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The paper is devoted to general elliptic operators in Holder spaces in bounded
or unbounded domains. We discuss the Fredholm property of linear operators
and properness of nonlinear operators. We construct a topological degree for
Fredholm and proper operators of index zero.

1. Introduction

In this paper, we study elliptic operators in Holder spaces: the Fredholm prop-
erty for linear operators, properness and topological degree for nonlinear op-
erators. The construction of the degree uses both the Fredholm property and
the properness. In this section we briefly discuss main ideas underlying normal
solvability, properness and topological degree for elliptic operators.

1.1. Normal solvability. Consider a linear operator L acting from a Banach
space Eo(Q) to another space E(Q)). Here Q) denotes a domain in R”, and the
notation E(Q) is used for a Banach space of functions defined in Q. We are
basically interested in the case where the domain () is unbounded though all
results remain applicable and in many cases even simpler for bounded domains.
Suppose that Ey(G) is compactly embedded in a space E'(G) for any bounded
domain G and that the estimate

lull gy < K (IILullgo) + llulle @) (L.1)

holds with a constant K independent of u.
As an example, we can take the spaces

Eo(Q) = {ue C(Q), ulan =0},  E(Q)=C*Q), E(Q)=C(Q)
(1.2)
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and the operator

n

~Lu= > aj(x )aaa +Za](x %-l—c(x)u (1.3)

ij=1

Then estimate (1.1) follows from the Schauder estimate. It holds under certain
conditions on the domain (2 and on the coefficients of the operator (see [1, 2]).
If we use known estimate for Holder spaces

lulle ) < €llullgyq) +cellullc) (1.4)

with a small € and a constant ¢, depending on €, then (1.1) becomes equivalent
to the Schauder estimate.

Assume that the operator L satisfies the following condition: if f, — f; in
E(Q), Luy = fu, llunllgq) <M, and u, — up in E'(Q)), then uy € Eo(Q)) and
Lug = fy. For the example considered above this property is satisfied.

It is known that if this condition is satisfied and (1.1) holds, then the operator
is normally solvable, that is, its image is closed, and has a finite-dimensional ker-
nel (see [19]). This is a simple though an important result valid in the case if the
domain Q is bounded. If it is unbounded, we should add one more condition.
To formulate it we define limiting problems. In the simplest case where Q = R!,

—Lu=alx)u”" +b(x)u’ +c(x)u, (1.5)
and the functions a, b, and ¢ have limits at infinity

a- = lim a(x), b. = lim b(x), ¢+ = lim c¢(x), (1.6)

xX—to00 X—to00 X—+00

the limiting operators are
~L*u=a.u +b.u +c.ou. (1.7)

If in addition to the previous two conditions we require that the limiting
problems

L*u=0 (1.8)

have only zero solutions in Ey (L), then the operator L is normally solvable with
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a finite-dimensional kernel. The values A such that the equation
L*u=Au (1.9)

has a nonzero solution, belongs to the essential spectrum of the operator L.

Limiting problems and the normal solvability for linear elliptic operators in
unbounded domains were studied in a number of works for R”, and for do-
mains with cylindrical and conical ends (see [3, 21, 25, 26, 33] and the references
therein).

In this paper, we consider general elliptic operators in the Doulgis-Nirenberg
sense [7]. Since the domain () is also generic, we define in Section 2 limiting
problems, which includes limiting domains and limiting operators. To define
limiting domains for an unbounded domain Q, consider a sequence x,, € Q,
[xm| — oo. Let y(x) be the characteristic function of Q). Consider the shifted func-
tions y(x + x,,) and the corresponding domains ,,. Thus we have a sequence of
domains. If their boundaries 0€),, are uniformly Hélder continuous, then from
the sequence 2,, we can choose a subsequence Q,,;, converging to some limiting
function Q, in any ball B ¢ R”, that is,

QueNB— Q. NB. (1.10)

If we take an increasing sequence of balls, we can extend the limiting domain
Q4 to the whole R”. It can depend on the choice of the sequence x,, and of
converging subsequences Q.

To define limiting operators, we consider the shifted coefficients and choose
subsequences converging to a limiting function on any bounded set. Limiting
operators are operators with the limiting coefficients. Thus we define limiting
problems.

We prove in Section 2 that the operator is normally solvable with a finite-
dimensional kernel if and only if the limiting problems do not have nonzero
solutions (we will call it Condition NS). If we require that it is Fredholm, that
is, the codimension of its image is also finite, then the limiting operators are
invertible.

This result gives a useful property for the class of operators, which coin-
cide with their limiting operators: their spectrum consists only of the essen-
tial spectrum, that is, there are no points of the spectrum where the operator
is Fredholm. In particular, this property applies for operators with periodic or
quasiperiodic coefficients in cylindrical domains.

1.2. Index. In what follows we are mostly interested in Fredholm operators of
index zero for which the topological degree will be constructed. The index of
elliptic operators in unbounded domains is computed only for some particular
cases (see [5, 15, 22] and the references therein). However we do not need here
an explicit computation of the index. We can use the stability of the index for
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semi-Fredholm operators. Consider the operator Ly = L + Al and assume that
Condition NS is satisfied for all A > 0. Then it is semi-Fredholm. If it is invertible
for large A, which is the case for elliptic operators, then the operator L has a zero
index.

The condition that the operator L, satisfies Condition NS is much more re-
strictive than the same condition just for the operator L. We will see however
that it is exactly the same condition, which is used for the degree construction.

It is interesting to note that there are different homotopy classes of Fredholm
operators of index zero. For example, if we consider the operator (1.5), then its
essential spectrum is given by two parabolas

A=—-a.&+b.il+c., EcRL (1.11)

In both cases, if ¢, and c_ are negative and if they are positive, the index equals 0
[5]. However, they are not homotope in this class of operators and they are dif-
ferent from the point of view of the degree construction (see Section 1.3 below).
If they are both positive, Condition NS for the operator L, is not satisfied for
some A > 0.

1.3. Properness. Everywhere below we will say that an operator A(u) : E) — E is
proper if the intersection of an inverse image of a compact set with any bounded
closed ball B C E, is compact. We recall that a linear operator is proper if and
only if it is normally solvable with a finite-dimensional kernel.

Assume that a nonlinear operator A(u) is differentiable in the following sense:
for each uy € E, there exists a linear operator A’ (1) such that

A(u) — Auo) = A" (uo) (u—uo) + ¢ (1, u9), (1.12)
where
Il (ua, wo) | = K (w, o) || = wao | (1.13)
and K(u,up) — 0asu — uyin E’.
We note that this condition is more restrictive than the Fréchet differentiabil-
ity because the norm |lu — uyllg, in the right-hand side of (1.13) is replaced by
Il —upllp .

Similar to linear operator discussed above, we assume that the operator A(u)
satisfies the following condition: if f, — fy in E,

A(un) = fu (1.14)
U, € B, u, — ug in E’, then uy € Ey and

A(L{o) =f0. (1.15)
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If these conditions are satisfied and the domain ) is bounded, then the oper-
ator A(u) is proper. Indeed, from (1.14) and the compact embedding Ey(Q)) in
E’'(Q) follows (1.15). From the differentiability

A (uo) (un — tio) = fu— fo— ¢ (un, uo), (1.16)

and from (1.1), u, — uy in E(QQ).

We call a nonlinear operator A(u) elliptic if a linearized operator A’ (up) is
elliptic. A precise definition of ellipticity used in this paper is given in Section 3.

Nonlinear elliptic operators satisty all the conditions above. Their properness
is known for scalar equations in bounded domains [34].

