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We study descent-like approximation methods and proximal methods of the re-
traction type for solving fixed-point problems with nonself-mappings in Hilbert
and Banach spaces. We prove strong and weak convergences for weakly contrac-
tive and nonexpansive maps, respectively. We also establish the stability of these
methods with respect to perturbations of the operators and the constraint sets.

1. Preliminaries

Let B be a real uniformly convex and uniformly smooth Banach space [12] with
norm ‖ · ‖, let B∗ be its dual space with the dual norm ‖ · ‖∗ and, as usual,
denote the duality pairing of B and B∗ by 〈x,ϕ〉, where x ∈ B and ϕ ∈ B∗ (in
other words, 〈x,ϕ〉 is the value of ϕ at x).

We recall that the uniform convexity of the space B means that, for any given
ε > 0, there exists δ > 0 such that for all x, y ∈ B with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and
‖x− y‖ = ε, the inequality

‖x+ y‖ ≤ 2(1− δ) (1.1)

holds. The function

δB(ε)= inf
{

1− 2−1‖x+ y‖ : ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ = ε} (1.2)

is called the modulus of convexity of the space B.
The uniform smoothness of the space B means that, for any given ε > 0, there

exists δ > 0 such that the inequality

2−1(‖x+ y‖+‖x− y‖)− 1≤ ε‖y‖ (1.3)
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holds for all x, y ∈ B with ‖x‖ = 1 and ‖y‖ ≤ δ. The function

ρB(τ)= sup
{

2−1(‖x+ y‖+‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ = τ} (1.4)

is called the modulus of smoothness of the space B.
We observe that the space B is uniformly convex if and only if

δB(ε) > 0 ∀ε > 0, (1.5)

and that it is uniformly smooth if and only if

lim
τ→0

hB(τ)= lim
τ→0

ρB(τ)
τ

= 0. (1.6)

Recall that the nonlinear, in general, operator J : B→ B∗ defined by

‖Jx‖∗ = ‖x‖, 〈x,Jx〉 = ‖x‖2 (1.7)

is called the normalized duality mapping.
The following estimates, established in [2, 3], will be used in the proofs of the

convergence and stability theorems below (e.g., Theorems 3.2 and 4.9). Define
C(s, t) : R+×R+ →R+ by

C(s, t)=
√
s2 + t2

2
. (1.8)

If B is a uniformly smooth Banach space, then for all x, y ∈ B,

〈x− y, Jx− J y〉 ≤ 2C2(‖x‖,‖y‖)ρB
(

4‖y− x‖
C
(‖x‖,‖y‖)

)
, (1.9)

and if B is a uniformly convex Banach space, then for all x, y ∈ B,

〈x− y, Jx− J y〉 ≥ 8C2(‖x‖,‖y‖)δB
( ‖y− x‖
C
(‖x‖,‖y‖)

)
. (1.10)
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If ‖x‖ ≤ R and ‖y‖ ≤ R, then, respectively,

〈x− y, Jx− J y〉 ≤ 2LR2ρB

(
4‖y− x‖

R

)
, (1.11)

〈x− y, Jx− J y〉 ≥ (2L)−1R2δB

(‖y− x‖
2R

)
, (1.12)

where 1 < L < 1.7 is the Figiel constant [10, 17]. Furthermore, in a uniformly
smooth Banach space, we also have for all x, y ∈ B,

‖Jx− J y‖∗ ≤ 8RhB
(
16LR−1‖x− y‖). (1.13)

Now we recall the definitions of nonexpansive and weakly contractive map-
pings (see, e.g., [4, 6, 11]).

Definition 1.1. A mapping A : G→ B is said to be nonexpansive on the closed
convex subset G of a Banach space B if for all x, y ∈G,

‖Ax−Ay‖ ≤ ‖x− y‖. (1.14)

Definition 1.2. A mapping A is said to be weakly contractive of class Cψ(t) on
a closed convex subset G of a Banach space B if there exists a continuous and
increasing function ψ(t) defined on R+ such that ψ is positive on R+ \ {0},
ψ(0)= 0, limt→+∞ψ(t)= +∞, and for all x, y ∈G,

‖Ax−Ay‖ ≤ ‖x− y‖−ψ(‖x− y‖). (1.15)

We also use the concept of a sunny nonexpansive retraction [9, 11, 13].

Definition 1.3. Let G be a nonempty closed convex subset of B. A mapping QG :
B→G is said to be

(i) a retraction onto G if Q2
G =QG;

(ii) a nonexpansive retraction if it also satisfies the inequality

∥∥QGx−QGy
∥∥≤ ‖x− y‖ ∀x, y ∈ B; (1.16)

(iii) a sunny retraction if for all x ∈ B and for all 0≤ t <∞,

QG
(
QGx+ t

(
x−QGx

))=QGx. (1.17)

Proposition 1.4. Let G be a nonempty closed convex subset of B. A mapping
QG : B→ G is a sunny nonexpansive retraction if and only if for all x ∈ B and for
all ξ ∈G,

〈
x−QGx,J

(
QGx− ξ

)〉≥ 0. (1.18)
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More information regarding sunny nonexpansive retractions can be found in
[11, 16].

2. Recursive inequalities

We will often use the following facts concerning numerical recursive inequalities
(see [5, 7, 8]).

Lemma 2.1. Let {λk} be a sequence of nonnegative numbers and {αk} a sequence
of positive numbers such that

∞∑
0

αn =∞. (2.1)

Let the recursive inequality

λn+1 ≤ λn−αnψ
(
λn
)
, n= 0,1,2, . . . , (2.2)

hold, where ψ(λ) is a continuous strictly increasing function for all λ ≥ 0 with
ψ(0)= 0. Then

(1) λn→ 0 as n→∞;
(2) the estimate of convergence rate

λn ≤Φ−1

(
Φ
(
λ0
)− n−1∑

0

αj

)
(2.3)

is satisfied, where Φ is defined by the formula Φ(t) = ∫ dt/ψ(t) and Φ−1 is
its inverse function.

