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Let X be a Banach space whose characteristic of noncompact convexity is less
than 1 and satisfies the nonstrict Opial condition. Let C be a bounded closed
convex subset of X , KC(C) the family of all compact convex subsets of C, and
T a nonexpansive mapping from C into KC(C). We prove that T has a fixed
point. The nonstrict Opial condition can be removed if, in addition, T is a 1-χ-
contractive mapping.

1. Introduction

Some classical fixed-point theorems for singlevalued nonexpansive mappings
have been extended to multivalued mappings. The first results in this direction
were established by Markin [11] in a Hilbert space setting, and by Browder [3]
for spaces having a weakly continuous duality mapping. Lami Dozo [8] general-
ized these results to a Banach space satisfying the Opial condition.

By using Edelstein’s method of asymptotic centers, Lim [9] obtained a fixed-
point theorem for a multivalued nonexpansive self-mapping in a uniformly con-
vex Banach space. Kirk and Massa [7] gave an extension of Lim’s theorem prov-
ing the existence of a fixed point in a Banach space for which the asymptotic
center of a bounded sequence in a closed bounded convex subset is nonempty
and compact.

Many questions remain open (see [14, 15]) about the existence of fixed points
for multivalued nonexpansive mappings when the Banach space satisfies geo-
metric properties which assure the existence of a fixed point in the singlevalued
case, for instance, if X is a nearly uniformly convex space. In this paper, we state
some fixed-point theorems for multivalued nonexpansive self-mappings, which
are more general than the previous results. First, we give a fixed-point theorem
for a multivalued nonexpansive and 1-χ-contractive mapping in the framework
of a Banach space whose characteristic of noncompact convexity associated to
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the separation measure of noncompactness is less than 1. If, in addition, the
space satisfies the nonstrict Opial condition, we prove, using some properties of
χ-minimal sets (see [2, Chapter III] for definitions), that the χ-contractiveness
assumption can be removed. In particular, this result gives a partial answer to
[15, Problem 6].

2. Preliminaries and notation

Let X be a Banach space. We denote by CB(X) the family of all nonempty closed
bounded subsets of X , and by K(X) (resp., KC(X)) the family of all nonempty
compact (resp., compact convex) subsets of X . On CB(X) we have the Hausdorff

metric H given by

H(A,B) :=max
{

sup
a∈A

d(a,B),sup
b∈B

d(b,A)
}
, A,B ∈ CB(X), (2.1)

where for x ∈ X and E ⊂ X , d(x,E) := inf{d(x, y) : y ∈ E} is the distance from
the point x to the subset E.

If C is a closed convex subset of X , then a multivalued mapping T : C →
CB(X) is said to be a contraction if there exists a constant k ∈ [0,1) such that

H(Tx,T y)≤ k‖x− y‖, x, y ∈ C, (2.2)

and T is said to be nonexpansive if

H(Tx,T y)≤ ‖x− y‖, x, y ∈ C. (2.3)

Recall that the Kuratowski and Hausdorff measures of noncompactness of a
nonempty bounded subset B of X are respectively defined as the numbers

α(B)= inf{d > 0 : B can be covered by finitely many sets of diameter≤ d},
χ(B)= inf{d > 0 : B can be covered by finitely many balls of radius≤ d}.

(2.4)

Then a multivalued mapping T : C → 2X is called γ-condensing (resp., 1-γ-
contractive) where γ = α(·) or χ(·) if, for each bounded subset B of C with
γ(B) > 0, there holds the inequality

γ
(
T(B)

)
< γ(B)

(
resp., γ

(
T(B)

)≤ γ(B)
)
. (2.5)

Here T(B)=∪x∈BTx. Note that a multivalued mapping T : C→ 2X is said to be
upper semicontinuous on C if {x ∈ C : Tx ⊂V} is open in C whenever V ⊂ X is
open; T is said to be lower semicontinuous if T−1(V) := {x ∈ C : Tx∩V �= ∅}
is open in C whenever V ⊂ X is open; and T is said to be continuous if it is both
upper and lower semicontinuous. There is another different kind of continuity
for set-valued operators: T : X → CB(X) is said to be continuous on X (with
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respect to the Hausdorff metric H) if H(Txn,Tx)→ 0 whenever xn→ x. It is not
hard to see (see [1, 4]) that both definitions of continuity are equivalent if Tx is
compact for every x ∈ X . We say that x ∈ C is a fixed point of T if and only if x
is contained in Tx.

