22]
and Censor [11]. In order to achieve significant acceleration in the algorithm’s
behavior, they had to use generalized oblique projections (as they called them)
which allow zeros on the diagonals of the weighting matrices for the fully simulta-
neous projections algorithm that they used.

Since the work of [14, 15] is limited to linear equations, it is natural to inquire
whether it can be extended, and if so, in what directions and to what extent?
Is it possible to extend the definition of the generalized oblique projections of
[14, 15] to cover convex sets which are not linear (i.e., not hyperplanes or half-
spaces)? If there is a way to do so, can one employ these projections in iterative
algorithmic schemes for solving the convex (not necessarily linear) feasibility
problem? Under what conditions would such algorithms converge? How would
a fully simultaneous iterative algorithm, which employs these projections for
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the convex feasibility problem with general (not necessarily linear) convex sets,
behave in the inconsistent case (i.e., when ∩m

i=1Ci =∅)?
In this paper, we provide some theoretical answers to these questions. We in-

troduce (in Section 2) a new definition of oblique projections onto convex sets
that use seminorms induced by diagonal matrices which may have zeros on the
diagonal. In order to guarantee existence and uniqueness of such seminorm-
induced oblique projections, we need to impose a certain relationship between
the seminorm inducing matrix G and the convex set C onto which we project,
namely, that the set will be directionally affine with respect to G. By this, we
mean that it must be affine in the direction of every standard basis vector e j

of Rn whenever there is a zero in the jth location on the diagonal of G. With
these seminorm-induced oblique projections, we construct a block-iterative al-
gorithmic scheme for the solution of the convex feasibility problem of finding
a point in the intersection of a finite family of closed convex sets {Ci}mi=1. The
main feature of the new block-iterative scheme is the use of diagonal matrices
for weighting the different sets which are acted upon in each block iteration. Us-
ing diagonal weighting matrices, instead of the traditionally used scalar weights,
amounts to allowing the weights to change not only with the set index i and the
iteration index k but also with the component index j. The block-iterative al-
gorithmic scheme allows the blocks (i.e., the subfamilies) of sets Ci, which are
acted upon in each iterative step, to vary in size and composition as iterations
proceed. We study the convergence of the block-iterative algorithmic scheme for
the consistent case∩m

i=1Ci �= ∅ in Section 3. In Section 4, we investigate the fully
simultaneous algorithm with seminorm-induced projections without assuming
consistency of the convex feasibility problem. The result there is that the fully si-
multaneous algorithm generates sequences which converge to the minimum of
a proximity function which measures the sum of the squares of the “seminorm-
induced distances” to all sets of the convex feasibility problem.

The theory developed here ties up in several ways with existing results about
iterative projection algorithms for the convex feasibility problem, see, for ex-
ample, Bauschke and Borwein [5], Combettes [19] and [16, Chapter 5] for re-
view and tutorial texts in this field. See also Reich [28] where a treatment of
simultaneous algorithms involving nearest point and other projections is pre-
sented. Beside generalizing the work of [14, 15], the block-iterative algorithm
with seminorm-induced oblique projections generalizes our recent work in [13].
It is also a generalization of the block-iterative projections (BIP) method of Aha-
roni and Censor [1] (see [16, Algorithm 5.6.1]) which uses orthogonal (least
Euclidean distance) projections onto convex sets. It also generalizes the work of
Eggermont et al. [20] and the work of Elfving [21]. For an extensive survey of lin-
ear least squares algorithms, including projection methods, see Björck [7]. Since
classical oblique projections are a special case of seminorm-induced oblique pro-
jections, our work properly generalizes earlier work on oblique projection itera-
tive algorithms. For example, oblique projections have been used in the past in
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several contexts. Kayalar and Weinert [24] promote oblique projections for local
processing in sensor arrays and credit Murray [26] and Lorch [25] for pioneering
work on oblique projections. Behrens and Scharf [6] use oblique projections for
signal processing applications. Oblique projections onto hyperplanes in a fully
simultaneous (Cimmino) algorithm have been proposed and used by Arioli et al.
[2]. They showed that using a Cimmino algorithm, in which all projections are
oblique with respect to a given symmetric positive definite matrix G for a system
Ax = b, is equivalent to applying a Cimmino algorithm with all orthogonal pro-
jections to the postconditioned system AG−1/2x̃ = b, where x̃ = G1/2x and G1/2,
the symmetric square root of G, is the unique symmetric positive definite matrix
obtained from G=G1/2G1/2.

Our work is related to the block-iterative multiprojection successive gener-
alized projection (BIMSGP) method developed by Byrne in [9]. Specifically, a
special case of our algorithmic scheme (Algorithm 3.2), in which the diagonal
weight matrices are not allowed to change with the iteration index and for which
only fixed blocks of constraints are permissible, is derivable from [9, Algorithm
4.2]. We return to this point at the end of Section 3.