If the domain Q is unbounded, then elliptic operators are not generically
proper. Consider the following example:

A(w) =u" +F(u), A:C*R)— C*R). (1.17)
Here F(u) is a sufficiently smooth function such that

F(0) =0, Fu)<0 forO<u<uy, F(u)>0 {foru>uy,

1.18
JIF(u)du=0. (1.18)
0

Then there exists a solution u(x) of the equation A(u) = 0 such that u(x) — 0 as
x — +o00. Obviously, all functions u(x + h), h € R, are also solutions of this prob-
lem, and this family of solutions is not compact. Therefore, the inverse image of
the set {0} is not compact. The choice of Holder spaces is not essential here. The
same problem arises in Sobolev spaces: u(x) decays exponentially at infinity if
F’(0) # 0, and the solution is integrable with its derivatives.

To avoid this problem we introduce weighted spaces. In the example above, it
is the weighted Holder spaces Cﬁ*“(R) and G (R) with the norms

lull gy = lluptll covamy, lullcsm) = llupllcem), (1.19)

respectively. The weight function u(x) can be taken for example 1+ x2. The pre-
cise conditions on it will be given in Section 2.1. Here we note that the weight
should be weaker than the exponential one in order not to lose solutions decay-
ing exponentially at infinity.

If we consider now the operator A(u) in the weighted spaces, then the family
of functions u(x + h) is still a solution of the problem A(u) = 0. However the
norm |lu(x + h)p(x)|l tends to infinity as h — =co. So in every bounded ball
BcC Cﬁ’f‘"(R), the inverse image of {0} is compact.

This example explains the situation with the properness of elliptic operators
in unbounded domains. We will see in Section 3 that weighted spaces allow the
convergence u, — ug in E'(Q)). The strong convergence in E(Q) will follow from
Condition NS.
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We note that various particular cases of properness for nonlinear elliptic op-
erators in weighted Holder spaces are considered in [3, 33]. Weighted Sobolev
spaces are considered in [30, 31, 32] where some estimates of semilinear elliptic
operators from below are obtained. Fredholm property and properness follow
from these estimates, and the degree is constructed using the approach devel-
oped in [27]. It is also possible to consider spaces without weight. However, in
this case it is necessary to impose some additional conditions on the operators
[25].

In Section 3, we prove properness of general elliptic problems. We consider
weighted Holder spaces with an infinitely differentiable, positive weight func-
tion u(x) such that u(x) — oo and |DPu(x)/u(x)| — 0 as |x| — co. Here B is a
multi-index, || > 0. The conditions on the weight function mean in particu-
lar that its growth at infinity is slower than exponential. Therefore, it does not
change the limiting operators and the location of the essential spectrum. Con-
dition NS, which is a necessary and sufficient condition of properness of linear
elliptic operators, is also sufficient for properness of nonlinear operators.

1.4. Topological degree. One of the approaches to define the topological degree
is based on the theory of Fredholm operators [4, 8, 9, 10, 11, 23]. Consider an
operator A : Ey — E assuming that it is Fredholm, proper, and that it has a zero
index. Let 9 C Ey be a bounded domain, A(u) # 0 for u € 0%. Let a € E be a
regular value with a sufficiently small norm. Its existence is known (see [24, 28]).
Then there exists a finite number of solutions uy,..., uny € 9 of the equation

A(u) = a, (1.20)

and there is no solutions of this equation at the boundary 0%.
For each solution u;, j = 1,..., N, we can associate a value

o(uj) =1 or o(uj) = -1 (1.21)

called orientation. The topological degree y(A, %) can be defined as
N
Y(A,D) = Z o(uj). (1.22)

j=1

It should be shown that it does not depend on the choice of a regular value a,
and that it is a homotopy invariant.

This scheme has been realized in a number of works under different con-
ditions on spaces, operators, and with different definitions of the orientation
(4,10, 11, 23].

Let U(u;) be a small neighbourhood of the point u; in Ej, which does not
contain other solutions of (1.20). Then by the definition of the index ind(A, u;)
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of a stationary point u;, we have
y(A, U(u;)) = ind (A, u;). (1.23)

On the other hand, if we define the topological degree through the orientation,
we obtain

YA, U(u))) = o(u;). (1.24)

For finite-dimensional mappings, for the Leray-Schauder degree, and for some
of its generalizations

o(uj) = (-1), (1.25)

where v is a number of negative eigenvalues of the operator A’ (u;) together with
their multiplicities (see also [16, 27], where the index of stationary points is also
calculated in terms of sum of multiplicities of eigenvalues of some operators). If
this definition of orientation is applicable, any other definition should be equiv-
alent if the degree is unique [33].

The relation between the orientation and the eigenvalues of the linearized
operator imposes some condition on the spectrum. Indeed, the homotopy in-
variance of the degree implies that y(A,, UT(uJT-)) remains constant for the op-
erator A, depending on parameter 7 if the linearized operator A’T(u}) does not
have zero eigenvalues. Therefore, the number of negative eigenvalues modulus 2
should not change either. Generally speaking, this condition can be guaranteed
only if the essential spectrum does not intersect the negative half-axis. Thus, not
only the operator A’(u;) should be Fredholm but also A" (u;) + oI for all o > 0.

The topological degree for Fredholm, proper operators of index zero satisfy-
ing the condition above was constructed in [10] in the case of bounded opera-
tors acting in the same space. However, elliptic operators can be considered as
bounded if acting in different spaces, or unbounded if acting in the same space.

Suppose that A : Ey — E is a bounded operator, and Ey # E. Then the con-
struction of the degree should be modified. First of all, instead of the eigenvalues
of the linearized operator we can consider negative solutions of the equation

A'(uj)u—Mu=0, (1.26)

where ] is a normalization operator. If it is invertible, we can consider the oper-
ator

A=]'A:Ey—E, (1.27)

acting in the space Ey. The degree ¥ for it can be defined through the degree for
the operator A

7(A,D) = y(A,D). (1.28)
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If the operator A’ + o1 is Fredholm for all o > 0, then the operator A’ + o7 is
Fredholm for all ¢ > 0.

An important class of linear elliptic operators are operators whose essential
spectrum does not intersect the real positive half-axis, that is, A" — AI is Fred-
holm for all A < 0. For some particular cases these two classes of operators are
equivalent [3, 6].

In the general case, a priori we cannot expect that these two classes of Fred-
holm operators coincide. Denote Jyu = Au — ku the normalization operator to
show its dependence on k. Let @ be the class of linear elliptic operators L such
that L + oJ is Fredholm for any o > 0. Then

e COCDp g C e (1.29)
Put
O =)o (1.30)
k=1

We show in [33] that for second order elliptic operators in unbounded cylinders
under some additional conditions, the class ® coincides with all operators L such
that L — A is Fredholm for all A < 0. As above, it allows to consider the operators
acting in the same space. For each @ we define the degree yx and prove that the
degree is unique. Therefore the degree is defined for the whole class @.

For general elliptic operators this construction becomes complicated, and it
is not quite clear what class of operators it allows to consider. So in this paper we
construct the degree for bounded operators acting in different spaces directly,
without reduction to the same space (Section 4). The class of operators we con-
sider here consists of all Fredhom and proper operators A(u) such that the op-
erator A" — Al is Fredholm for all A < 0 and it is invertible for A sufficiently large.
In fact, we consider a pair (A(u), B(u)) of operators acting from a space Ey(Q)
to a product of spaces E(Q) = E;(Q) X E;(0Q). Here B(u) corresponds to the
boundary operator. The nonlinear boundary conditions change the degree con-
struction. Indeed, after linearization we obtain the operator A’, and include the
set of functions u satisfying the condition B’z = 0 in the domain of the operator
A’. Therefore, during homotopies not only the operators but also the spaces are
changed. In this case the previous degree constructions cannot be used.