In the next section, we will use the following result for multivalued mappings
(see also [13]).

Theorem 2.1 (see [5]). Let X be a Banach space and∅�=D⊂X be closed bounded
convex. Let F : D→ 2X be upper semicontinuous γ-condensing with closed convex
values, where γ(·)= α(·) or χ(·). If Fx∩ ID(x) �= ∅ on D then Fix(F) �= ∅. (Here
ID(x) is called the inward set at x defined by ID(x) := {x + λ(y − x) : λ ≥ 0, y ∈
D}.)

We recall some definitions of properties satisfied by a Banach space X .

Definition 2.2. (a) X is said to be nearly uniformly convex (NUC) if it is reflexive,
and its norm is uniformly Kadec-Klee, that is, for any positive number ε there
exists a corresponding number δ = δ(ε) > 0 such that for any sequence {xn}

∥∥xn∥∥≤ 1 n= 1,2, . . .
w− lim

n
xn = x

sep
({
xn
})= inf

{∥∥xn− xm
∥∥ : n �=m

}≥ ε


=⇒ ‖x‖ ≤ 1− δ. (2.6)

(b) X is said to satisfy the Opial condition if, whenever a sequence {xn} in X
converges weakly to x, then for y �= x

limsup
n

∥∥xn− x
∥∥ < limsup

n

∥∥xn− y
∥∥. (2.7)

If the inequality is nonstrict we say that X satisfies the nonstrict Opial condition.

3. Asymptotic centers and moduli of noncompact convexity

In this section, we will consider, apart from α and χ, another measure of non-
compactness. The separation measure of noncompactness of a nonempty
bounded subset B of X is defined by

β(B)= sup
{
ε : there exists a sequence

{
xn
}

in B such that sep
({
xn
})≥ ε}.

(3.1)

Definition 3.1. Let X be a Banach space and φ= α, β or χ. The modulus of non-
compact convexity associated to φ is defined in the following way:

∆X,φ(ε)= inf
{

1−d(0,A) : A⊂ BX is convex, φ(A)≥ ε}, (3.2)

where BX is the unit ball of X .



378 Multivalued non-expansive mappings

The characteristic of noncompact convexity of X associated with the measure
of noncompactness φ is defined by

εφ(X)= sup
{
ε ≥ 0 : ∆X,φ(ε)= 0

}
. (3.3)

The following relationships among the different moduli are easy to obtain

∆X,α(ε)≤ ∆X,β(ε)≤ ∆X,χ(ε), (3.4)

and consequently

εα(X)≥ εβ(X)≥ εχ(X). (3.5)

When X is a reflexive Banach space we have some alternative expressions for
the moduli of noncompact convexity associated with β and χ,

∆X,β(ε)= inf
{

1−‖x‖ :
{
xn
}⊂ BX, x =w− lim

n
xn, sep

({
xn
})≥ ε},

∆X,χ(ε)= inf
{

1−‖x‖ :
{
xn
}⊂ BX, x =w− lim

n
xn, χ

({
xn
})≥ ε}. (3.6)

It is known that X is NUC if and only if εφ(X)= 0, where φ is α, β or χ. The
above mentioned definitions and properties can be found in [2].

Let C be a nonempty bounded closed subset of X , and {xn} a bounded se-
quence in X , we use r(C,{xn}) and A(C,{xn}) to denote the asymptotic radius
and the asymptotic center of {xn} in C, that is,

r
(
C,
{
xn
})= inf

{
limsup

n

∥∥xn− x
∥∥ : x ∈ C

}
,

A
(
C,
{
xn
})= {x ∈ C : limsup

n

∥∥xn− x
∥∥= r

(
C,
{
xn
})}

.
(3.7)

It is known that A(C,{xn}) is a nonempty weakly compact convex set as C is.
Next, we present a theorem which gives a connection between the asymptotic

center of a sequence and the modulus of noncompact convexity and it will play
a crucial role in our results. First, we recall the following notation of regularity
and the lemma below.

Definition 3.2. Let {xn} and C be as above. Then {xn} is called regular with
respect to C if r(C,{xn})= r(C,{xni}) for all subsequences {xni} of {xn}.
Lemma 3.3 (see [6, 10]). Let {xn} and C be as above. Then, there always exists a
subsequence of {xn} which is regular with respect to C.