The fully simultaneous projection algorithm with orthogonal projections was
first proposed by Cimmino [17] for linear systems of equations and then by
Auslender [3] for general convex sets, see the review paper of Bauschke and
Borwein [5]. For general convex sets and orthogonal projections, Iusem and De
Pierro [23] proved local convergence in the inconsistent case, while Combettes
[18] showed global convergence in the inconsistent case by employing a prod-
uct space formulation which extends the one of Pierra [27] and can handle the
inconsistent case. Our work in Section 4 generalizes these previous algorithmic
schemes to the case of seminorm-induced oblique projections. Our convergence
analysis in Section 4 might also be deduced, with some additional efforts, from
results in [10], but we prefer to prove it here along the self-contained lines of
the proof developed in [15]; thereby, making it independent of the theory of
Bregman functions and other technical tools used in [10].

2. Seminorm-induced oblique projections

Let G = diag(g1, g2, . . . , gn) be a diagonal n× n matrix with gj ≥ 0, for all j =
1,2, . . . ,n, and G �= 0, that is, at least one element of G is different from zero.
Denote the index set of positive diagonal elements of G by J = J(G) = { j | gj >
0, 1≤ j ≤ n} and its cardinality by |J|. We consider the restriction R|J| of Rn to
only those components that belong to J . For convenience and notational sim-
plicity, assume, without loss of generality, that the zero entries on the diagonal
of G (if any) all come last. If z = (zj) ∈ Rn, we denote its restriction to R|J| by
z[J]. For any nonempty closed convex set C ⊆ Rn, the restriction of C to R|J| is
the set

C[J] := {z[J] ∈ R|J| | z ∈ C
}
. (2.1)
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Further, denote by G[J] the |J|× |J|matrix obtained from G by deleting all zeros
from its diagonal. The function x G is defined, for every x ∈Rn, by

x 2
G := 〈x,Gx〉, (2.2)

where 〈·,·〉 is the standard inner product in Rn. If J = {1,2, . . . ,n}, then x G =
‖x‖G is the (classical) Hilbert space ellipsoidal norm. Observe that x G is a vector
seminorm (see, e.g., Taylor [29]) because it may be equal to zero for x �= 0 if G has
at least one gj = 0. For this reason, a projection onto a convex set with respect to
a seminorm needs to be carefully defined. Our next definitions and proposition
accommodate this possibility.

Definition 2.1 (seminorm-induced oblique projection). Let C ⊆ Rn be a closed
convex set and let G �= 0 be an n× n nonnegative diagonal matrix. For any y ∈
Rn, the seminorm-induced oblique projection of y onto C with respect to G,
denoted by PG

C (y), is defined as a point which has the following properties: (i)
PG
C (y)∈ C, and (ii) PG

C (y)= y∗, where

y∗j =

zj , if j ∈ J,

y j , if j /∈ J,
(2.3)

z[J] =
(
zj
)
j∈J = argmin

{∥∥x− y[J]
∥∥2
G[J]
| x ∈ C[J]

}
. (2.4)

The presence of zeros on the diagonal of G whenever j ∈ J implies that

(
argmin

{
x− y

2

G
| x ∈ C

})
[J]
= z[J]. (2.5)

A seminorm-induced oblique projection reduces to an ellipsoidal oblique pro-
jection of y onto C if all diagonal elements of G are positive. This is a special
case of a Bregman projection of y onto C according to the Bregman function
f (x) = ‖x‖2

G = 〈x,Gx〉, consult, for example, Censor and Zenios [16, Chapter
2] for background material and further references on Bregman functions, dis-
tances, and projections originating from Bregman [8].

On the other hand, a general seminorm-induced oblique projection onto a
set C ⊆ Rn can be identified with an appropriately defined ellipsoidal oblique
projection onto a certain cylindrical set generated from C, as we show next. Let
G be a diagonal n× n nonnegative nonzero matrix with index set of positive
diagonal elements J and |J| < n. Define the n×n diagonal positive matrix Ĝ by

ĝ j =

gj , if j ∈ J,

1, if j /∈ J,
(2.6)

and consider the cylindrical set C[J]×Rn\|J|.
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Proposition 2.2. Given C, G, J , and Ĝ as above and a point y ∈Rn, the following
holds:

y∗ = PG
C (y)= PĜ

C[J]×Rn\|J|(y). (2.7)

Proof. Denote the complement of J in {1,2, . . . ,n} by J̄ so that any u ∈ Rn can
be represented as u= (u[J] ,u[J̄ ]

). Then,

PĜ
C[J]×Rn\|J|(y)

= argmin
{‖u− y‖2

Ĝ
| u∈ C[J]×Rn\|J|}

= argmin
{∥∥u[J]− y[J]

∥∥2
G[J]

+
∥∥u[J̄]− y[J̄]

∥∥2
I | u[J] ∈ C[J], u[J̄] ∈ Rn\|J|},

(2.8)

where I is the (n−|J|)× (n−|J|) unit matrix. This concludes the proof in view
of (2.3) and (2.4). �

In order to secure existence and uniqueness of seminorm-induced oblique
projections, we need to impose a “cylindricity” relationship between the semi-
norm inducing matrix G and the convex set C onto which we project, as we do
in the next definitions.