Lemma 2.2. Let {λk} and {γk} be sequences of nonnegative numbers and {αk} a
sequence of positive numbers satisfying conditions (2.1) and

γn
αn
−→ 0 as n−→∞. (2.4)

Let the recursive inequality

λn+1 ≤ λn−αnψ
(
λn
)

+ γn, n= 0,1,2, . . . , λ0 = λ̄, (2.5)

be given, where ψ(λ) is a continuous strictly increasing function for all λ≥ 0 with
ψ(0)= 0. Then

(1) λn→ 0 as n→∞;
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(2) there exists a subsequence {λnl} ⊂ {λn}, l = 1,2, . . . , such that

λnl ≤ ψ−1

(
1∑nl

0 αm
+
γnl
αnl

)
,

λnl+1 ≤ ψ−1

(
1∑nl

0 αm
+
γnl
αnl

)
+ γnl ,

λn ≤ λnl+1−
n−1∑
nl+1

αm
�m

, nl + 1 < n < nl+1, �m =
m∑
0

αi,

λn+1 ≤ λ̄−
n∑
0

αm
�m

≤ λ̄, 1≤ n≤ n1− 1,

1≤ n1 ≤ smax =max

{
s :

s∑
0

αm
�m

≤ λ̄
}
.

(2.6)

Lemma 2.3. Let {µk}, {αk}, {βk}, and {γk} be sequences of nonnegative real num-
bers satisfying the recurrence inequality

µk+1 ≤ µk −αkβk + γk. (2.7)

Assume that

∞∑
k=0

αk =∞,
∞∑
k=1

γk <∞. (2.8)

Then

(i) there exists an infinite subsequence {β�k} ⊂ {βk} such that

β�k ≤
1∑�k
j=1αj

, (2.9)

and, consequently, limk→∞β�k = 0;
(ii) if limk→∞αk = 0 and there exists κ > 0 such that

∣∣βk+1−βk
∣∣≤ καk (2.10)

for all k ≥ 0, then limk→∞βk = 0.

Lemma 2.4. Let {µk}, {αk}, {βk}, and {γk} be sequences of nonnegative real num-
bers satisfying the recurrence inequality (2.7). Assume that

∞∑
k=0

αk =∞, lim
k→∞

γk
αk
= 0. (2.11)

Then there exists an infinite subsequence {β�k} ⊂ {βk} such that limk→∞β�k = 0.
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3. Retraction methods for weakly contractive mappings

First of all, we consider the convergence of the retraction descent-like approxi-
mation method

xn+1 =QG
(
xn−ωn

(
xn−Axn

))
, n= 0,1,2, . . . , (3.1)

where QG is a nonexpansive retraction of B onto the set G.

Theorem 3.1. Let {ωn} be a sequence of positive numbers such that
∑∞

0 ωn =∞.
Let G be a closed convex subset of a Banach space B, and let A be a weakly con-
tractive mapping from G into B of the class Cψ(t) with a strictly increasing function
ψ(t). Suppose that the mapping A has a (unique) fixed point x∗ ∈G. Then

(i) the iterative sequence generated by (3.1), starting at x0 ∈ G, converges in
norm to x∗ as n→∞;

(ii) ‖xn−Axn‖→ 0 as n→∞;
(iii) the following estimate of the convergence rate holds

∥∥xn− x∗∥∥≤Φ−1

(
Φ
(∥∥x0− x∗

∥∥)− n−1∑
0

ωn

)
, (3.2)

where Φ(t) is defined by the formula Φ(t)= ∫ dt/ψ(t) and Φ−1 is its inverse
function.

Proof. Consider the sequence {xn} generated by (3.1). We have

∥∥xn+1− x∗
∥∥= ∥∥QG

(
xn−ωn

(
xn−Axn

))−QGx
∗∥∥

≤ ∥∥xn−ωn(xn−Axn)− x∗∥∥
= ∥∥(1−ωn)xn +ωnAxn−

(
1−ωn

)
x∗ −ωnx∗

∥∥
≤ (1−ωn)∥∥xn− x∗∥∥+ωn

∥∥Axn−Ax∗∥∥
≤ (1−ωn)∥∥xn− x∗∥∥+ωn

∥∥xn− x∗∥∥−ωnψ(∥∥xn− x∗∥∥).

(3.3)

Thus, for all n≥ 0,

∥∥xn+1− x∗
∥∥≤ ∥∥xn− x∗∥∥−ωnψ(∥∥xn− x∗∥∥). (3.4)

Now the claims (i), (ii), and (iii) follow from (3.4) and Lemma 2.1 because
‖xn−Axn‖ ≤ 2‖xn− x∗‖. �

The following theorem provides other estimates of the convergence rate.

Theorem 3.2. Let {ωn} be a sequence of positive numbers such that
∑∞

0 ωn =∞,
ωn ≤ ω, and limn→∞ωn = 0. Let G be a closed convex subset of Banach space B,
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and let A be a weakly contractive mapping from G into B of the class Cψ(t) with a
strictly increasing function ψ(t). Suppose that the mapping A has a (unique) fixed
point x∗ ∈ G. Then the iterative sequence generated by (3.1), starting at x0 ∈ G,
converges in norm to x∗. Moreover, there exist a subsequence {xnl} ⊂ {xn}, l =
1,2, . . . , and constants K > 0 and R > 0 such that

∥∥xnl − x∗∥∥2 ≤ ψ−1
1

(
1∑nl

0 ωj
+
γnl
ωnl

)
, (3.5)

where

ψ1(t)=√tψ(√t), γn = 2LR2ρB
(
8KR−1ωn

)
, (3.6)

∥∥xnl+1− x∗
∥∥2 ≤ ψ−1

1

(
1∑nl

0 ωj
+
γnl
ωnl

)
+ γnl , (3.7)

∥∥xn− x∗∥∥2 ≤ ∥∥xnl+1− x∗
∥∥2−

n−1∑
nl+1

ωm
�m

, nl + 1 < n < nl+1, �m =
m∑
0

ωi, (3.8)

∥∥xn+1− x∗
∥∥2 ≤ ∥∥x0− x∗

∥∥2−
n∑
0

ωm
�m

, 0≤ n≤ n1− 1, (3.9)

0≤ n1 ≤ smax =max

{
s :

s∑
0

ωm
�m

≤ ∥∥x0− x∗
∥∥2
}
. (3.10)

Proof. By (3.4),

∥∥xn+1− x∗
∥∥≤ ∥∥xn− x∗∥∥≤ ∥∥x0− x∗

∥∥= K (3.11)

for all n≥ 0. Thus ‖xn−Axn‖ ≤ 2K and

∥∥xn∥∥≤ ∥∥xn− x∗∥∥+
∥∥x∗∥∥≤ K +

∥∥x∗∥∥= C. (3.12)