Another remark concerns the orientation of Fredholm operators. It is well
known that topological degree cannot be constructed in the class of all proper
C! Fredholm mappings of index zero. The class of mappings should be also ori-
entable (see [4, 12]). Therefore, the problem is how to describe the class of ori-
entable mappings. For example, consider the class of all elliptic operators which
are Fredholm with the zero index, proper and sufficiently smooth. The ques-
tion whether this class of operators is orientable remains open. In this paper,
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we introduce a class of nonlinear elliptic operators which is orientable. The ori-
entation is defined through the number of negative eigenvalues under the as-
sumption that the essential spectrum does not intersect the real positive half-
axis (Section 4). The condition on the essential spectrum allows to prove that it
is a homotopy invariant and to construct the topological degree.

2. Linear operators

2.1. Operators and spaces. Let 5 = (f31,...,3,) be a multi-index, f3; nonnega-
tive integers, |B| =1+ -+ B, DF = lel .- -Dﬁ”, D; = d/0x;. We consider the
following operators:

p
,-uzz Z afk(x)Dﬁuk (i=1...,p)xeQ,

A
k=11B1<p;
, Bl<Pi (2.1)
Bu=> Y bhx)DPu (i=1,.,r), x€dQ.
k=11Bl<yik
Following [2] we consider integers si,...,Sp; t1,..., tp; 01,..., 0, such that
Bijssitt;, GLj=i...ps  yij<oitt, i=L.,nj=L..,p <0
(2.2)

We suppose that the number m = 37, (s; + ;) is even and put r = m/2.
We assume that the problem is elliptic [1, 7, 29], that is, the ellipticity condi-
tion

P
det < Z a?k(x)fﬁ> #0, Pi=sitte (2.3)

|Bl=Pix ik=1

is satisfied for any £ € R", & # 0, x € , as well as the condition of proper ellip-
ticity and the Shapiro-Lopatinskii conditions (or the complementing boundary
condition in [1]). Here & = (§,...,&,), &F = ff - 55 The system is uniformly el-
liptic if the last determinant is bounded from below by a positive constant for all
€] =1and x € Q.

Everywhere below C***(Q) denotes the standard Hélder space of functions
bounded in Q together with their derivatives up to the order k, and the latter
satisfies the Holder condition uniformly in x.

Denote by E; a space of vector-valued functions u(x) = (u;(x),...,u,(x)),
uj € CHit*(Q), j = 1,..., p, where [ and « are given numbers, | > max(0, 5;),
0 < a < 1. Therefore,

Eo = CHi+e(Q) x - - - x CHYre(Q). (2.4)
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The domain Q is supposed to be of the class C***% where A = max(—s;,
-0, tj), and the coefficients of the operator satisfy the following regularity con-
ditions:

d e C(Q), b e Cht(aq). (2.5)

The operator A; acts from Ey to C'~**%(Q)), and B; from E, to C'~%"%(9Q)).
Denote A = (Ay,...,Ap), B=(By,...,B;). Then

A:Ey— Ey, B:Ey — E,, (A,B):Ey — E, (2.6)
where E = E; X E,,

El _ leslﬂx(Q) Xoeee X leserzx(Q)’

. ’ (2.7)
E, = C79*(9Q) X - - - X C79*%(9Q)).
We will consider weighted Holder spaces Ey,, and E, with the norms
llullE,, = llupllg,, lullg, = lluplle. (2.8)

We use also the notation C,’j*“ for a weighted Holder space with the norm ||u|] Che
= llupl crsa.

We suppose that the weight function y is a positive infinitely differentiable
function defined for all x € R”, p(x) — oo as [x| — o0, x € Q, and

'ﬁDﬁ‘u(x)‘ 0, x| — o, x€0 (2.9)

for any multi-index f, [B] > 0. In fact, we will use its derivative only up to a
certain order (see Sections 2.6 and 3.2).
Operator (A, B) considered in weighted Holder spaces acts from Ey,, into E,.

2.2. Limiting domains. In this section, we define limiting domains for un-
bounded domains in R”, show their existence, and study some of their prop-
erties. We consider an unbounded domain Q) C R”, which satisfies the following
condition.

Condition D. For each xy € dQ), there exists a neighbourhood U(xy) such that

(1) U(xp) contains a sphere with the radius § and the center x,, where § is
independent of xy,

(2) there exists a homeomorphism ¥(x;xp) of the neighbourhood U(xy) on
the unit sphere B = {y: |y| < 1} in R" such that the images of Q N U(x)
and 0Q N U(xp) coincide with B, = {y:y, >0, |y| <1} and By = {y:
yn =0, |y| <1}, respectively,
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(3) the function y(x;x0) and its inverse belong to the Holder space C***, with
k = max(1,/+A). Their || - [|x+o-norms are bounded uniformly in x.

For definiteness we suppose that § < 1.

Remark 2.1. In what follows, we suppose that y is extended such that y €
Ck+(R") and Iy Il ckra(rny < M with M independent of x.

It is easy to see that § and y in Condition D can be chosen such that this
requirement can be satisfied. Indeed, denote by V5 the sphere with the center at
%o and the radius § and let W5 = w(V5s).

Obviously, there exists a sphere Q. with the center at yy = y(xo;xo) and the
radius ¢ such that Q, C W; and ¢ does not depend on x,. Indeed, denote ¢ = !
and let y; be an arbitrary point on the boundary of Ws. We have § = |¢(y;) —
©(y0)| < Kly1 — yol, where K is the Lipschitz constant which does not depend
on xg. Let e < §/K. We have | y; — yo| > e which proves the existence of the desired
sphere Q..

Let U(xo) = ¢(Q;). There exists a sphere S with the center at x and the radius
& such that S ¢ ﬁ(xo) and & does not depend on xg. Indeed, let x; be an arbi-
trary point of the boundary of lN/'(xo). Then we have & = |y(xo;x0) — ¥ (x1520)| <
Ki|xp — x11, where K; is the Lipschitz constant of y, which does not depend on
Xo. So for 8 < &/K; we have |xg — x| > & which proves the existence of the men-
tioned sphere S.

We can take ﬁ(xo) as a new neighborhood of xo and ¥/ (x;x0) = (1/¢) (v (x;x0)
— ¥(x0;x0)) as a new function y. Since ¥/(x;xo) is defined in the sphere Vj it can
be extended on R”.

To define convergence of domains we use the following Hausdorff metric
space. Let M and N denote two nonempty closed sets in R". Denote

¢(M,N) = supp(a,N), ¢(N, M) = supp(b, M), (2.10)
aEM beN

where p(a, N) denotes the distance from a point a to a set N, and let
o(M,N) = max (¢(M,N), (N, M)). (2.11)

We denote 2 a metric space of bounded closed nonempty sets in R” with the
distance given by (2.11). We say that a sequence of domains (),,, converges to a
domain Q in By if

0(QmNBr,QANBr) — 0, m— o (2.12)
forany R > 0and Bg = {x: |x| < R}. Here the bar denotes the closure of domains.

Definition 2.2. Let QO C R” be an unbounded domain, x,, € Q, [x,,| — c0 as m —
00, let y(x) be a characteristic function of Q, and let Q,, be a shifted domain
defined by the characteristic function y,,(x) = y(x + x,,). We say that Q. is a
limiting domain of the domain Q if Q,, — Q4 in Ejc as m — co.
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We denote A(Q) the set of all limiting domains of the domain Q (for all se-
quences X, ). We will show below that if Condition D is satisfied, then the limit-
ing domains exist and also satisfy this condition.