Definition 2.3 (directional affinity of sets). A nonempty closed convex setC ⊆Rn

is said to be affine in the direction d ∈ Rn if (i) together with any two distinct
points of the set whose difference vector is a scalar multiple of d, the line through
these points belongs to the set, and (ii) there is at least one pair of points in the
set which fulfills (i).

Definition 2.4 (directional affinity with respect to G). Let C⊆Rn be a nonempty
closed convex set and let G be a nonnegative diagonal n×n matrix G= diag(g1,
g2, . . . , gn) with gj ≥ 0, for all j = 1,2, . . . ,n, and G �= 0. If C is affine in the direc-
tion of every standard basis direction vector e j of Rn for which j /∈ J , then C is
called directionally affine with respect to G.

Proposition 2.5. LetC ⊆Rn be a nonempty closed convex set and letG= diag(g1,
g2, . . . , gn) be a nonnegative diagonal n×n matrix with gj ≥ 0, for all j = 1,2, . . . ,n,
and G �= 0. If C is directionally affine with respect to G, then for any y ∈Rn, there
is a unique seminorm-induced oblique projection PG

C (y) of y onto C with respect
to G.

Proof. By standard results on (classical) oblique projections onto closed convex
sets (use, e.g., Censor and Zenios [16, Lemma 2.1.2] since ‖ · ‖2

G[J]
is a Bregman

function), it follows that there exists a unique z[J] ∈ C[J] that solves (2.4). The
directional affinity of C with respect to G allows us to define y∗j = yj , as we did
in (2.3). �
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The next examples demonstrate these notions.

Example 2.6. Let the convex set be represented asC = {x ∈Rn | h(x)≤ 0}, where
h : Rn→ R is a convex function, and assume that ∂h/∂xj ≡ 0, for all j /∈ J . Then,
h(x) does not depend on the values that the jth component of x is taking as long
as j /∈ J and Proposition 2.5, together with (2.3), guarantees that PG

C (y)∈ C.

Example 2.7. Let the convex set be a hyperplane H = {x ∈Rn | 〈a,x〉 = b} with
a= (aj)∈Rn and b ∈ R given and assume that in the matrix G it is true that gj =
0 if and only if aj = 0. Then, there is a closed-form formula for the seminorm-
induced oblique projection PG

H(y) of a point y ∈ Rn onto H with respect to G,
given by Censor et al. in [15], which has the following form:

(
PG
H(y)

)
j :=



yj +

b−〈a, y〉∑n
l=1
gl �=0

(
a2
l /gl

) · aj
gj , if gj �= 0,

y j , if gj = 0.
(2.9)

It is not difficult to verify that PG
H(y)∈H and that it is the appropriate expres-

sion for the seminorm-induced oblique projection. This example is in fact a spe-
cial case of the previous example. It has been analyzed and used in practice in
[14, 15].

Postulating a relationship between the seminorm inducing matrix G and the
convex set onto which we project, namely, that the set must be a directionally
affine set, limits the scope of our theory of seminorm-induced oblique projec-
tions onto (general) convex sets. We do not know if it is possible to relax or
lift this condition. In the linear case of Example 2.7, this condition was termed
sparsity pattern orientation (SPO) by Censor et al. [15, Definition 3.1], and was
taken as an advantage for creating a new accelerated fully simultaneous projec-
tion method called the component averaging (CAV) method.

The next proposition generalizes a classical result. We prove it here along the
same lines as the proof of a similar result for Bregman generalized distances (see
Bregman [8]) given in [16, Theorem 2.4.1].

Proposition 2.8. Let Q ⊆Rn be a nonempty closed convex set and let G �= 0 be a
nonnegative diagonal matrix such that Q is diagonally affine with respect to G. If
z ∈Q is any given point, then for any y ∈Rn, the following inequality holds:

PG
Q(y)− y

2

G
≤ z− y

2

G
− z−PG

Q(y)
2

G
. (2.10)

Proof. By expanding the function

E(u) := u− y
2

G
− u−PG

Q(y)
2

G
, (2.11)
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according to (2.2), we find that E(u) = 〈u,α〉 + β for some α ∈ Rn and β ∈
R, which are independent of u; thus, E(u) is convex. Denoting uλ = λz + (1−
λ)PG

Q(y), for any 0 ≤ λ ≤ 1, we know that uλ ∈ Q by Proposition 2.5. Due to
the convexity of E(u), we then obtain (observe that due to the linearity of E(u),
the inequalities in the next two formulae are actually equalities)

E
(
uλ
)≤ λ

(
z− y

2

G
− z−PG

Q(y)
2

G

)
+ (1− λ) PG

Q(y)− y
2

G
. (2.12)

For λ > 0, this gives

z− y
2

G
− z−PG

Q(y)
2

G
− PG

Q(y)− y
2

G

≥ 1
λ

(
uλ− y

2

G
− PG

Q(y)− y
2

G

)
− 1
λ

uλ−PG
Q(y)

2

G
.