Set φn = xn−ωn(xn−Axn). Since QG is a nonexpansive retraction and ‖x‖2 is a
convex functional, we have

∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn−ωn(xn−Axn)− x∗∥∥2 = ∥∥φn− x∗∥∥2

≤ ∥∥xn− x∗∥∥2− 2ωn
〈
xn−Axn,J

(
φn− x∗

)〉
= ∥∥xn− x∗∥∥2− 2ωn

〈
xn−Axn,J

(
xn− x∗

)〉
+ 2
〈
φn− xn, J

(
φn− x∗

)− J(xn− x∗)〉.
(3.13)
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By (1.11), if ‖x‖ ≤ R and ‖y‖ ≤ R, then

〈x− y, Jx− J y〉 ≤ 2LR2ρB
(
4R−1‖x− y‖). (3.14)

Therefore,

∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗∥∥2− 2ωnψ

(∥∥xn− x∗∥∥)∥∥xn− x∗∥∥+ 2γn, (3.15)

where

γn =
〈
φn− xn, J

(
φn− x∗

)− J(xn− x∗)〉≤ 2LR2ρB
(
8KR−1ωn

)
. (3.16)

Here we used the estimates ‖φn‖ ≤ C+ 2ωK = R and ‖xn‖ ≤ C ≤ R. It is obvious
that

γn
ωn
−→ 0 as n−→∞, (3.17)

because B is a uniformly smooth space. Thus, we get for λn = ‖xn − x∗‖2 the
following recursive inequality:

λn+1 ≤ λn− 2ωnψ1
(
λn
)

+ 2γn. (3.18)

The strong convergence of {xn} to x∗ and the estimates (3.5), (3.6), (3.7), (3.8),
(3.9), and (3.10) now follow from Lemma 2.2. �

Next we will study the iterative method (3.1) with perturbed mappings An :
G→ B:

yn+1 =QG
(
yn−ωn

(
yn−Anyn

))
, n= 0,1,2, . . . , (3.19)

provided that the sequence {An} satisfies the following condition:

∥∥Anv−Av∥∥≤ hng(‖v‖)+ δn ∀v ∈G. (3.20)

Theorem 3.3. Let {ωn} be a sequence of positive numbers such that
∑∞

0 ωn =∞
and ω ≥ ωn > 0. Let G be a closed convex subset of the Banach space B, let A be a
weakly contractive mapping fromG into B of the classCψ(t) with a strictly increasing
function ψ(t), and let x∗ ∈ G be its unique fixed point. Suppose that there exist
sequences of positive numbers {δn} and {hn} converging to 0 as n→∞, and a
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positive function g(t) defined on R+ and bounded on bounded subsets of R+ such
that (3.20) is satisfied for all n≥ 0. If the sequence generated by (3.19) and starting
at an arbitrary y0 ∈ G is bounded, then it converges in norm to the point x∗. If, in
addition, limn→∞ωn = 0, then there exist a subsequence {ynl} ⊂ {yn}, l = 1,2, . . . ,
converging to x∗ as l→∞ and a constant K > 0 such that

∥∥ynl − x∗∥∥2 ≤ ψ−1
1

(
1∑nl

1 ωj
+hnl g(K) + δnl

)
. (3.21)

Proof. Similarly to the proof of Theorem 3.1, we get, for all n≥ 0, the inequality

∥∥yn+1− x∗
∥∥= ∥∥QG

(
yn−ωn

(
yn−Anyn

))−QGx
∗∥∥

≤ ∥∥yn−ωn(yn−Anyn)− x∗∥∥
= ∥∥(1−ωn)yn +ωnAnyn−

(
1−ωn

)
x∗ −ωnx∗

∥∥
≤ (1−ωn)∥∥yn− x∗∥∥+ωn

∥∥Anyn−Ax∗∥∥
≤ (1−ωn)∥∥yn− x∗∥∥+ωn

∥∥Ayn−Ax∗∥∥+ωn
∥∥Anyn−Ayn∥∥

≤ ∥∥yn− x∗∥∥−ωnψ(∥∥yn− x∗∥∥)+ωn
(
hng

(∥∥yn∥∥)+ δn
)
.

(3.22)

By our assumptions, there exists K > 0 such that
∥∥yn∥∥≤ K . Hence,

∥∥yn+1− x∗
∥∥≤ ∥∥yn− x∗∥∥−ωnψ(∥∥yn− x∗∥∥)+ωn

(
hng(K) + δn

)
(3.23)

for some constant C1 > 0. Since

ωn
(
hng(K) + δn

)
ωn

−→ 0 as n−→∞, (3.24)

we conclude, again, by Lemma 2.2 that yn→ x∗. The estimate (3.21) is obtained
as in the proof of Theorem 3.2. �

Let G1 and G2 be closed convex subsets of B. The Hausdorff distance between
G1 and G2 is defined by the following formula:

�
(
G1,G2

)=max

{
sup
z1∈G1

inf
z2∈G2

∥∥z1− z2
∥∥, sup

z1∈G2

inf
z2∈G1

∥∥z1− z2
∥∥}. (3.25)

In order to prove the next theorem, we need the following lemma.

Lemma 3.4. If B is a uniformly smooth Banach space, and if Ω1 and Ω2 are
closed convex subsets of B such that the Hausdorff distance �(Ω1,Ω2)≤ σ , hB(τ)=
ρB(τ)/τ, and QΩ1 and QΩ2 are the sunny nonexpansive retractions onto the subsets
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Ω1 and Ω2, respectively, then

∥∥QΩ1x−QΩ2x
∥∥2 ≤ 16R(2r +d)hB

(
16LR−1σ

)
, (3.26)

where L is the Figiel constant, r = ‖x‖, d =max{d1,d2}, and R = 2(2r + d) + σ .
Here di = dist(θ,Ωi), i= 1,2, and θ is the origin of the space B.