TaEOREM 2.3. If a domain Q satisfies Condition D, then there exists a function
f(x) defined in R" such that

(1) flx > € CHa(rn),
(2) flx >01fand onlyifx € Q,
3) IVf(x)| =1 forx € 0,
(4) min(d(x),1) < | f(x)|, where d(x) is the distance from x to 0.

Proof. There exists a number N such that from the covering U(xy) of 0D we
can choose a countable subcovering U; such that the following conditions are
satisfied:

(i) U; Ui cover the §/2-neighborhood of 00},
(ii) any N distinct sets U; have an empty intersection.

Indeed, denote by V the §/2-neighborhood of 0Q. Obviously for any point
xo € V there exists a point x; € 0Q such that B (x0) C Bs(x)) C U(xg). Here
and in what follows B,(x) denotes a ball in R, with the center at x and with
radius r. So we have a covering U’ (xp) = U(x;) of V such that the centers of
balls are at the boundary of the domain. Denote T' = J U’.

Consider an e-mesh in R". We denote by K the union of all #n-dimensional ¢-
intervals of this mesh which have a nonempty intersection with V. For any Q; €
K, we take a point x; € Q;N'V (i =1,2,...) and consider the neighbourhood
U; € T, which contains the point x;. We suppose that ¢ is taken such that the
diameter of Q; is less than 6/2. Then Q; C U; and

Vcl=JU. (2.13)
i

Therefore the covering I'y satisfies condition (i).

To each Q; € K corresponds no more than one neighbourhood U; € Ty. From
Condition D it follows that the diameter of Uj is less than a constant independent
of i. Hence (ii) is also satisfied.

Let w; € CK*%(IR") be a partition of unity subordinate to the covering Iy, that
is, supp w; C U;. Denote by y; the vector-valued function y(x, xo) which corre-
sponds to U; in Condition D and

So(x) = cZiyin (%) wi(x), (2.14)

where y;,(x) is the last component of y;(x) and the constant ¢ will be chosen
later. We note that this sum contains no more than N terms.
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For any points x € U; and x' € 0Q N U; we have |x —x!| < M|y — y!|, where
y = wi(x), y! = y;(x!) and the constant M does not depend on i. So

d(x)sMyip:foly—yl\ = M| yin(x)|. (2.15)

It follows that for all x € V we have d(x) < M| fy(x)|/c. We have used the fact
that y;,(x) have the same sign for all i. We take ¢ = M and then

min (d(x),1) < | fo(x)]. (2.16)

Therefore (4) is proved for fy(x).

We prove (3). Denote ¢; = y; ' and by ¢; and y; the Jacobian matrices of ¢;
and v, respectively. Then for any x € U; we have y; (x) - ¢;(y(x)) = I (identity
matrix). Let a; be the kth row of y; and b; be the kth column of ¢}, then |a;||b;| >
1. From Condition D, |b;| < M;, where M, is a constant independent of i. So
la;| = 1/M,. In particular,

| Vin(x) | = MLI (2.17)
From (2.14) for x € 0D we have

Vfolx) = CZ Vin(x) wi(x). (2.18)

Let v be the unit inward normal to 0D. Then

(Vfo(x), v(x)) = (Vo (x), V fo(x)/ |V o(x) [) = |V fo(x) | (2.19)

For x € Q) N U; we have similarly

(Vin(x),v(x)) = | Vin(x) |. (2.20)

Multiplying (2.18) by v(x) we get

|V folx)| = CZ | Vi (x) | i(x). (2.21)

From (2.17), taking ¢ = M, we obtain |V fy(x)| = 1, x € dQ and (3) is proved for
Sol(x).

We have defined the function fy(x) in a neighbourhood of the boundary 0Q.
We can easily extend it on the whole R” in such a way that its regularity is pre-
served, it is greater than a positive constant inside the domain Q) and less than a
negative constant outside the domain. Multiplying it by a large positive number,
we will have the last two assertions of the theorem also satisfied. The theorem is
proved. O
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Let Q) be an unbounded domain satisfying Condition D and f(x) be the
function satisfying conditions of Theorem 2.3. Consider a sequence x,, € Q,
|Xm| — 0. Denote

fn(x) = f(x+xp). (2.22)

THEOREM 2.4. Let f(x) — fi(x) in Cﬁ)C(R"), where k is not greater than that in
Theorem 2.3. Denote

Qu ={x:xeR", fi(x)>0}. (2.23)

Then

(1) fulx) € Chra(R?),
(2) Q4 is a nonempty open set.

If Qu # R", then

(3) IV fu(X) a0, = 1,
(4) min(dy(x),1) < | fi(x)|, where d (x) is the distance from x to 0Q.

Proof. The first assertion of the theorem is obvious. To prove the second asser-
tion, we note that the origin O belongs to all domains Q,,. Denote by d,, the
distance from O to the boundary 0Q,,. If d,, — 0, then from the properties of
the functions f;,(x) it follows that

fx(0)=0, |V£(0)] =1 (2.24)

Hence there are points in a neighbourhood of the origin where the function
[« (x) is positive. Consequently Q) is nonempty.

If d,,, does not converge to zero, then d,,, > a > 0 for some positive a. From
Theorem 2.3 we conclude that

Jm;(0) = min(a, 1). (2.25)
Therefore
f«(0) = min(a, 1) >0, (2.26)

and we obtain again that the set Q4 is not empty. The fact that it is open is
obvious.

We verify now the third assertion of the theorem. Let fi(x) = 0 for some
xo. Then f,,(x) — 0. From (4) of Theorem 2.3 it follows that d,,(x) — 0, where
dn(x0) is the distance of xy to 0Q),,. So there exists z,, € dD,,, such that |z, —
x| — 0. Since |V f,u(2p)| = 1 by (3) of Theorem 2.3, then passing to limit we get
IV fi (o) = 1.
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We prove finally the last assertion of the theorem. For any x, € R” we have
min (dy, (x0), 1) < | fi(x0) |- (2.27)

So we should verify that d,,, (xy) converges to d«(xo) as m — co.
Suppose that x( belongs to a ball Bg. Denote

[y = {x: fu(x) =0, x € B}, Ty ={x: fu(x) =0, x € Bg}. (2.28)
It is sufficient to prove that
o(TpmTs) — 0, m— oo, (2.29)

Let T¢,, TS be e-neighbourhoods of these sets, respectively. From convergence
fn(x) = fx(x)in C¥(Bg) it follows that T, C TS for m sufficiently large. We show
that T'y C T, for m large. Indeed,

| fn(x) = fu(x)| <€, x€Bg (2.30)

for m > mc and some me. If x € Ty, then fi(x) = 0 and | f,(x)| < €. From the
last assertion of Theorem 2.3 it follows that d,,(x) < €, and x € T,. Convergence
(2.29) follows from this. The theorem is proved. O

Remark 2.5. The limiting set Q. is not necessarily connected even if the domain
Q is connected.

THEOREM 2.6. If fu(x) — fu(x) in Cﬁ;c as m — oo, then 0Q),,, — 0Qy in Bjye.
The proof of the theorem follows from convergence (2.29).

THEOREM 2.7. If fru(x) — fy(x) in CE_as m — oo, then the limiting domain Q.
satisfies Condition D, or Q, = R".

Proof. Suppose that Q, # R" and xy € dQ. Then there exists a sequence %,
such that

Xm — X0, Xm € 0Qm, (2.31)

where ), are the domains where the functions f,,(x) are positive. For each
point X, and domain Q,,, there exists a neighbourhood U(X,,) and the func-
tion y(x;&,,) defined in Condition D.