(2.13)

The first term on the right-hand side of (2.13) is nonnegative because of the
minimization property (2.5) of PG

Q(y) and the second term tends to zero as λ→
0+. Therefore, for small enough positive values of λ, the right-hand side of (2.13)
is nonnegative. �

3. The block-iterative algorithmic scheme

Let Ci ⊆Rn, i= 1,2, . . . ,m, be closed convex sets such that C :=∩m
i=1Ci �= ∅. For

each k = 0,1,2, . . . , we define a vector {Gk
i }mi=1, each of whose m components is

an n×n diagonal matrix

Gk
i = diag

(
gki1, g

k
i2, . . . , g

k
in

)
(3.1)

with gki j ≥ 0, for all i= 1,2, . . . ,m, all j = 1,2, . . . ,n, and all k ≥ 0. Denote by B(k)
the index set

B(k) := {i | 1≤ i≤m, Gk
i �= 0

}
. (3.2)

Definition 3.1 (a fair sequence of vectors of diagonal matrices). Let {{Gk
i }mi=1}k≥0

be an infinite sequence of vectors of nonnegative diagonal n×n matrices.

(i) If there exists an ε > 0 such that, for every i∈ B(k), the diagonal elements
gki j are either gki j = 0 or gki j ≥ ε > 0, for all j = 1,2, . . . ,n, and for all k ≥ 0;
and

(ii) if
∑m

i=1G
k
i = I , for all k ≥ 0, where I denotes the unit matrix;

then {{Gk
i }mi=1}k≥0 is called a fair sequence of vectors of diagonal matrices.
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With regard to this definition, it should be noted that condition (i) is stronger
than the condition used by Aharoni and Censor [1] regarding the weights they
used in their BIP method. Their scalar weights in BIP can be obtained from the
system {{Gk

i }mi=1}k≥0, in Definition 3.1, by letting Gk
i = wk

i I , where wk = (wk
i )mi=1

is their vector of weights used in the kth iteration. The (weaker) condition that
they use is that “for all i = 1,2, . . . ,m, the series

∑∞
k=0w

k
i = +∞.” The purpose

of either condition (i) in Definition 3.1 or the condition of [1] is to guarantee
that none of sets Ci is gradually ignored by ever diminishing weights. We do not
know whether our convergence result, presented below, can be strengthened by
using a condition similar to that of [1].

The algorithm that we propose and study here for solving the convex feasibil-
ity problem of finding a point x∗ ∈ C =∩m

i=1Ci is formulated as follows.

Algorithm 3.2. Initialization: x0 ∈Rn is arbitrary.
Iterative step: given xk calculate

xk+1 = xk + λk

( m∑
i=1

(
Gk
i P

Gk
i

Ci

(
xk
))− xk

)
, (3.3)

where {λk}k≥0 are relaxation parameters, {{Gk
i }mi=1}k≥0 is a sequence of vectors

of diagonal matrices, and P
Gk
i

Ci
(xk) is the seminorm-induced oblique projection

of xk onto Ci with respect to Gk
i .

This algorithmic scheme includes, as a special case, the sequential seminorm-
induced oblique projections algorithm that is obtained from (3.3) by choosing
at the kth iteration, for i= 1,2, . . . ,m,

Gk
i =


G

k
i(k) �= 0, if i= i(k),

0, if i �= i(k),
(3.4)

where {i(k)}k≥0 is a control sequence which governs the sequential progress such
as a cyclic control in which i(k)= k(modm) + 1. If all Gk

i are nonzero matrices at
every iterative step, then a fully simultaneous algorithm with seminorm-induced
oblique projections is obtained from our algorithmic scheme. In addition to
the consistent case result for such a fully simultaneous algorithm, we present
in Section 4 also an inconsistent case analysis. In between these two extremes,
the algorithmic scheme allows variable blocks of constraints to be acted upon,
as iterations proceed. At the kth iteration, only those sets Ci for which Gk

i �= 0
will be included in the block. The blocks may vary in size (i.e., number of sets
included) and in composition (which sets are included) as long as the conditions
of the convergence theorem, given below, are met.
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We consider first the case of unity relaxation, that is, λk = 1, for all k ≥ 0, and
define the operators

Tk(z) :=
m∑
i=1

Gk
i P

Gk
i

Ci
(z) (3.5)

so that (3.3) is now

xk+1 = Tk
(
xk
)
, k ≥ 0. (3.6)

Our goal is to prove the following convergence result.

Theorem 3.3. If the following assumptions hold:

(i) Ci ⊆Rn, i= 1,2, . . . ,m, are nonempty closed convex sets,
(ii) the convex feasibility problem is consistent, that is, C =∩m

i=1Ci �= ∅,
(iii) {{Gk

i }mi=1}k≥0 is a fair sequence of vectors of diagonal matrices,
(iv) every index i= 1,2, . . . ,m appears in infinitely many sets B(k),
(v) for every i = 1,2, . . . ,m, the set Ci is directionally affine with respect to Gk

i ,
for all k ≥ 0,

then any sequence {xk}k≥0, generated by Algorithm 3.2, with λk = 1 for all k ≥ 0,
converges to a point x∗ ∈ C.