Proof. Denote x̆1 =QΩ1x and x̆2 =QΩ2x. Since �(Ω1,Ω2)≤ σ , there exists ξ1 ∈
Ω1 such that ‖x̆2− ξ1‖ ≤ σ . Now

〈
x− x̆1, J

(
x̆2− x̆1

)〉= 〈x− x̆1, J
(
ξ1− x̆1

)〉
+
〈
x− x̆1, J

(
x̆2− x̆1

)− J(ξ1− x̆1
)〉

≤ ∥∥x− x̆1
∥∥∥∥J(x̆2− x̆1

)− J(ξ1− x̆1
)∥∥,

(3.27)

because 〈x− x̆1, J(ξ1− x̆1)〉 ≤ 0 by (1.18). It is obvious that

∥∥x− x̆1
∥∥≤ ∥∥x−QΩ1θ

∥∥+
∥∥QΩ1θ−QΩ1x

∥∥≤ 2‖x‖+
∥∥QΩ1θ

∥∥≤ 2r +d,∥∥x− x̆2
∥∥≤ ∥∥x−QΩ2θ

∥∥+
∥∥QΩ2θ−QΩ2x

∥∥≤ 2‖x‖+
∥∥QΩ2θ

∥∥≤ 2r +d,∥∥x̆1− x̆2
∥∥≤ ∥∥x̆1− x

∥∥+
∥∥x− x̆2

∥∥≤ 2(2r +d),∥∥x̆1− ξ1
∥∥≤ ∥∥x̆1− x̆2

∥∥+
∥∥x̆2− ξ1

∥∥≤ 2(2r +d) + σ.

(3.28)

If R= 2(2r +d) + σ , then by (1.13)

〈
x− x̆1, J

(
x̆2− x̆1

)〉≤ 8R
∥∥x− x̆1

∥∥hB(16LR−1
∥∥x̆2− ξ1

∥∥)
≤ 8R(2r +d)hB

(
16LR−1σ

)
.

(3.29)

In the same way, we see that there exists ξ2 ∈Ω2 such that ‖x̆1− ξ2‖ ≤ σ and

〈
x− x̆2, J

(
x̆1− x̆2

)〉= 〈x− x̆2, J
(
ξ2− x̆2

)〉
+
〈
x− x̆2, J

(
x̆1− x̆2

)− J(ξ2− x̆2
)〉

≤ ∥∥x− x̆2
∥∥∥∥J(x̆1− x̆2

)− J(ξ2− x̆2
)∥∥,

(3.30)

because 〈x− x̆2, J(ξ2− x̆2)〉 ≤ 0. As above,

∥∥x̆2− ξ2
∥∥≤ ∥∥x̆1− x̆2

∥∥+
∥∥x̆1− ξ2

∥∥≤ 2(2r +d) + σ, (3.31)
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and if, again, R= 2(2r +d) + σ , we have

〈
x− x̆2, J

(
x̆1− x̆2

)〉≤ 8R
∥∥x− x̆2

∥∥hB(16LR−1
∥∥x̆1− ξ2

∥∥)
≤ 8R(2r +d)hB

(
16LR−1σ

)
.

(3.32)

Therefore, the estimate (3.26) holds by (3.29) and (3.32). Lemma 3.4 is proved.
�

Next we will study the iterative method (3.1) with perturbed sets Gn:

zn+1 =QGn+1

(
zn−ωn

(
zn−Azn

))
, n= 0,1,2, . . . . (3.33)

Theorem 3.5. Let G⊂D(A) and Gn ⊂D(A), n= 0,1,2, . . . , be closed convex sub-
sets of B such that the Hausdorff distance �(Gn,G)≤ σn ≤ σ , and let A be a weakly
contractive mapping from D(A) into B of the class Cψ(t) with a strictly increasing
function ψ(t). Suppose that the mapping A has a (unique) fixed point x∗ ∈G. As-
sume that

∑∞
0 ωn =∞, ωn ≤ ω, and that

√
hB
(
σn
)

ωn
−→ 0 as n−→∞. (3.34)

If the iterative sequence (3.33), starting at an arbitrary point z0 ∈ G0, is bounded,
then it converges in norm to x∗.

Proof. For all n≥ 0, we have

∥∥zn+1− x∗
∥∥≤ ∥∥zn+1− xn+1

∥∥+
∥∥xn+1− x∗

∥∥, (3.35)

where the sequence {xn} is generated by (3.1), and therefore,

∥∥xn− x∗∥∥−→ 0 as n−→∞. (3.36)

We will show that

∥∥zn− xn∥∥−→ 0 as n−→∞. (3.37)

We have

∥∥zn+1− xn+1
∥∥= ∥∥QGn+1

(
zn−ωn

(
zn−Azn

))−QG
(
xn−ωn

(
xn−Axn

))∥∥
≤ ∥∥QG

(
zn−ωn

(
zn−Azn

))−QG
(
xn−ωn

(
xn−Axn

))∥∥
+
∥∥QGn+1

(
zn−ωn

(
zn−Azn

))−QG
(
zn−ωn

(
zn−Azn

))∥∥.
(3.38)
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It is easy to check that

∥∥QG
(
zn−ωn

(
zn−Azn

))−QG
(
xn−ωn

(
xn−Axn

))∥∥
≤ (1−ωn)∥∥zn− xn∥∥+ωn

∥∥Azn−Axn∥∥
≤ ∥∥zn− xn∥∥−ωnψ(∥∥zn− xn∥∥).

(3.39)

If ‖zn‖ ≤ K , then ‖zn − Azn‖ ≤ 2‖zn − x∗‖ ≤ 2(K + ‖x∗‖) and there exists a
constant r > 0 such that ‖zn−ωn(zn−Azn)‖ ≤ r. By Lemma 3.4,

∥∥QGn+1

(
zn−ωn

(
zn−Azn

))−QG
(
zn−ωn

(
zn−Azn

))∥∥2

≤ 16R(2r +d)hB
(
16LR−1σn+1

)
,

(3.40)

where R=2(2r +d) + σ , d =max{d1,d2}, d1 = dist(θ,G), d2 = supn{dist(θ,Gn)},
and θ is the origin of the space B. Hence,

∥∥zn+1− xn+1
∥∥

≤ ∥∥zn− xn∥∥−ωnψ(∥∥zn− xn∥∥)+
(
16R(2r +d)hB

(
16LR−1σn+1

))1/2
.

(3.41)

Since ω−1
n

√
hB(σn)→ 0, (3.37) is, indeed, true. Theorem 3.5 is proved. �

Next we study the method of successive approximations

xn+1 =QGAxn, n= 0,1,2, . . . , (3.42)

where QG is the sunny nonexpansive retraction of B onto its subset G.