If D is a bounded subset of X , the Chebyshev radius of D relative to C is
defined by

rC(D) := inf
{

sup
{‖x− y‖ : y ∈D

}
: x ∈ C

}
. (3.8)
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Theorem 3.4. Let C be a closed convex subset of a reflexive Banach space X , and
let {xn} be a bounded sequence in C which is regular with respect to C. Then

rC
(
A
(
C,
{
xn
}))≤ (1−∆X,β

(
1−
))
r
(
C,
{
xn
})
. (3.9)

Moreover, if X satisfies the nonstrict Opial condition then

rC
(
A
(
C,
{
xn
}))≤ (1−∆X,χ

(
1−
))
r
(
C,
{
xn
})
. (3.10)

Proof. Denote r = r(C,{xn}) and A=A(C,{xn}). Since co({xn})⊂ C is a weakly
compact set, we can find a subsequence {yn} of {xn} weakly convergent to a
point z ∈ C. Without loss of generality we assume that the limit limn �=m‖yn −
ym‖ exists (see [2, Theorem III.1.5]). Since {xn} is regular with respect to C,
r = r(C,{yn}), and then, the weakly lower semicontinuity of the norm implies

r ≤ limsup
n

∥∥yn− z
∥∥≤ liminf

m
limsup

n

∥∥yn− ym
∥∥= lim

n �=m
∥∥yn− ym

∥∥. (3.11)

Hence β({yn})≥ r.
On the other hand, if X satisfies the nonstrict Opial condition, it is easy to

deduce that χ({yn : n ∈ N}) = limsupn‖yn − z‖. Indeed, for every ε > 0 there
exists n0 ∈N such that ‖yn− y‖ < limsupn‖yn− y‖+ ε for all n≥ n0, and hence
χ({yn : n∈N})≤ limsupn‖yn− y‖.

Conversely, suppose that {yn : n ∈ N} can be covered by finitely many balls
with radius r < limsupn‖yn − y‖. Consider a subsequence {zn} of {yn} such
that limn‖zn− z‖ = limsupn‖yn− z‖. Then there exists a subsequence {znk} of
{zn} contained in a ball B(x,r) for some x ∈ X . Therefore we obtain

limsup
k

∥∥znk − x
∥∥≤ r < limsup

n

∥∥yn− z
∥∥= lim

k

∥∥znk − z
∥∥, (3.12)

contradicting the fact that X satisfies the nonstrict Opial condition, because
znk ⇀ z.

Thus, in this case we have χ({yn : n∈N})≥ r.
Assume x lies in A. Since r = limsupn‖yn − x‖, for every ε > 0 there exists

n0 ∈N such that ‖yn− x‖ < r + ε for all positive integer n greater than or equal
to n0. Hence, the sequence

{
yn− x

r + ε

}
n≥n0

(3.13)

is contained in the unit ball of X , converges weakly to (z− x)/(r + ε) and
β({(yn− x)/(r + ε)})≥ r/(r + ε).

If X satisfies the nonstrict Opial condition X we also have that χ({(yn− x)/
(r + ε)})≥ r/(r + ε). Therefore we deduce

‖x− z‖ ≤
(

1−∆X,β,τ

(
r

r + ε

))
(r + ε), (3.14)
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and in the second assumption

‖x− z‖ ≤
(

1−∆X,χ,τ

(
r

r + ε

))
(r + ε). (3.15)

Since the last inequality is true, for every ε > 0 and for every x ∈ A, we obtain
the inequalities in the statement. �

Remark 3.5. It must be noted that the regularity assumption is necessary in
Theorem 3.4. Consider the product space X = 	2∞ ⊗ 	2, where 	2∞ := (R2,‖ · ‖∞),
with the norm

∥∥(x, y)
∥∥= (‖x‖2

∞ +‖y‖2
2

)1/2
, x ∈ 	2

∞, y ∈ 	2. (3.16)

First, we are going to prove that

∆X,α(ε)= 1−
√

1− ε
2

4
. (3.17)

Since X contains isometrically 	2, it is easy to deduce that

∆X,α(ε)≤ ∆	2,α(ε)= 1−
√

1− ε
2

4
, (3.18)

(see [2, Chapter I]).
Now, we study the reverse inequality. Taking in mind that α(A)≤ 2χ(A) (see

[2]) for each bounded subset of X , it is clear that

∆X,α(ε)≥ ∆X,χ

(
ε
2

)
, (3.19)

for all ε > 0. Estimate the value of ∆X,χ(ε/2). Since X is reflexive, we have (see [2,
Chapter V])

∆X,χ

(
ε
2

)
= inf

{
1−‖z‖ : w− lim

n
zn = z,

∥∥zn∥∥≤ 1, χ
({
zn
})≥ ε

2

}
. (3.20)

Let {(xn, yn)} be a sequence in the unit ball of X weakly convergent to a vector
(x0, y0)∈ X such that χ({(xn, yn)})≥ ε/2.