Since the domain Q satisfies Condition D, the functions y(x;%,,) are uni-
formly bounded in the C¥**-norm with k > 1. The domain of definition of each
of these functions is an inverse image of the unit sphere in R”. Choosing a con-
verging subsequence of the inverse images and of the functions y(x;%,,), we ob-
tain a limiting neighbourhood U(x) and a limiting function y(x;x,) which sat-
isfy Condition D. The theorem is proved. O

From the previous theorems the main result of this section follows.
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THEOREM 2.8. Let Q) be an unbounded domain satisfying Condition D, x,, € Q,
[Xp| — o0, and f(x) be the function constructed in Theorem 2.3. Then there exists
a subsequence x,,, and a function fi(x) such that

Juni (%) = f (x+xm,) — fi(x) (2.32)

in CE (R"), and the domain

Qu = {x: fi(x) >0} (2.33)
satisfies Condition D, or Q4 = R".

Moreover

Qu, — Qi inEBloe (2.34)
where

Qu, = {x: fin,(x) > 0}. (2.35)

2.3. Limiting problems. In the previous section we introduced limiting do-
mains. Here we will define the corresponding limiting problems.

Let Q be a domain satisfying Condition D and y(x) be its characteristic func-
tion. Consider a sequence x,, € Q, |x,| — oo and the shifted domains Q,, de-
fined by the shifted characteristic functions y,(x) = x(x +x,,). We suppose that
the sequence of domains (), converge in Ejoc to some limiting domain Q.. In
this section we suppose that 0 < k <[+ A.

Definition 2.9. Let u,,(x) € C(Q,,), m = 1,2,.... We say that u,,(x) converges to
a limiting function u, (x) € C*(Qy) in Cﬁ)c(Qm — Q) if there exists an exten-
sion v, (x) € CK(R") of u,,(x), m = 1,2,... and an extension v4(x) € C*(R") of
Uy (x) such that

YV — Vs IN C{;C(R"). (2.36)

Definition 2.10. Let u,,(x) € C*(0Qy,), m = 1,2,.... We say that u,,(x) converges
to a limiting function u, (x) € C*(9Qs) in cﬁ)c(agm — 0Q),) if there exists an
extension v,,(x) € CK(R") of u,,(x), m = 1,2,... and an extension vy (x) €
CK(R") of u4(x) such that

Vi — Vs in CE_(R™). (2.37)

ocC

Remark 2.11. In these definitions u(x) does not depend on the choice of the
extensions v, (x) and v (x). Indeed, in Definition 2.9 for any point x € Q. there
exists a sequence X, € Q,, such that %, — x. Therefore

U (x) = vy (x) = r}lizrgo Vi (Zn) = im u,, (%). (2.38)

m— oo
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Similarly it can be checked for Definition 2.10.

THEOREM 2.12. Let tt,, € C**%(Qy), |t || cr+e < M, where the constant M is in-
dependent of m. Then there exists a function us € CK**(Q) and a subsequence
U, SUch that uy, — us in Cﬁ)c(ka - Q).

Let uy € CH(0Q), llumllcia < M. Then there exists a function uy €
CH%(0Q) and a subsequence uy, such that t, — uy in CIkOC(Bka - 0Qy).

Proof. Let u,, € CH*(Q), il e < M. Tt follows from Condition D that
there exists an extension v, (x) of u,,(x) on the whole space R” such that

Vm S Ck+0£ (Rn); ||Vm||ck+:x(Rn) = MO) Vm(x) = um(x): X € Qm: (239)

where M is independent of m.
Passing to a subsequence and retaining the same notation we can suppose
that there exists a function vy (x) € CK*%(R") such that || vy Il crerrny < Mo and

Vm — v in CE_(R"). (2.40)
So
Up — ts 0 CE_(Q — Qy) (2.41)
in the sense of Definition 2.9. Here u, (x) is the restriction of vy (x) on Q.

The second part of the theorem for u,, € C***(9€),,) is proved similarly. The
theorem is proved. U

The operator L consists of a pair of operators, L = (L, L,) where the operator
L; acts inside the domain and L, is a boundary operator. So we can represent the
boundary problem as

Liu=f, Lyu= f, (2.42)
where u € Ey(Q), f1 € E;(Q), f» € E»(0Q)), E = E; X E;. The coefficients a;;(x)

of the operator L; are defined in Q) and the coefficients bij(x) of L, in 0Q). We
recall that

a;j(x) € C5+%(Q), bij(x) € C=7"%(0Q) (2.43)
(see Section 2.1). Then obviously the shifted coefficients a;;(x + x,,) and b;;(x +
Xm) satisfy conditions of Theorem 2.12. Therefore we can define the lLimiting

problem

Liu=f, Lu=g (2.44)
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where u € Eg(Qy), fi € E1(Qx), f € E2(0Q4), Ly and L, are operators with
limiting coefficients aj;(x) € C™*%(Qx), bji(x) € C7**(9Q).

We note that for a given problem (2.42) there can exist a set of limiting prob-
lems corresponding to different sequences x,, and to different converging subse-
quences of coefficients of the operators.

2.4. Normal solvability. We consider the operator L : Ey(Q)) — E(Q) and intro-
duce limiting domains and limiting operators defined above.

In what follows we will use also the spaces Ej and E’, which are obtained from
E and E, respectively, if we put a = 0.

From Theorem 2.12 it follows that for any sequences u,, € Eo(Qp), fm €
E(Q,,) with uniformly bounded norms there exist subsequences u,,, and f,
converging to some limiting functions uy € Ey(Qs) and fi € E(Q4) in
Ej1oc(Qum, = Q) and Ej (Qy, — Q4 ), respectively.

If L,, is a sequence of operators with shifted coefficients and L,,u,, = f, then
there exists a limiting operator L such that Luy = f.

This is true in particular for the case where Q,,, = Q for all m and L,,, = L.

It is known that for a domain Q satistfying Condition D and an operator L the
following estimate

lullg, < K(ILullg + llullc) (2.45)

holds, where the constant K is independent of the function u € Eo(Q) and || - [I¢
is the norm in C(Q)).

Condition NS. For any limiting domain Q, and any limiting operator L the
problem

Lu=0, wuekFE(Qy) (2.46)

has only zero solution.

TaEOREM 2.13. Let Condition NS be satisfied. Then the operator L is normally
solvable and its kernel is finite dimensional.

Proof. Let the limiting problems have only zero solution. It is sufficient to prove
that the operator L is proper. Consider the equation

Luy = fn, (2.47)

where f, € E(Q) and f, — f. Suppose that [lu,lg,q) < M. We will prove that
there exists a function 1 € Eo(Q)) and a subsequence u,, such that

o, — “0”150(0) — 0. (2.48)
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There exists a function ug € Eo(Q) such that u,, — ug in Ej,.(Q) and Lug = fo.
Without loss of generality we can assume, here as well as below, that it is the
same sequence. We prove first that

|t4n — tho|| () — O (2.49)

Suppose that this convergence does not take place. Since u,, — 1y in Cioc(Q2), we
conclude that there exists a sequence X, |x,| — o0 and a subsequence u,,,, of u,
such that

ttnm (Xim) — 1o (xm)|] = € > 0. (2.50)

Consider the shifted domains Q,, with characteristic functions y(x + x,,), the op-
erators with shifted coefficients and the functions v,,,,,(x) = tp,,, (x + X)) — uo(x +
Xm). Passing to a subsequence we conclude that there exists a limiting domain
Q4, a limiting operator L, and a nonzero limiting function vy € Eo(Q.) such
that

tV() =0. (2-51)

This contradiction proves (2.49).
From this convergence, from the convergence f, — f; in E(Q)), and estimate
(2.45) it follows that u, — ug in Eo(Q). The theorem is proved. O

The next theorem will provide a necessary condition of normal solvability.
In fact, it is the same Condition NS. However we need now more restrictive
conditions on the coefficients of the operator and on the domain Q.