Theorem 3.6. Suppose that B is a uniformly smooth Banach space, and A :G→ B
is a weakly contractive mapping from a closed convex subset G into B of the class
Cψ(t) with a strictly increasing function ψ(t). Suppose that the mapping A has a
(unique) fixed point x∗ ∈G. Consider the sequence {xn} generated by (3.42). Then

(i) the sequence {xn} is bounded;
(ii) the sequence {xn} strongly converges to x∗;

(iii) the following estimate of the convergence rate holds:

∥∥xn− x∗∥∥2 ≤Φ−1
(
Φ
(∥∥x0− x∗

∥∥2
)
− (n− 1)

)
, (3.43)

where Φ(t) is defined by the formula Φ(t) = ∫
dt/ψ1(t) with ψ1(t) =√

tψ(
√
t) and Φ−1 is its inverse function.
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Proof. By (3.42), we have

∥∥xn+1− x∗
∥∥2 = ∥∥QGAxn− x∗

∥∥2 = ∥∥QGAxn−QGAx
∗∥∥2

≤ ∥∥Axn−Ax∗∥∥2 ≤ ∥∥xn− x∗∥∥2−ψ(∥∥xn− x∗∥∥)∥∥xn− x∗∥∥. (3.44)

Denoting ‖xn− x∗‖2 by λn, we see that

λn+1 ≤ λn−ψ1
(
λn
)
, (3.45)

and therefore, our claims follow from Lemma 2.1. �

As before, we can also consider the method of successive approximations with
perturbed sets Gn,

zn+1 =QGn+1Azn, n= 0,1,2, . . . . (3.46)

Theorem 3.7. Let G⊂D(A) and Gn ⊂D(A), n= 0,1,2, . . . , be closed convex sub-
sets of B such that the Hausdorff distance �(Gn,G)≤ σn ≤ σ , and let A be a weakly
contractive mapping from D(A) into B of the class Cψ(t) with a strictly increasing
function ψ(t). Suppose that the mapping A has a (unique) fixed point x∗ ∈ G. If
σn → 0 as n→∞, then the iterative sequence (3.46), starting at an arbitrary point
z0 ∈G0, converges in norm to x∗.

Proof. For all n≥ 0, we can write

∥∥zn+1− x∗
∥∥= ∥∥QGn+1Azn−Ax∗

∥∥
≤ ∥∥QGn+1Azn−QGn+1Ax

∗∥∥+
∥∥QGn+1x

∗ −QGx
∗∥∥. (3.47)

Since QGn is nonexpansive for each n, the inequality

∥∥QGn+1Azn−QGn+1Ax
∗∥∥≤ ∥∥Azn−Ax∗∥∥ (3.48)

also holds. The second term in (3.47) is estimated by Lemma 3.4. There exists a
constant C > 0 such that

∥∥QGn+1x
∗ −QGx

∗∥∥≤ C√hB(σn+1
)
. (3.49)

Thus,

∥∥zn+1− x∗
∥∥≤ ∥∥zn− x∗∥∥−ψ(∥∥zn− x∗∥∥)+C

√
hB
(
σn+1

)
, (3.50)

and the theorem follows from Lemma 2.2. �
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4. Retraction methods for nonexpansive mappings

First, we are going to consider the following proximal retraction method:

(1) take an arbitrary x0 ∈G;
(2) given xn ∈G, define xn+1 ∈G by the system

0= λnF
(
QG(y)

)
+ y− xn, xn+1 =QG(y), (4.1)

with λn > 0. Here F = I −A, where A : D(A)⊂ B→ B is a nonexpansive
operator.

In order to prove Theorem 4.2 we need the following lemma [1].

Lemma 4.1. If F = I −Awith a nonexpansive mappingA, then for all x, y ∈D(A),

〈
Fx−Fy,J(x− y)

〉≥ R2
1δB

(‖Fx−Fy‖
2R1

)
, (4.2)

where

R1 =
√
‖x− y‖2 +‖Ax−Ay‖2

2
≤ ‖x− y‖. (4.3)

If ‖x‖ ≤ R and ‖y‖ ≤ R, with x, y ∈D(A), then R1 ≤ 2R and

〈
Fx−Fy,J(x− y)

〉≥ L−1R2δB

(‖Fx−Fy‖
4R

)
. (4.4)

Theorem 4.2. Suppose that B is a uniformly convex and uniformly smooth Banach
space, A : G ⊂ B→ B is a nonexpansive operator, G is a closed convex subset of B,
and the fixed point set M of A is not empty. Let {xn} be any sequence of iterates
generated by (4.1). Then the following statements hold:

(i) {xn} is bounded and ‖xn+1− xn‖→ 0 as n→∞.

If, in addition, λn ≥ λ > 0, then

(ii) there exists

lim
n→∞

〈
F
(
xn
)
, J
(
xn− x∗

)〉= 0 ∀x∗ ∈M; (4.5)

(iii) there exists a weak accumulation point x̃ of {xn};
(iv) all weak accumulation points of {xn} belong to M;
(v) if M is a singleton, that is, M = {x̃}, then {xn} converges weakly to x̃;

(vi) if J is weakly sequentially continuous on a bounded set containing {xn},
then {xn} weakly converges to a point x̃ ∈M.
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Proof. The following inequalities follow from the convexity of the functional
‖x‖2 on any Banach space; they are valid for all y ∈ B:

∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗∥∥2

+ 2
〈
xn+1− xn, J

(
xn+1− x∗

)〉
= ∥∥xn− x∗∥∥2

+ 2
〈
xn+1− y, J

(
xn+1− x∗

)〉
+ 2
〈
y− xn, J

(
xn+1− x∗

)〉
.

(4.6)

Since xn+1 =QG(y) and x∗ ∈G, we have (see Proposition 1.4)

〈
xn+1− y, J

(
xn+1− x∗

)〉≤ 0. (4.7)

Therefore, (4.1) implies that

∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗∥∥2

+ 2
〈
y− xn, J

(
xn+1− x∗

)〉
= ∥∥xn− x∗∥∥2− 2λn

〈
F
(
xn+1

)
, J
(
xn+1− x∗

)〉
.