We define, for all k ≥ 0, the functions

gk(x) :=
m∑
i=1

P
Gk
i

Ci

(
xk
)− x

2

Gk
i

(3.7)

for which the following auxiliary result holds.

Proposition 3.4. Under the assumptions of Theorem 3.3, if {xk}k≥0 is any se-
quence, generated by Algorithm 3.2, with λk = 1, for all k ≥ 0, then, for any x ∈Rn

and for every k ≥ 0,

gk(x)= gk
(
xk+1)+

∥∥x− xk+1
∥∥2

2. (3.8)

Proof. The proof follows the same lines as the proof of Lemma 4.1 in Censor
et al. [15]. By (2.2), (3.6), and (3.7), we have

gk(x)− gk
(
xk+1)= ∑

i∈B(k)

(
P
Gk
i

Ci

(
xk
)− x

2

Gk
i

− P
Gk
i

Ci

(
xk
)−Tk

(
xk
) 2

Gk
i

)

=
∑

i∈B(k)

(
x

2

Gk
i

− Tk
(
xk
) 2

Gk
i

+ 2
〈
Gk
i P

Gk
i

Ci

(
xk
)
,Tk

(
xk
)− x

〉)
.

(3.9)
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Using (3.5) and the fact that, due to
∑m

i=1G
k
i =

∑
i∈B(k)G

k
i = I , we have, for any

y ∈Rn,

∑
i∈B(k)

y
2

Gk
i

= ‖y‖2
2, (3.10)

the result follows. �

Definition 3.5. A sequence {xk}k≥0 is called Fejér-monotone with respect to a
nonempty set Ω⊆Rn if, for any x ∈Ω,

∥∥x− xk+1
∥∥

2 ≤
∥∥x− xk

∥∥
2, ∀k ≥ 0. (3.11)

See, for example, [16, Definition 5.3.1]. It is easy to verify that any Fejér-
monotone sequence is bounded. We have now all tools in place to prove the
convergence theorem.

Proof of Theorem 3.3. From (3.8), we have, for every k ≥ 0,

∥∥x− xk
∥∥2

2−
∥∥x− xk+1

∥∥2
2 = gk

(
xk+1)− gk(x) +

∥∥x− xk
∥∥2

2. (3.12)

Using (3.7) and (3.10), the right-hand side of (3.12) may be rewritten, for some
x = x̂ ∈ C, as

gk
(
xk+1)− gk(x̂) +

∥∥x̂− xk
∥∥2

2 =
∑

i∈B(k)

P
Gk
i

Ci

(
xk
)− xk+1

2

Gk
i

+
∑

i∈B(k)

(
x̂− xk

2

Gk
i

− x̂−P
Gk
i

Ci

(
xk
) 2

Gk
i

)
.

(3.13)

The first sum on the right-hand side of (3.13) is nonnegative and each term in
the second sum of (3.13) is nonnegative by application of Proposition 2.8 with
G = Gk

i , Q = Ci, z = x̂, and y = xk. Thus, we obtain from (3.12) that, for every
x̂ ∈ C,

∥∥x̂− xk+1
∥∥2

2 ≤
∥∥x̂− xk

∥∥2
2, ∀k ≥ 0, (3.14)

that is, Fejér-monotonicity of {xk}k≥0 with respect to C which implies its bound-
edness and, by monotonicity and nonnegativity, we obtain that the limit

lim
k→∞

∥∥x̂− xk
∥∥2

2 = θ (3.15)
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exists. Therefore, the left-hand side of (3.12) tends to zero, as k →∞, which
implies, by (3.13), that

lim
k→∞

( ∑
i∈B(k)

P
Gk
i

Ci

(
xk
)− xk+1

2

Gk
i

)
= 0 (3.16)

and that, for any x̂ ∈ C,

lim
k→∞

( ∑
i∈B(k)

(
x̂− xk

2

Gk
i

− x̂−P
Gk
i

Ci

(
xk
) 2

Gk
i

))
= 0. (3.17)

These limits imply the next two limits. By nonnegativity of the seminorms,
(3.16) implies that, for all i= 1,2, . . . ,m,

lim
k→∞

P
Gk
i

Ci

(
xk
)− xk+1

2

Gk
i

= 0, (3.18)

and the nonnegativity of the summands in (3.17), noted earlier, implies that, for
all i= 1,2, . . . ,m and any x̂ ∈ C,

lim
k→∞

(
x̂− xk

2

Gk
i

− x̂−P
Gk
i

Ci

(
xk
) 2

Gk
i

)
= 0. (3.19)

Since {xk}k≥0 is bounded and hence has a cluster point, the following two obser-
vations imply the required convergence result: (i) if there exists a cluster point
x∗ of {xk}k≥0 in C, then {xk}k≥0 has only one cluster point, and (ii) every cluster
point of {xk}k≥0 must be in C.