We suppose here that

af;k e Cl=s5t(Q), bfk € C9%*9(9Q)), the domain Q is of class C"*0 (2.52)

witha<d < 1.

LemMA 2.14. Let as above Q,, and Q. be shifted and limiting domains, respec-
tively. Then for any N there exists mg such that for m > my there exists a diffeomor-
phism

hn(x) : O N By — Q4 N By (2.53)
satisfying the condition

||hm(x) - x||C’”*"‘(QmﬂBN) - O (254)

asm — oo,
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Proof. Consider a domain G such that G C Q,, N Q, for all m sufficiently large.
Let xp € 0Q4. Denote by n(xy) the normal to 0Q at x = x¢. If m is sufficiently
large, then in a neighbourhood of x, n(xp) intersects 0Q),, only at one point.
The domain G can be chosen such that it satisfies the same property.

We put h,,(x) = x for x € G. We define then h,,(x) along each normal n(x,) by
mapping the interval, which belongs to Q,, on the interval in Q... It can be done
in such a way that we have the required regularity. The lemma is proved. O

THEOREM 2.15. Suppose that problem (2.46) has a nonzero solution uy for some
limiting operator L and limiting domain Q.. Then the operator L is not proper.

Proof. Let ¢(x) be an infinitely differentiable function of x € R" such that 0 <
o(x) =1, p(x) =1 for |x| < 1, p(x) = 0 for x| >2. If {x,,} is the sequence for
which the limiting operator L is defined, denote

X

Pm(x) = <p<—), (2.55)

T'm

where r,, — co and 1y, < |x,,|/3. Some other conditions on the sequence r,, will
be formulated below.

Let Vi = {y:y € R", |y| < j}, j=1,2,.... Denote by n; a number such that
for m = n; the diffeomorphism h,, defined in Lemma 2.14 can be constructed in
QN Vi and

1 (y) _)’”cMw(Qmmij) <L (2.56)

For arbitrary m; > n; we take r,,, = min(j/2, [x,1/3).

Let
Vi, (¥) = @m; (P tto (i, (y))  for y € Qp; 0 Vi, (2.5)
V() =0 fory € Qp, |yl =j+1.
Denote
U (X) = Vi, (X = Xm,), X EQ. (2.58)
It is easy to see that u,,; € Eo(Q2) and
ety = M (2.59)

where M does not depend on ;. Indeed, obviously

Pm;(y) =0 (2.60)
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for y outside V;. So to prove (2.59) it is sufficient to show that
||ij||Eo(Qmjan+1) <M, (2.61)
or
10 (o P[5y 60, 2,000 = Mo (2.62)

where M; and M, do not depend on m;. This follows from (2.56) and the fact
that ug € Eo(Qy).
We will prove that choice of m; in (2.58) can be specified so that

(1) L, — 0in E(Q) as m;j — oo,
(i) the sequence {u,,,} is not compact in Eo(Q).
The assertion of the theorem will follow from this.
(i) We consider operator A;. The operator B; is treated similarly. For any j
and m > n; we have

Aittyy = Aty + A1y, (2.63)

where
P
Al (%) = @ (x = Xim Z z [);( )DPugk (h (x — %)), x€Q, (2.64)

up = (up1,..., tgp) and A? contains derivatives of @m. Obviously
||A12”m||clfsx-+a(g) —0 (2.65)

asm — o,
Denote y = x — x;,. From (2.64) we obtain

Altm (y+xm) = @M Tim(y), ¥ € Qun, (2.66)

where

)4
Tim()/)zz Z &y Dok (h()), € Qs (2.67)
k=11B]=<p

@ () = @y (y +x0).
We will prove that for any j fixed

||TimHCL5i+u(QmmV}-+1) —0 (2'68)

as m — oo,
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By definition of u, the following equality holds:

p
> S ah(0Dlupk(x) =0, xe€Q.. (2.69)

Here dgc(x) are the limiting coefficients. So

Z S (S +Ph(0)], (2.70)
k= 1‘ﬁ|</31k
where
1k m(y) = ik, m()’)[Dg’/’Ok(h ()’)) —Dalf”ok(hm()’))]: (271)
,km(y) [a ,km(y) ,k(h )] D uge (h m(y)). (2.72)

The first factor on the right in (2.71) is bounded since

@il lcsve(r, = Nl msseq- (2.73)

From Lemma 2.14 it follows that the second factor tends to 0 in the norm
C5%%(Qyy N Vjy1) as m — 0. So

||S?k,m||C’*5i+“(QmmV]‘+1) - 0 (2'74)

asm — oo,
Consider (2.72). Using Lemma 2.14 we easily prove that

||D§u0k(h,,,(y))||Cl,s,.+a(9mmvm) < M; (2.75)

with M3 independent of m.

To prove (2.68) it remains to show that, for any subsequence of m, Tj, has a
convergent to zero subsequence. If m, is a subsequence of m, then assumption
(2.52) and Lemma 2.14 imply that

tkm )= ﬁgc(th('))HCI*‘i*"‘(QmOVjH) —0 (2.76)

[t
as m — oo by some subsequence of m,. So (2.68) is proved.
Now we specify the choice of m; in (2.58). According to (2.68) for any j we
can take p; such that

1
||Tl‘m||clfs[+a(0mmvj+l) < ; (2.77)
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for m = p;. We take m; = max(n;, p;). Then obviously
||(ij Timj”CI*Sﬁa(Qmj) —0 (2.78)

asm;j — co.

Itjis easy to see that m; can be chosen by the same manner in such a way that
(2.78) is true for all i = 1,..., p and also for operators B;.

Thus the assertion (i) is proved.

(ii) We will prove that sequence (2.58) does not have convergent subsequence.
Obviously uy, (x) = 0 for |x| < r,,, and so

U, (x) — 0 (2.79)

as m;j — oo for any x € () fixed.
For any subsequence s; of m;, there exists N such that

sup | u,(x)| >0 fors; > N. (2.80)

xeQ

Indeed, denote y = x — x;,. Then

sup | Us; (x) | = sup | Ps; (J’)uo(hsi()’)) | (2.81)
xeQ) }’EQsiﬂij

Let xo € Q. be a point such that [uy(xp)| > 0. Denote y;, = h;il(xo), ys € Q.
From Lemma 2.14 it follows that |y | is bounded. So there exists N such that
lys,| <ts |ys;| < j+1fors;>N.

From (2.81), sup, . lus;(x)| = lug(x9)| and (2.80) follows.

We have obtained ||, [l c(q) > 0. This and (2.79) imply that u,,; is not compact
in Eo(Q). The theorem is proved. O

2.5. Dual spaces: invertibility of limiting operators. We consider now the
space E = E(Q) defined in Section 2.1 and the space E°, which consists of func-
tions u € E converging to 0 at infinity in the norm E, that is,

lullzcniixi=ny) — 0 (2.82)
as N — co. We say that u,, — up in Ej,(Q) if this convergence holds in Q N {|x| <
N} for any N.