(4.8)

From the last inequality, we conclude that

∥∥xn+1− x∗
∥∥≤ ∥∥xn− x∗∥∥≤ ∥∥x1− x∗

∥∥ (4.9)

because

〈
F
(
xn
)
, J
(
xn− x∗

)〉≥ 0, λn > 0 (4.10)

for all n ≥ 0. Thus, the sequence {xn} is bounded, say by R, and the functional
‖xn− x∗‖2 has a limit a(x∗)≥ 0. In addition, if λn ≥ λ > 0, then

lim
n→∞

〈
F
(
xn
)
, J
(
xn− x∗

)〉= 0. (4.11)

Every bounded set in a reflexive Banach space is relatively weakly compact. This
means that there exists some subsequence {xnk} ⊆ {xn} which weakly converges
to a limit point x̃. SinceG is closed and convex, it is also weakly closed. Therefore
x̃ ∈G. By Lemma 4.1,

〈
F
(
xn
)
, J
(
xn− x∗

)〉≥ L−1R̄2δB

(∥∥Fxn∥∥
4R̄

)
(4.12)

because

∥∥xn− x∗∥∥≤ R+
∥∥x∗∥∥= R̄,∥∥xn− x∗ −Fxn∥∥≤ ∥∥Axn−Ax∗∥∥≤ ∥∥xn− x∗∥∥≤ R̄. (4.13)
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Hence, by (4.11), we obtain

lim
n→∞Fxn = 0. (4.14)

It is clear that x̃ ∈M because the operator A is demiclosed. Thus, all weak ac-
cumulation points of {xn} belong to M. If M is a singleton, then the whole se-
quence {xn} converges weakly to x̃. Otherwise, we will prove claim (vi) by con-
tradiction.

Assume there are two weak accumulation points of the sequence {xn} which
belong to M,

w− lim
k→∞

xnk = x̃1, w− lim
l→∞

xnl = x̃2. (4.15)

Then, since the functional ‖ · ‖2 is convex, we have

∥∥xn− x̃1
∥∥2−∥∥xn− x̃2

∥∥2 ≤ 2
〈
x̃1− x̃2, J

(
x̃1− xn

)〉
. (4.16)

Applying the first limit in (4.15) and the weak sequential continuity of J , we get
from (4.16),

lim
k→∞

∥∥xnk − x̃1
∥∥2− lim

k→∞
∥∥xnk − x̃2

∥∥2 = a(x̃1
)− a(x̃2

)≤ 0. (4.17)

By analogy, the convexity of ‖ · ‖2 yields

∥∥xn− x̃2
∥∥2−∥∥xn− x̃1

∥∥2 ≤ 2
〈
x̃2− x̃1, J

(
x̃2− xn

)〉
. (4.18)

The second limit in (4.15) now implies that

lim
l→∞

∥∥xnl − x̃2
∥∥2− lim

l→∞
∥∥xnl − x̃1

∥∥2 = a(x̃2
)− a(x̃1

)≤ 0. (4.19)

Now we conclude, from (4.17) and (4.19), that a(x̃1)= a(x̃2). Hence,

lim
n→∞

∥∥xn− x̃∥∥2 = a ∀x̃ ∈M. (4.20)

Consider x̃ = 2−1(x̃1 + x̃2). It is obvious that x̃ ∈M because M is convex. Since
the space B is uniformly convex, the assumption that x̃1 �= x̃2 leads to a(x̃) <
a(x̃1)= a(x̃2) which contradicts (4.20). Theorem 4.2 is proved. �

Corollary 4.3. Under the conditions of Theorem 4.2, the following statements
hold:

(i) if {xn} is bounded, then a fixed point x∗ of A exists;
(ii) if x∗ exists, then {xn} is bounded;

(iii) if M =∅, then ‖xn‖→∞.
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Now we study the convergence of the descent-like approximation method
(3.1) for nonexpansive maps.

Theorem 4.4. Suppose that B is a uniformly convex and uniformly smooth Banach
space, A : G ⊂ B→ B is a nonexpansive operator, G is a closed convex subset of B,
and the fixed point set M of A is not empty. Let {xn} be any sequence of iterates
generated by the algorithm (3.1). Then, the following assertions hold:

(1) if ωn→ 0 as n→∞, then ‖xn+1− xn‖→ 0;
(2) if, in addition, the limit of the sequence {‖F(xn)‖} exists and

∑∞
k=0ωn =∞,

then the statements (iii), (iv), (v), and (vi) of Theorem 4.2 are all true.

Proof. It was shown in Theorem 3.1 that the sequence {xn} is bounded, say by
R, and that the sequence {‖xn− x∗‖}, where x∗ ∈M, is convergent. Thus, {xn−
Axn} is bounded by R̄= 2(R+ ‖x∗‖). Therefore, assertion (1) is obtained from
the following estimate:

∥∥xn+1− xn
∥∥= ∥∥QG

(
xn−ωn

(
xn−Axn

))−QGxn
∥∥

≤ ωn
∥∥xn−Axn∥∥≤ R̄ωn −→ 0.

(4.21)

Furthermore, there exists a subsequence {xnk} ⊆ {xn} which weakly converges
to a limit point x̃ ∈ G. Take any x∗ ∈M. Using (3.13), (3.14), and Lemma 4.1,
we obtain

∥∥xn+1− x∗
∥∥2

≤ ∥∥xn− x∗∥∥2− (2L)−1R̄2ωnδB
(
(2R̄)−1

∥∥xn−Axn∥∥)+ 2−1LR̄2ρB
(
8ωn

)
.

(4.22)

Since the space B is uniformly smooth,

ρB
(
ωn
)

ωn
−→ 0 as n−→∞. (4.23)

Thus, by Lemma 2.4, there exists an infinite subsequence {�k} ⊂ {n} such that

lim
k→∞

δB
(
(2R̄)−1

∥∥x�k −Ax�k∥∥)= 0. (4.24)

Since the space B is uniformly convex, the properties of the function δB(ε) imply
that

lim
k→∞

∥∥Fx�k∥∥= 0. (4.25)
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Finally, by the condition limn→∞‖Fxn‖ = d ≥ 0, we get

lim
n→∞Fxn = 0. (4.26)

The rest of the proof follows the pattern of the proof of Theorem 4.2. �

The following corollary is valid for self-mappings A :G→G and the method

xn+1 = xn−ωn
(
xn−Axn

)
, n= 0,1,2, . . . . (4.27)

Corollary 4.5. Suppose that B is a uniformly convex and uniformly smooth Ba-
nach space, A : G→ G is a nonexpansive operator, G is a closed convex subset of B,
and that the fixed point setM of A is not empty. Let {xn} be any sequence of iterates
generated by the algorithm (4.27). Then, the following assertion holds:

(i) if ωn→ 0 as n→∞, then ‖xn+1− xn‖→ 0.