To prove (i), let x∗ ∈ C be a cluster point and assume that x∗∗ is another
cluster point, that is,

lim
k→∞,k∈K1

xk = x∗, lim
k→∞,k∈K2

xk = x∗∗, (3.20)

with K1 ⊆ N0, K2 ⊆ N0, and N0 = {0,1,2, . . .}. Since x∗ ∈ C, (3.15) applies with
x̂ replaced by x∗, and (3.20) shows that

lim
k→∞

∥∥x∗ − xk
∥∥2

2 = 0. (3.21)

Then, taking the limit of

0≤ ∥∥x∗ − x∗∗
∥∥

2 ≤
∥∥x∗ − xk

∥∥
2 +
∥∥x∗∗ − xk

∥∥
2, (3.22)
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for k →∞, k ∈ K2, and using (3.20) and (3.21), for the second and first sum-
mands on the right-hand side of (3.22), respectively, implies that x∗ = x∗∗.

Next, we prove (ii). Let liml→∞ xkl = x∗ and assume that x∗ /∈ C. Defining

Iin := {i | 1≤ i≤m, x∗ ∈ Ci
}
,

Iout := {i | 1≤ i≤m, x∗ /∈ Ci
}
,

(3.23)

this means that Iout �= ∅. Since, by assumption, every index i, 1≤ i≤m, appears
in infinitely many index sets B(k), we may assume, without loss of generality
(passing to a subsequence if necessary), that for every l = 1,2, . . . ,

B
(
kl
)∪B

(
kl + 1

)∪···∪B
(
kl+1− 1

)= {1,2, . . . ,m}. (3.24)

For every l, l = 1,2, . . . , let µl be the smallest element in the set

{
kl,kl + 1, . . . ,kl+1− 1

}
(3.25)

such that

B
(
µl
)∩ Iout �= ∅ (3.26)

(such an element exists by (3.24) and since Iout �= ∅). We want to show that
the subsequence {xµl}l≥0 also converges to x∗. By definition, kl ≤ µl, for all l =
1,2, . . . . If kl < µl, then

B(s)⊆ Iin, for s= kl,kl + 1, . . . ,µl − 1, (3.27)

and since x∗ ∈ ∩i∈IinCi, we have, from an appropriate variant of (3.14),

0≤ ∥∥x∗ − xµl
∥∥2

2 ≤ ··· ≤
∥∥x∗ − xkl+1

∥∥2
2 ≤

∥∥x∗ − xkl
∥∥2

2. (3.28)

Letting l→∞ in (3.28), we obtain liml→∞ xµl = x∗. From (3.26), it follows that
there exists an index t ∈ Iout such that t ∈ B(µl) for infinitely many indices l.
Removing from the sequence {µl}l≥0 all elements µl for which t /∈ B(µl), we end
up with a new infinite sequence {µl}l≥0 such that

t ∈ B
(
µl
)∩ Iout, ∀l = 1,2, . . . . (3.29)
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Write (3.19) for that t, and use for it Proposition 2.8 with G=Gk
t , Q = Ct, z = x̂,

and y = xk to obtain

lim
k→∞

P
Gk
t

Ct

(
xk
)− xk

2

Gk
t

= 0. (3.30)

Pick a Gk
t �= 0 (there must be infinitely many such nonzero matrices for any t),

denote wt,k = P
Gk
t

Ct
(xk)− xk, and write

wt,k
2

Gk
t

= 〈wt,k,Gk
t w

t,k
〉= n∑

j=1

gkt j
(
wt,k

j

)2
. (3.31)

Let J = J(Gk
t ). By (2.2), Definitions 2.1 and 3.1, and (3.30), we obtain

lim
k→∞

∥∥wt,k
∥∥2

2 = 0 (3.32)

because when gkt j = 0 then, by Definition 2.1, wt,k
j = 0 so that, using Definition

3.1,

n∑
j=1

gkt j
(
wt,k

j

)2 ≥ ε
∑
j∈J

(
wt,k

j

)2 = ε∥∥wt,k
∥∥2

2. (3.33)

Therefore, passing to the subsequence,

lim
l→∞

P
G
µl
t

Ct

(
xµl
)= x∗ (3.34)

which implies x∗ ∈ Ct, contradicting (3.29). �

Once convergence of Algorithm 3.2 has been proved for unity relaxation,
λk = 1, for all k ≥ 0, it is possible to introduce underrelaxation parameters in
the following manner.

Theorem 3.6. Under the assumptions of Theorem 3.3, any sequence {xk}k≥0, gen-
erated by Algorithm 3.2 with relaxation parameters

0 < ε ≤ λk ≤ 1, ∀k ≥ 0, (3.35)

for some arbitrarily small but fixed ε, converges to a point x∗ ∈ C.