It follows that limn xn = x0 and {yn} is weakly convergent to y0 in 	2. Taking
a subsequence, if necessary, we can assume that limn‖yn− y0‖2 and limn‖yn‖2

exist, and the supports of yn− y0 and y0 are nearly disjoint, that is,

lim
n

∥∥yn∥∥2
2 =

∥∥y0
∥∥2

2 + lim
n

∥∥yn− y0
∥∥2

2. (3.21)

On the other hand, it is not difficult to see that X satisfies the Opial condition.
In fact, it satisfies the uniform Opial condition with the same modulus of Opial
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associated with 	2. Then

χ
({(

xn, yn
)})= limsup

n

∥∥(xn, yn)− (x0, y0
)∥∥= lim

n

∥∥yn− y0
∥∥

2 ≥
ε
2
. (3.22)

Hence

1≥ lim
n

∥∥(xn, yn)∥∥2 = lim
n

∥∥xn∥∥2
∞ +

∥∥yn∥∥2
2

= ∥∥x0
∥∥2
∞ +

∥∥y0
∥∥2

2 + lim
n

∥∥yn− y0
∥∥2

2

= ∥∥(x0, y0
)∥∥2

+ lim
n

∥∥yn− y0
∥∥2

2

≥ ∥∥(x0, y0
)∥∥2

+
ε2

4
.

(3.23)

Thus

∆X,χ

(
ε
2

)
≥ 1−

√
1− ε

2

4
, (3.24)

following the required inequality.
Moreover, since X is reflexive and satisfies the uniform Opial condition then

∆X,χ(1−)= 1 (see [2, Chapter V] for details).
If xn ∈R2 is the sequence defined by x2n−1 = (−1,0) and x2n = (1,0) for each

n∈N, we consider the sequence zn = (xn,0)∈ X .
Denote B the unit ball of 	2∞ and let C = B×{0}. Clearly C is a weakly com-

pact convex subset of X which contains {zn}. It is not difficult to see that
r(C,{zn})= 1 and A(C,{zn})= {((0, y),0) : y ∈ [−1,1]}. Then rC(A(C,{zn}))=
1, while 1−∆X,α(1−)=√3/2 and 1−∆X,χ(1−)= 0 are less than one.

4. Main results

In order to prove our first result, we need the following proposition which is
proved along the proof of the Kirk-Massa theorem as it appears in [15].

Proposition 4.1. Let C be a nonempty weakly compact separable subset of a Ba-
nach space X , T : C→ K(C) a nonexpansive mapping, and {xn} a sequence in C
such that limn d(xn,Txn) = 0. Then, there exists a subsequence {zn} of {xn} such
that

Tx∩A �= ∅, ∀x ∈A := A
(
C,
{
zn
})
. (4.1)

Assume that C is a nonempty weakly compact convex subset of a Banach
spaceX , andT :C→ KC(C) is a nonexpansive and 1-χ-contractive self-mapping.
Consider a bounded sequence {xn} in C such that T satisfies the condition

Tx∩A �= ∅, ∀x ∈ A :=A
(
C,
{
xn
})
. (4.2)
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For a fixed element x0 ∈ A and an arbitrary µ ∈ (0,1], the contraction Tµ :
A→ KC(C) defined by

Tµx = µx0 + (1−µ)Tx, x ∈A (4.3)

verifies the hypotheses of Theorem 2.1. Let B be a bounded and nonprecompact
subset of C. Since T is 1-χ-contractive and Tµ(B)= µx0 + (1−µ)T(B) we have

χ
(
Tµ(B)

)= χ
(
µx0 + (1−µ)T(B)

)= χ
(
(1−µ)T(B)

)
= (1−µ)χ

(
T(B)

)≤ (1−µ)χ(B) < χ(B).
(4.4)

Thus Tµ is χ-condensing. Moreover, since A is convex, Tµ satisfies the same
boundary condition as T does, that is, we have

Tµx∩A �= ∅, ∀x ∈ A. (4.5)

Hence by Theorem 2.1, Tµ has a fixed point zµ ∈ A and we can find a sequence
{zn} in A satisfying limn d(zn,Tzn) = 0. Notice that this conclusion is true for
every A closed bounded convex subset of C satisfying Tx∩A �= ∅, for all x ∈A.