If, in addition,
∑∞

k=0ωn =∞, then

(ii) there exists a weak accumulation point x̃ of {xn};
(iii) all weak accumulation points of {xn} belong to M;
(iv) if M is a singleton, that is, M = {x̃}, then {xn} converges weakly to x̃;
(v) if J is weakly sequentially continuous on a bounded set containing {xn},

then {xn} weakly converges to a point x̃ ∈M.

We omitted in this corollary the requirement that the sequence {‖F(xn)‖}
have a limit because this limit always exists in this case by the estimate

∥∥xn+1−Axn+1
∥∥≤ ∥∥xn−Axn∥∥. (4.28)

Indeed, by (4.27),

∥∥xn+1−Axn+1
∥∥≤ ∥∥(1−ωn)xn−ωnAxn−Axn+1

∥∥
≤ (1−ωn)∥∥xn−Axn∥∥+

∥∥Axn+1−Axn
∥∥

≤ (1−ωn)∥∥xn−Axn∥∥+
∥∥xn+1− xn

∥∥
≤ (1−ωn)∥∥xn−Axn∥∥+ωn

∥∥xn−Axn∥∥
≤ ∥∥xn−Axn∥∥.

(4.29)

Now we introduce property (P): there exists a differentiable positive function
δ̃B(ε) : [0,2]→ (0,∞) such that δB(ε)≥ cδ̃B(ε), c > 0, and |δ̃′B(ε)| ≤ C. For exam-
ple, the Lebesgue spaces lp, Lp, and the Sobolev spaces Wm,p, 1 < p <∞, have
this property.

Theorem 4.6. Suppose that B is a uniformly convex and uniformly smooth Banach
space, A : G ⊂ B→ B is a nonexpansive operator, G is a closed convex subset of B,
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and the fixed point set M of A is not empty. Let {xn} be any sequence of iterates
generated by the algorithm (3.1). Then, the following claims hold:

(i) if ωn→ 0 as n→∞, then ‖xn+1− xn‖→ 0;
(ii) if, in addition, B has property (P),

∑∞
n=0ωn = ∞, and

∑∞
n=0 ρB(ωn) <∞,

then the statements (iii), (iv), (v), and (vi) of Theorem 4.2 hold.

Proof. As before, the sequence {xn} is bounded, say by R, and the sequence
{‖xn − x∗‖} has a limit. Therefore, using property (P), we obtain from (4.22)
the following inequality:

∥∥xn+1− x∗
∥∥2

≤ ∥∥xn− x∗∥∥2− (2L)−1cR̄2ωnδ̃B
(
(2R̄)−1

∥∥xn−Axn∥∥)+ 2−1LR̄2ρB
(
8ωn

)
,

(4.30)

where R̄= 2(R+‖x∗‖) and x∗ ∈M. Since δ̃B(ε) is differentiable, we can deduce
for βn = δ̃B((2R̄)−1‖Fxn‖), the estimate

∣∣βn+1−βn
∣∣≤ ∣∣δ̃′B(ξ)

∣∣∣∣∥∥Fxn+1
∥∥−∥∥Fxn∥∥∣∣

≤ C(2R̄)−1
∥∥Fxn+1−Fxn

∥∥≤ 2C(2R̄)−1
∥∥xn+1− xn

∥∥, (4.31)

where ξ ∈ (0,2). Applying (4.21), we get

∣∣βn+1−βn
∣∣≤ CR̄−1ωn

∥∥xn−Axn∥∥≤ C1ωn. (4.32)

By Lemma 2.3, we conclude that

βn = δ̃B
(
(2R̄)−1

∥∥F(xn)∥∥)−→ 0 as n−→∞. (4.33)

Hence, (4.26) is valid. The rest of the proof follows the pattern of the proof of
Theorem 4.2. �

Remark 4.7. Different arguments (based on the proposition in [15]) show that
in Theorem 4.4, Corollary 4.5, and Theorem 4.6, statement (vi) of Theorem 4.2
holds even if J is not assumed to be weakly sequentially continuous.

Now we turn to a stability theorem for the method (4.1) with respect to per-
turbations of the set G. Consider the algorithm

0= λnF
(
QGn+1

(
yn
))

+ yn−wn,

wn+1 =QGn+1

(
yn
)
, w0 ∈G0,

(4.34)

where λ̄≥ λn > 0,
∑∞

0 λn =∞ and �(Gn,G)≤ σn.
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Theorem 4.8. Suppose that B is a uniformly convex and uniformly smooth Banach
space, A : D(A) ⊂ B → B is a nonexpansive operator, G ⊂ D(A) and Gn ⊂ D(A),
n = 0,1, . . . , are closed convex subsets of B, and the fixed point set M of A is not
empty. Let {σn} be a sequence of positive numbers such that

∑∞
0 hB(σn) <∞. If the

iterative sequence {wn} generated by (4.34) is bounded, say by R and B has property
(P), then the conclusions (iii), (iv), (v), and (vi) of Theorem 4.2 are valid for {wn}.
Proof. Once again, consider (4.6) with xn =wn, y = yn and an arbitrary x ∈G:

∥∥wn+1− x
∥∥2 ≤ ∥∥wn− x

∥∥2
+ 2
〈
wn+1−wn,J

(
wn+1− x

)〉
= ∥∥wn− x

∥∥2
+ 2
〈
wn+1− yn, J

(
wn+1− x

)〉
+ 2
〈
yn−wn,J

(
wn+1− x

)〉
.

(4.35)

Since �(Gn,G)≤ σn, there exists un+1 ∈Gn+1 such that ‖un+1− x‖ ≤ σn+1 for all
n≥ 0. Now we use Proposition 1.4 for wn+1 =QGn+1 yn and obtain

〈
wn+1− yn, J

(
wn+1−un+1

)〉≤ 0. (4.36)

Hence,

〈
wn+1− yn, J

(
wn+1− x

)〉= 〈wn+1− yn, J
(
wn+1−un+1

)〉
+
〈
wn+1− yn, J

(
wn+1− x

)− J(wn+1−un+1
)〉

≤ 〈un+1− yn, J
(
wn+1− x

)− J(wn+1−un+1
)〉

≤ ∥∥un+1− yn
∥∥∥∥J(wn+1− x

)− J(wn+1−un+1
)∥∥∗.