Proof. The idea of this proof was developed during discussions with Charles
Byrne. Define the m+ 1 diagonal n×n matrices

Γki := λkG
k
i , ∀i= 1,2, . . . ,m, ∀k ≥ 0,

Γkm+1 := I −
m∑
i=1

Γki , ∀k ≥ 0,
(3.36)



400 Seminorm-induced oblique projections

and let Cm+1 =Rn. Then (3.3) takes the form

xk+1 =
m+1∑
i=1

Γki P
Γki
Ci

(
xk
)

(3.37)

because, for any z ∈Rn,

P
Gk
i

Ci
(z)= P

Γki
Ci

(z) (3.38)

since x λG = λ x 2
G. Also, the convex feasibility problem obviously remains un-

changed, and {{Γki }m+1
i=1 }k≥0 is a fair sequence according to Definition 3.1. Thus,

Theorem 3.3 applies and the result follows. �

Our Algorithm 3.2 could be derived from Byrne’s [9, Algorithm 4.2] for only
the special case of fixed blocks and a constant sequence of vectors of diagonal
matrices, that is, for

Gk
i =Gi, for i= 1,2, . . . ,m, ∀k ≥ 0. (3.39)

It is, therefore, natural to ask whether the BIMSGP method of [9] can be ex-
tended to accommodate diagonal weighting matrices which vary with the iter-
ation index k, but we do not address this question here. The BIMSGP method
is a multiprojection scheme and, as such, it also contains, as a special case, the
forerunner [12] of multiprojection methods.

4. Analysis of the fully simultaneous algorithm in the inconsistent case

The fully simultaneous algorithm with seminorm-induced oblique projections
for the convex feasibility problem is obtained from Algorithm 3.2 by imposing
the condition that all diagonal matrices of (3.1) are nonzero matrices which do
not change as iterations proceed. So, we assume throughout this section that, for
all k ≥ 0,

Gk
i =Gi �= 0, for i= 1,2, . . . ,m. (4.1)

A separate treatment is applied in this section, which allows us to prove that,
in this case, Algorithm 3.2 generates sequences {xk}k≥0 which always converge,
regardless of the initial point x0 ∈ Rn and independently from the consistency
C �= ∅ or inconsistency C =∅ of the underlying system C :=∩m

i=1Ci. Moreover,
it will always converge to a minimizer of a certain proximity function assuming
that this function has minimizers. Our analysis follows the same pattern of proof
of the CAV algorithm given in [15]. We treat first the case λk = 1, for all k ≥ 0,
and then expand the result to underrelaxation.
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We define a proximity function

F(x) :=
m∑
i=1

PGi
Ci

(x)− x
2

Gi

(4.2)

and an operator

T(z) :=
m∑
i=1

GiP
Gi
Ci

(z). (4.3)

The first step towards establishing convergence is the next proposition.

Proposition 4.1. Under assumptions (i), (iii), (iv), and (v) of Theorem 3.3, for
every sequence {xk}k≥0, generated by Algorithm 3.2, with λk = 1 for all k ≥ 0, and
assuming (4.1), the sequence {F(xk)}k≥0, with F defined by (4.2), is decreasing and
limk→∞‖xk+1− xk‖2 = 0.

Proof. From (4.2) and Proposition 3.4 with (4.1), we obtain

F
(
xk
)= m∑

i=1

PGi
Ci

(
xk
)−T

(
xk
) 2

Gi

+
∥∥T(xk)− xk

∥∥2
2. (4.4)

The operator T(z) of (4.3) is similar to (3.5) only with no dependence on k, thus
using (3.3) with λk = 1 for all k ≥ 0, along with (4.1), we have that xk+1 = T(xk).
Since, by (2.5), PGi

Ci
(xk+1) minimizes x− xk+1 2

Gi
over all x ∈ Ci, we can continue

(4.4) to obtain, for all k ≥ 0,

F
(
xk
)≥ m∑

i=1

PGi
Ci

(
xk+1)− xk+1

2

Gi

+
∥∥xk+1− xk

∥∥2
2

= F
(
xk+1)+

∥∥xk+1− xk
∥∥2

2

≥ F
(
xk+1).

(4.5)

The monotonicity and nonnegativity of {F(xk)}k≥0 guarantee that the limit
limk→∞F(xk) exists and thus, (4.5) implies limk→∞‖xk+1− xk‖2 = 0. �

We denote the set of minimizers of the proximity function F by

Φ := {x̂ ∈R
n | F(x̂)≤ F(x), ∀x ∈R

n
}
. (4.6)

The next proposition establishes the Fejér-monotonicity with respect to Φ of the
iterates.
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Proposition 4.2. Under the conditions of Proposition 4.1, if Φ �= ∅, then any
sequence {xk}k≥0, generated by Algorithm 3.2, is Fejér-monotone with respect to Φ.

Proof. Take any x̂ ∈Φ and use (4.5) with x0 = x̂ and x1 = T(x̂), then we get

F(x̂)≥ F
(
T(x̂)

)
+
∥∥T(x̂)− x̂2

2

∥∥
2. (4.7)

Since x̂ is a minimizer of F, F(x̂) ≤ F(T(x̂)) and so (4.7) shows that T(x̂) = x̂.
Using Proposition 2.8 with y = xk, G = Gi, Q = Ci, and z = PGi

Ci
(x̂), we obtain,

for i= 1,2, . . . ,m, that for any sequence {xk}k≥0, generated by Algorithm 3.2 with
λk = 1 for all k ≥ 0, and assuming (4.1),

PGi
Ci

(x̂)− xk
2

Gi

≥ PGi
Ci

(
xk
)− xk

2

Gi

+ PGi
Ci

(x̂)−PGi
Ci

(
xk
) 2

Gi

. (4.8)