With this observation, we are able to prove our main result.

Theorem 4.2. Let C be a nonempty closed bounded convex subset of a Banach
space X such that εβ(X) < 1, and T : C → KC(C) be a nonexpansive and 1-χ-
contractive nonexpansive mapping. Then T has a fixed point.

Proof. Let x0 ∈ C be fixed and, for each n≥ 1, define

Tnx := 1
n
x0 +

(
1− 1

n

)
Tx, x ∈ C. (4.6)

Then Tn is a multivalued contraction and hence has a fixed point xn. It is easily
seen that limn d(xn,Txn)= 0. By Lemma 3.3, we may assume that {xn} is regular
with respect to C and using Proposition 4.1 we can also assume that

Tx∩A �= ∅, ∀x ∈ A :=A
(
C,
{
xn
})
. (4.7)

Since condition εβ(X) < 1 implies reflexivity [2], we apply Theorem 3.4 to obtain

rC(A)≤ λr
(
C,
{
xn
})
, (4.8)

where λ := 1−∆X,β(1−) < 1.
According to the previous observation before Theorem 4.2, we can take a se-

quence {x1
n} in A satisfying limn d(x1

n,Tx
1
n)= 0 and again reasoning as above we

can assume that {x1
n} is regular with respect to C, and

Tx∩A1 �= ∅, ∀x ∈ A1 := A
(
C,
{
x1
n

})
. (4.9)
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Again, applying Theorem 3.4, we obtain

rC
(
A1)≤ λr

(
C,
{
x1
n

})
. (4.10)

On the other hand, since {x1
n} ⊂ A

r
(
C,
{
x1
n

})≤ rC(A) (4.11)

and then

rC
(
A1)≤ λrC(A). (4.12)

By induction, for each m ≥ 1 we construct Am and {xmn }n where Am =
A(C,{xmn }), {xmn }n ⊂ Am−1 such that limn d(xmn ,Tx

m
n )= 0, and

rC
(
Am
)≤ λmrC(A). (4.13)

Choose xm ∈ Am. We will prove that {xm}m is a Cauchy sequence. For each m≥ 1
we have for any positive integer n

∥∥xm−1− xm
∥∥≤ ∥∥xm−1− xmn

∥∥+
∥∥xmn − xm

∥∥≤ diamAm−1 +
∥∥xmn − xm

∥∥. (4.14)

Taking upper limit as n→∞
∥∥xm−1− xm

∥∥≤ diamAm−1 + limsup
n

∥∥xmn − xm
∥∥= diamAm−1 + r

(
C,
{
xmn
})

≤ diamAm−1 + rC
(
Am−1)

≤ 2rC
(
Am−1)+ rC

(
Am−1)= 3rC

(
Am−1)

≤ 3λm−1rC(A).
(4.15)

Since λ < 1, we conclude that there exists x ∈ C such that xm converges to x.
Let x be a fixed point of T . For each m≥ 1,

d
(
xm,Txm

)≤ ∥∥xm− xmn
∥∥+d

(
xmn ,Tx

m
n

)
+H

(
Txmn ,Txm

)
≤ 2

∥∥xm− xmn
∥∥+d

(
xmn ,Tx

m
n

)
.

(4.16)

Taking upper limit as n→∞

d
(
xm,Txm

)≤ 2limsup
n

∥∥xm− xmn
∥∥≤ 2λm−1rC(A). (4.17)

Finally, taking limit in m in both sides we obtain limmd(xm,Txm) = 0, and the
continuity of T implies that d(x,Tx)= 0, that is, x ∈ Tx. �

Remark 4.3. The inductive construction of the sequence {Am}m in Theorem 4.2,
also appears in [16, Theorem 3.2], though only two steps are done.
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Remark 4.4. Note that Theorem 4.2 does not hold if nonexpansiveness assump-
tion is removed. Indeed, if B2 is the closed unit ball of l2 and T : B2 → B2 is
defined by

T(x)= T
(
x1,x2, . . .

)= (√1−‖x‖2,x1,x2, . . .
)
, (4.18)

then T is an 1-χ-contraction without a fixed point.