(4.37)

By (4.34) and the boundedness of {wn}, there exist constants C1 > 0 and C2 >
0 such that

∥∥wn+1− yn
∥∥≤ ∥∥wn+1−wn

∥∥+
∥∥wn− yn

∥∥
≤ ∥∥wn+1−wn

∥∥+ λn
∥∥F(wn+1

)∥∥
≤ C1 +C2λn.

(4.38)

By (1.13), there exist constants C3 > 0 and C4 > 0 such that

∥∥J(wn+1− x
)− J(wn+1−un+1

)∥∥∗ ≤ C3hB
(
C4
∥∥un+1− x

∥∥)
≤ C3hB

(
C4σn+1

)
.

(4.39)



Yakov Alber et al. 213

By (4.35) and property (P), this implies the inequality

∥∥wn+1− x∗
∥∥2−∥∥wn− x∗

∥∥2

≤−2λn
〈
Fwn+1, J

(
wn+1− x∗

)〉
+
(
C1 +C2λn

)
C3hB

(
C4σn+1

)
≤−(2L)−1cR̄2λnδ̃B

(
(2R̄)−1

∥∥wn−Awn

∥∥)
+
(
C1 +C2λn

)
C3hB

(
C4σn+1

)
,

(4.40)

where R̄= 2(R+‖x∗‖) and x∗ ∈M. Lemma 2.3 and the properties of δB(ε) im-
ply (4.33) and (4.26). Once again, the rest of the proof follows the pattern of the
proof of Theorem 4.2. �

In conclusion, we consider the stability of the following descent-like approx-
imations with respect to perturbations of the set G:

vn+1 =QGn+1

(
vn−ωn

(
vn−Avn

))
, n= 0,1,2, . . . , (4.41)

where QG : B→G is the sunny nonexpansive retraction of B onto G and A :G→
B is a nonexpansive mapping.

Theorem 4.9. Suppose that B is a uniformly convex and uniformly smooth Banach
space, A : D(A) ⊂ B → B is a nonexpansive operator, G ⊂ D(A) and Gn ⊂ D(A),
n= 0,1, . . . , are closed convex subsets such that the Hausdorff distance �(Gn,G)≤
σn, and the fixed point set M of A is not empty. Let {σn} be a sequence of positive
numbers such that

∑∞
n=0h

1/2
B (σn) <∞. If the iterative sequence generated by (4.41)

is bounded, say by R, then

(1) if ωn→ 0 as n→∞, then ‖vn+1− vn‖→ 0;
(2) if, in addition, the space B has property (P),

∑∞
n=0ωn = ∞, ωn ≤ ω, and∑∞

n=0 ρB(ωn) <∞, then the conclusions (iii), (iv), (v), and (vi) of Theorem
4.2 hold.

Proof. It follows from (4.41) that

∥∥vn+1− vn
∥∥= ∥∥QGn+1

(
vn−ωn

(
vn−Avn

))−QGn+1vn
∥∥+

∥∥QGn+1vn−QGnvn
∥∥

= Z1 +Z2.
(4.42)

The operator Q is a nonexpansive retraction, therefore,

Z1 =
∥∥QGn+1

(
vn−ωn

(
vn−Avn

))−QGn+1vn
∥∥≤ ωn∥∥vn−Avn∥∥. (4.43)
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Since ‖vn −Avn‖ is bounded, Z1 → 0 as ωn → 0. Furthermore, we can estimate
Z2 by Lemma 3.4. Indeed, there exist constants C1 > 0 and C2 > 0 such that

Z2 =
∥∥QGn+1vn−QGnvn

∥∥≤ C1h
1/2
B

(
C2
(
σn+1 + σn

))
(4.44)

because {vn} is bounded and

�
(
Gn+1,Gn

)≤�
(
Gn+1,G

)
+ �

(
Gn,G

)≤ σn+1 + σn. (4.45)

It is clear that Z2 → 0 as σn→ 0. Thus claim (1) is true.
Next we note that for any x∗ ∈M,

∥∥vn+1− x∗
∥∥≤ ∥∥vn+1−QGn+1x

∗∥∥+
∥∥QGn+1x

∗ −QGx
∗∥∥. (4.46)

By Lemma 3.4, there exist constants C3 > 0 and C4 > 0 such that

∥∥QGn+1x
∗ −QGx

∗∥∥≤ C3h
1/2
B

(
C4σn+1

)
. (4.47)

Estimating the first term on the right-hand side of (4.46), we have

∥∥vn+1−QGn+1x
∗∥∥≤ ∥∥QGn+1φn−QGn+1x

∗∥∥≤ ∥∥φn− x∗∥∥, (4.48)

where φn = vn −ωn(vn −Avn). Since {φn} is bounded, then there exists a con-
stant C5 > 0 such that

∥∥vn+1−QGn+1x
∗∥∥≤ C5. (4.49)

Thus,

∥∥vn+1− x∗
∥∥2 ≤ ∥∥vn+1−QGn+1x

∗∥∥2
+ 2C5C3h

1/2
B

(
C4σn+1

)
+C2

3hB
(
C4σn+1

)
.

(4.50)
It is clear that

∥∥vn+1−QGn+1x
∗∥∥2 ≤ ∥∥φn− x∗∥∥2

. (4.51)

Similarly to (4.22), we see that

∥∥φn− x∗∥∥2

≤ ∥∥vn− x∗∥∥2− (2L)−1cR̄2ωnδ̄B
(
(2R̄)−1

∥∥vn−Avn∥∥)+ 2−1LR̄2ρB
(
8ωn

)
,

(4.52)
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where ‖vn‖ ≤ R and R̄ = 2(1 + 2ω)(R+ ‖x∗‖). Finally, we obtain the following
inequality:

∥∥vn+1− x∗
∥∥2 ≤ ∥∥vn− x∗∥∥2− (2L)−1cR̄2ωnδ̄B

(
(2R̄)−1

∥∥Fvn∥∥)
+ 2−1LR̄2ρB

(
8ωn

)
+ 2C5C3h

1/2
B

(
C4σn+1

)
+C2

3hB
(
C4σn+1

)
.

(4.53)

If
∑∞

n=0ωn =∞,
∑∞

n=0h
1/2
B (σn) <∞ and

∑∞
n=0 ρB(ωn) <∞, then ‖Fvn‖ → 0. This

leads to the conclusions (iii), (iv), (v), and (vi) of Theorem 4.2. �

Remark 4.10. Strong convergence of approximants to fixed points of nonexpan-
sive, nonself-mappings can be obtained by applying some regularization proce-
dures (cf. [14, 18]).
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