Summing up all these inequalities, using Proposition 3.4 with (4.1) for the re-
sulting left-hand side, and using (4.2), we obtain

m∑
i=1

PGi
Ci

(x̂)−T(x̂)
2

Gi

+
∥∥T(x̂)− xk

∥∥2
2 ≥ F

(
xk
)

+Γ
(
xk
)
, (4.9)

where

Γ(v) :=
m∑
i=1

PGi
Ci

(x̂)−PGi
Ci

(v)
2

Gi

. (4.10)

Using (4.2) again and the fact that T(x̂)= x̂, (4.9) can be rewritten as

∥∥x̂− xk
∥∥2

2 ≥ F
(
xk
)−F(x̂) +Γ

(
xk
)
. (4.11)

Since x̂ minimizes F, we have F(xk)−F(x̂)≥ 0. Denoting

γi(v) := PGi
Ci

(x̂)−PGi
Ci

(v), (4.12)

we have, by (4.3),

m∑
i=1

Giγ
i(v)=

m∑
i=1

GiP
Gi
Ci

(x̂)−
m∑
i=1

GiP
Gi
Ci

(v)= T(x̂)−T(v)= x̂−T(v). (4.13)



Y. Censor and T. Elfving 403

Then, from (4.10) and (2.2), we get

Γ(v)=
m∑
i=1

〈
γi(v),Giγ

i(v)
〉

≥
〈 m∑

i=1

Giγ
i(v),

m∑
i=1

Giγ
i(v)

〉

= ∥∥x̂−T(v)
∥∥2

2

(4.14)

which, along with (4.11) and xk+1 = T(xk), proves the required result. The in-
equality in (4.14) follows from convexity considerations: due to

∑m
i=1Gi = I , we

have, for every j = 1,2, . . . ,n, that
∑m

i=1 gi j = 1 while gi j ≥ 0, for all i and all j.
Convexity of the real-valued function f (x) = x2 then implies that, for every
j = 1,2, . . . ,n,

m∑
i=1

gi j
(
γij(v)

)2 ≥
m∑
i=1

(
gi jγ

i
j(v)

)2
. (4.15)

Summing up all these inequalities over j yields the inequality in (4.14). �

Now, we are ready to prove the convergence theorem.

Theorem 4.3. Under assumptions (i), (iii), (iv), and (v) of Theorem 3.3, if the
proximity function F has minimizers, that is, Φ �= ∅, then any sequence {xk}k≥0,
generated by Algorithm 3.2 with λk = 1 for all k ≥ 0, and assuming (4.1), converges
to a minimizer of F.

Proof. It follows from the Fejér-monotonicity, established in Proposition 4.2,
that {xk}k≥0 is bounded, thus it has at least one cluster point. We show now
that any cluster point of {xk}k≥0 is a minimizer of F. Let x∗ be a cluster point of
{xk}k≥0 and let x̂ ∈Φ. Using Proposition 2.8 with y = x∗, G = Gi, Q = Ci, and
z = PGi

Ci
(x̂), for i= 1,2, . . . ,m, summing up all inequalities, and using Proposition

3.4 with (4.1), (4.2), and (4.10), we obtain

F(x̂) +
∥∥x̂− x∗

∥∥2
2 ≥ F

(
x∗
)

+Γ
(
x∗
)
. (4.16)

The fact that limk→∞‖xk+1− xk‖2 = 0 (see Proposition 4.1) guarantees that
T(x∗) = x∗ because x∗ is a cluster point. Thus, (4.16) and (4.14) show that
F(x̂) ≥ F(x∗). Finally, if x∗ is a cluster point of {xk}k≥0, then x∗ ∈ Φ and
Proposition 4.2 guarantees that, for all k ≥ 0,

0≤ ∥∥x∗ − xk+1
∥∥

2 ≤
∥∥x∗ − xk

∥∥
2. (4.17)
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Thus, limk→∞‖x∗ − xk‖2 exists and since x∗ is a cluster point, this limit must be
zero, proving that x∗ is the limit of {xk}k≥0. �

Now, we can introduce underrelaxation parameters as follows.

Theorem 4.4. Under assumptions (i), (iii), (iv), and (v) of Theorem 3.3, if the
proximity function F has minimizers, that is, Φ �= ∅, then any sequence {xk}k≥0,
generated by Algorithm 3.2 with 0 < ε ≤ λk ≤ 1 for all k ≥ 0, for some arbitrarily
small but fixed ε, and assuming (4.1), converges to a minimizer of F.

Proof. Similar to the proof of Theorem 3.6. �

The special case, when in Theorem 4.3 all matricesGi = (1/m)I , i= 1,2, . . . ,m,
the proximity function F of (4.2) is the classical least-squares measure, and the
projections PGi

Ci
are the orthogonal projections, was investigated by Iusem and

De Pierro [23] and Combettes [18]. The case considered in [23] and in [18] is
also covered by the results of Bauschke and Borwein [4, Theorem 6.2] where a
discussion on when Φ is nonempty is also offered.
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