LEMMA 2.16. Let ¢ be a functional in the dual space (E°)*, u € E and u ¢ E°,

u, € EO lualle < 1, and u,, — u in Ejoc. Then there exists a limit

¢ = lim ¢ (u,,). (2.83)

n—o0o
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Proof. Since ¢ is a bounded functional, then
|¢(un) | < Kl[un||[p <K (2.84)

with some positive constant K. Suppose that the limit (2.83) does not exist. We
will construct a sequence z, € E° uniformly bounded in the norm E such that

¢(Zn) — 0.

We can choose two subsequences i, and i, such that
¢(dn) — Ky, ¢lin) — Koy Ky # K. (2.85)
Without loss of generality, we can assume that K; > K, and that for all n > 1
diy) =K1 =8 > Ky +6 = ¢ (i) (2.86)
for some positive §. We put v; = il,,, — il,,. Then
¢(v) =K1 —Ky =28 >0. (2.87)

For any given ball and any € > 0 we can choose n; sufficiently large such that
the E-norm of v, in this ball is less than €/2. On the other hand, v, converges
to 0 at infinity in the sense of definition of the space E°. Therefore there exists a
function w; € EY, ||w; ||lg < € such that w; = v| + w; has a finite support.

We choose € such that

|¢(w1)| SK||w1||ESK€<K1—KZ—25. (288)
Then
¢(W1)>K1—K2—26—K€ > 0. (289)

We choose the functions il,,, i, such that v, = i1, — i1y, is sufficiently small in
the support of wy. Then there exists w; such that ||w, ||z < € and
suppw; Nsuppw, = 9,

¢(w2) >K, — K, —28 — Ke > 0. (2.90)

In the same manner we construct other functions of the sequence w,,. We put

n

Zy = Zwi. (2.91)

Then the functions z, are uniformly bounded in the E norm and ¢(z,) — co.
The lemma is proved. O
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LemMA 2.17. The limit (2.83) does not depend on the sequence u,.
Proof. Suppose that there are two sequences i, and i, such that
i, — u, U, — U (2.92)
in Ej,c and
%ijlolo¢(ﬁn) # %ij{lﬂ(ﬁn)- (2.93)
Then we proceed as in the proof of the previous lemma. The lemma is proved.
O
COROLLARY 2.18. Ifu, — 0 in Ejo, then ¢(u,) — 0.
We can extend now the functional ¢ to the space E(Q)). For any u € E(Q) we

put (ﬁ(u) =¢(u) ifu € E°(Q) and

$(w) = lim ¢ (u,), (2.94)
where u, € E°(Q) is an arbitrary sequence converging to u in Ejoc. This is a linear
bounded functional on E(Q)).

Denote all such functionals E. It is a linear subspace in E*. Suppose that
E # E*. We take a functional v € E*, which does not belong to E. Let y; be
a restriction of ¥ on E°. Then yq € (E°)*. As above we can define the functional
Yo € (E)*. By assumption y # . Denote ¥ = ¥ — yp. Then

¥=0, VYuekE’. (2.95)

Thus we have proved the following theorem.

THEOREM 2.19. The dual space E* is a direct sum of the extension E of (E°)* on E
and of the subspace E consisting of all functionals satisfying (2.95).

Remark 2.20. For any function v € L'(€2), we can define the functional ¢ € E as
(u) = J y()u(x) dx. (2.96)
Q

We do not know whether E = (C*(Q))*. However, if instead of the space
C*(Q) we take, for example, the space of functions from C*(Q) having limits
at infinity, then all constructions above remain applicable and E # (C*(Q))*.
Indeed, the functional

y(u) = lim u(x) (2.97)

|| =00

does not belong to E. However the following lemma shows that the normal solv-
ability is determined completely by the subspace E.
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LEmMA 2.21. Suppose that the operator L : Ey — E is normally solvable with a
finite-dimensional kernel, and the problem

Lu=f, fe€E (2.98)
is solvable if and only if
vi(f) =0, i=1..,N, (2.99)

where y; are linearly independent functionals in E*. Then y; € E.

Proof. Suppose that the assertion of the lemma does not hold and
41 éﬁ, V2. .., UN EE. (2.100)

We suppose first that y; € E. We consider the functionals y;,i = 2,...,N, as
functionals on E°. They are linearly independent. There exist functions f; € E°,
j=2,...,N, such that

ljll(f]) =6i]', i,j=2,...,N, (2.101)
where §;; is the Kronecker symbol.

Let f € E°, the norms || || be uniformly bounded and f™ — f in Ej,.
Then the problem

Lu=g™", (2.102)
where
N
g =1 =Sl F ), (2103
i=2
is solvable in E, since
vi(f™) =0, wi(f)=0 w(E"”) =0 i=2..N (2.104)

Denote by u" its solution and put u™ = v + w("™ where
v e Kerl, w™ e (KerL)*, (2.105)

and (KerL)* denotes the supplement to the kernel of the operator L in the space
Ey. Then

Lw™ = g (2.106)
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and the E; norms of the functions w™ are uniformly bounded. Indeed, if
lw(™]|g, — oo, then for the functions

(n) (n)
e sy _ 8
A _ ’ _ (2.107)
ol & = T,
we have
Lt = g, ng)”E —0. (2.108)

Since the operator L is proper, then there exists a function wy such that W) —
wo. Hence wy € (KerL)*. On the other hand, Lwy = 0. This contradiction proves
the boundedness of the sequence w(™.

Therefore there exists a subsequence w™) converging in Ej,. (see Section
2.4) to a limiting function w € E. Passing to the limit in (2.106), we have

N
Liv=f = > wi(f)f: (2.109)
i=2

Since this problem is solvable for any f, then

N
0=y (f - Zl/a(f)ﬁ) =y (f). (2.110)
i=2

This means that for any function f € E, the value of the functional y; equals
zero. This contradiction proves the lemma.

If v, ¢ E and v ¢ E, then by virtue of Theorem 2.19, y; = §; + §;, where
V) €E, U € E. If the functionals V1, ¥a,..., Wy are linearly dependent, we can
take their linear combination and reduce this case to the case considered above. If
they are linearly independent, we repeat the same construction with all N func-
tionals, that is, the sum in the expression for g contains the term v, (") fi.
The solvability condition

N

0=w1<f—2wi(f)ﬁ—¢1<f)f1>=¢1(f) (2.111)

i=2

gives y; € E.
The proof remains the same, as we suppose that more than one functional
does not belong to E. The theorem is proved. O
In the following theorem it is supposed that conditions (2.52) are satisfied.

THEOREM 2.22. If the operator L is Fredholm, then any of its limiting operator is
invertible.
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Proof. Tt is sufficient to prove that the problem
Lu=f* (2.112)

is solvable for any f* € E(Q*) where O* is the limiting domain.
The problem

Lu=f, ueE(Q), feEQ), (2.113)
is solvable if and only if
vi(f)=0, i=1,..,N, (2.114)

where y; are linearly independent functionals in E (see Lemma 2.21). Let fi€
E'(Q), j=1,...,N, be functions which form the biorthogonal system to these
functionals. For any f € E(Q)) the problem

N

Lu=f-> vi(f)f (2.115)

i=1

has a solution u € Eo(Q).
Let {x,,} be the sequence for which the limiting operator L is defined. Denote
Timf(x) = f(x+x,) and consider the shifted problem. Then from (2.115)

N
LTwti = Tof = > vi(£) T fir (2.116)
i=1

where L,, is the operator with shifted coefficients.
So for any f € E(Q),,) the equation

N

Luu=f=> yiT f)Tnf; (2.117)

i=1

has a solution u € Eo(Qy,).