We do not know if χ-contractiveness condition can be dropped in Theorem
4.2. In fact, it is an open problem if every nonexpansive mapping T : C→ KC(C)
is 1-χ-contractive even for single valued mappings. However, if X is either a sep-
arable or a reflexive Banach space and satisfies the nonstrict Opial condition this
assertion is true, as we prove in the next theorem.

Theorem 4.5. If X is either a separable or reflexive Banach space satisfying the
nonstrict Opial condition, C is a nonempty weakly compact subset of X and T :
C→ K(C) is a nonexpansive mapping, then T is 1-χ-contractive.

Proof. Let B be an infinite subset of C. Since T(B) is an infinite and bounded
set there exists a sequence {yn} ⊂ T(B) which is χ-minimal (see [2, Chapter III]
for definitions and properties concerning χ-minimality). Since χ is strictly min-
imalizable we can assume that

χ
({
yn : n∈N

})= χ
(
T(B)

)
. (4.19)

Since C is weakly compact, there is a subsequence of {yn} which is weakly con-
vergent to some y ∈ C. Taking a subsequence, if necessary, we can suppose that
yn⇀ y and limn‖yn− y‖ exists. As in the proof of Theorem 3.4, we have χ({yn :
n∈N})= limn‖yn− y‖.

Choose xn ∈ B such that yn ∈ Txn. Taking a subsequence, if necessary, we as-
sume that xn⇀ u∈ C, limn‖xn−u‖ exists, and χ({xn : n∈N})= limn‖xn−u‖.

On the other hand, because T is compact valued, we can take un ∈ Tu ver-
ifying

∥∥yn−un
∥∥= d

(
yn,Tu

)≤H
(
Txn,Tu

)≤ ∥∥xn−u
∥∥, n≥ 1. (4.20)

By the compactness of Tu, we may assume that {un} converges (strongly) to a
point v ∈ Tu. It follows that

χ
(
T(B)

)= lim
n

∥∥yn− y
∥∥≤ limsup

n

∥∥yn− v
∥∥

= limsup
n

∥∥yn−un
∥∥≤ lim

n

∥∥xn−u
∥∥

= χ
({
xn
})≤ χ(B),

(4.21)

and T is 1-χ-contractive. �
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In view of this result, we deduce from Theorem 4.2 the following corollary.

Corollary 4.6. Let X be a Banach space with εβ(X) < 1 which satisfies the non-
strict Opial condition. Suppose C is a nonempty weakly compact convex subset of X
and T : C→ KC(C) is a nonexpansive mapping. Then T has a fixed point.

Furthermore, the method used in the proof of Theorem 4.2, applying
Theorem 3.4, may be followed to obtain the following theorem.

Theorem 4.7. Let X be a Banach space with εχ(X) < 1 which satisfies the nonstrict
Opial condition. Suppose C is a nonempty weakly compact convex subset of X and
T : C→ KC(C) is a nonexpansive mapping. Then T has a fixed point.

This theorem extends the Kirk-Massa theorem, in the sense that we do not
need the compactness of asymptotic center of a bounded sequence with respect
to a bounded closed convex subset of X . Next example, due to Prus [12], illus-
trates this fact.

Example 4.8 (see [12]). Let Xm be the space 	2 renormed as follows. For x =∑∞
k=1 xkek ({ek} denotes the standard basis in 	2) set

‖x‖m = sup
n

(
x2
n +

1
m+ 1

∞∑
k=n+1

x2
k

)1/2

, m≥ 1. (4.22)

Clearly ‖ · ‖m is equivalent to the usual norm in 	2. The space Xm is NUC for
each m ≥ 1, and it is easy to check that it satisfies the nonstrict Opial condi-
tion. Thus, the conclusion of Theorem 4.7 holds for these spaces. However, by
nonstrict Opial condition we have for any x ∈ Xm

limsup
∥∥x− en

∥∥≥ 1, (4.23)

while for all k,n with k < n ∥∥∥∥ 1√
m+ 1

ek − en

∥∥∥∥
m
= 1. (4.24)

Thus we conclude

A
(
Xm,

{
en
})⊇ 1√

m+ 1
co
{
en
}

(4.25)

and, in particular A(Xm,{en}) is not compact.
Note that we cannot apply Lami-Dozo’s theorem [8] to obtain a fixed point

because Xm does not satisfy strict Opial condition.
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