To prove the existence of solutions of (2.112), we use the construction given
in the proof of Theorem 2.15. Let @, V;, nj, m; be the same as in Theorem 2.15.
Suppose that (2.52) is satisfied. Denote gin; () = @, (y) f* (hm,(y)) for y € Qmi N
Vij+1 and suppose g, (y) =0 for y € Qup;, [yl > j+ 1.

Consider the equation

N
Lonythm; = Gom; ;wi(T,;}gmj)Tm, fi (2.118)

which has the type (2.117), and so it has a solution u,,; € Eo(Qum, ).
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Since IIgijIE(Qmj) is bounded, we obtain from (2.118) that IIuijIEO(Qmj) is
bounded. By Theorem 2.12 there exists a function u € Eo(Q2*) and a subse-
quence uy,;, — uin Eqo (Qm, — QF). Moreover, the subsequence can be taken
so that g, is convergent in Ej, (Qm,; — QF,0Qy,;, — 0Q*). (The notation cor-
responds to that in Definitions 2.9 and 2.10 and to the fact that E = E; X E,.)
Obviously the limit of g, is f*.

Passing to the limit in (2.118) by this subsequence and taking into account
that Ty, fi — 0, we obtain solvability of problem (2.112). The theorem is proved.

([l

COROLLARY 2.23. If an operator L coincides with its limiting operator, and it is
Fredholm, then it is invertible.

The last result shows, in particular, that the spectrum of operators with con-
stant, periodic or quasiperiodic coefficients in unbounded cylinders does not
contain eigenvalues and consists only of points of the essential spectrum. We
understand here essential spectrum as points of the complex plane where the
operator L — A is not Fredholm. By eigenvalues, the points where it is Fredholm
but its kernel is nonempty.

2.6. Weighted spaces. In this section, we discuss the Fredholm property in
weighted spaces. Consider the problem

Lu=f, (2.119)
where u € Ey,, f € E, (see Section 2.1). Denote v = uy, g = fu. We have
Lv+Ku=g, (2.120)
where
Ku = pLu — L(uu). (2.121)

LEmMA 2.24. Suppose that the operator L : Ey — E is normally solvable and has a
finite-dimensional kernel, the operator

Ku=uLu— L(uu) : Ep,, — E (2.122)

is compact. Then the operator L : Ey, — E, is normally solvable and has a finite-
dimensional kernel.

Proof. Let fi be a convergent sequence in Ey, Lug = fi,

||uk||EW <1 (2.123)
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We will show that the sequence uj is compact, and by this the operator L : Eo, —
E, is proper. We have

Lvk + Kug = gk, (2.124)
where
Vk = plig, & = Ufr. (2.125)
Let wx = Kuy and let wy, be a subsequence converging in E. Then
Lvi, = gy — W (2.126)

and the sequence vy, is compact in E, since the operator L: Ey — E is proper.
Therefore the sequence uy, is compact in Eg,. The lemma is proved. O

THEOREM 2.25. Suppose that the conditions of Theorem 2.13 are satisfied. Then
the operator L : E, — E, is normally solvable and has a finite-dimensional kernel.

Proof. We consider the operators A; defined in Section 2.1. The boundary oper-
ators B; are treated similarly. Denote

Kiu = yAiu — Ai(uu). (2.127)

According to Lemma 2.24, it is sufficient to prove that the operator K; : Ey, —
Cl=5%%(Q) is compact. Obviously

p
Kiu = Z z o7 (x)D° uD" uy, (2.128)
k=1 0<|o|<pik, |T|<Pix

where ¢, is a linear combination of the coefficients a?k (x) of the operator A;. So
Cor(x) € C75(Q). (2.129)

Suppose we have a sequence {u”},v=1,2,...,
I, = lwullg, <M (2.130)

with M independent of v. We will prove that from the sequence K;u” we can find
a convergent subsequence in C'~5*%(Q)).
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Indeed, denote v = yu”. Then [[v”||g, < M. So we can find a subsequence
wj = V" convergent in E=Ct(Q)x - x CH0 (Q) locally to some limiting
function wy € Ey. Denote uy = wy/u. Then we have

, (2.131)
les,-m(Q)

Vi Zj
||Kiu ! _Kl’uo”les,‘ﬂx(Q) = Ki_
U
where
zi=wj=wo  |[zjllg, =M, z; — 0 (2.132)

in E locally, M; does not depend on j. Denote y; = Ki(z;/u). We have to prove
that

||)’j||cl*sx‘+a(g) —0 (2.133)

as j — co. It follows from (2.128) that

P
yi=> > T(x)D'zj, (2.134)
k=11y|<Bi
where z; = (zj1,...,2jp),
1
Tiy(x) = > ch(x)b)WD",uDA‘;, (2.135)

0<|o|<Bik,|7|<Bik,IA|<Bik
by, are constants. From (2.134) we get
4
||)’j||cl-sx-+a(c) <M Z Z |\Tky||c1-6i+a((;)||Dyzjk||cl-~w+tx(c)’ (2.136)

k=11yl<i

where G = Qny1 or G=Qn, Qi = QN {lx] <N+1}, O = Qn {Ix] > N}.
For any ¢ > 0 we can find Ny such that for N > Nj we have

1yl cmseacany) < € (2.137)

for all j. This follows from the fact that
1
DF( Du(x D)‘—) —0 2.138
< plx) i) (2.138)

as |x| — o0, x € Q for any |o| >0, A and 8. Boundedness of the last norm in the
right-hand side of (2.136) follows from (2.132).
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From (2.132), (2.136), and (2.137) with G = Q4 we get (2.133). The theo-
rem is proved. 0
3. Properness of nonlinear operators

We consider general nonlinear elliptic operators
Fi(x,DPruy,...,DPru,) =0, i=1,...,p,x€Q, (3.1)
with nonlinear boundary operators
Gj(x,DV'uy,...,DVuy) =0, j=1,..,1 x€d0, (3.2)

in an unbounded domain Q € R”. Here DP#uy is a vector with the compo-
nents D%uy = 0% u/0x]" - - - 9xy" where the multi-index a = (a,...,a,) takes
all values such that 0 < |a| = a; + -+ - + &, < ik, Pik are given integers. The
vectors DYy are defined similarly. The regularity of the functions F;, Gj, u =
(t1,...,up), and of the domain Q is determined by Biks Viks bk=1,...,p, j =
1,...,7 (see below).

In what follows we will use also the notations

F,‘(x,gb,‘u) = Fi(x,Dﬁ“ul,...,Dﬁ"Pup),

b (3.3)
Gj(x,Dju) = Gj(x, D""'uy,..., D' uy).
The corresponding linear operators are
p
i(v, 1) =Z S (oni) D, i=1,..,p, x€Q, (3.4)
k=1lal<f

p
B;(v,¢;) =Z Z @ (60) D%, j=1,...,1, x€0Q, (3.5)

where
« OF; (%, 7 « 9G;(x, )
ag (x,n;) = ( ‘x” ), jk(x, Gi) = %, (3.6)
ik ik

ni € R™ and {j € R™ are the vectors with the components 7 and (7, respec-
tively, ordered in the same way as the derivatives in (3.1) and (3.2).

The system (3.1) and (3.2) is called elliptic if the corresponding system (3.4)
and (3.5) is elliptic in the sense of [1] for all values of parameters #;, {;. When
we mention the Shapiro-Lopatinskii condition for operators (3.1) and (3.2) we
mean the corresponding condition for operators (3.4) and (3.5) for any #; € R™
and {j € R™i.
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We suppose that F; (G;) satisfies the following conditions: for any positive
number M and for all multi-indices f and y: [B+y|l <I—-s;+2 (If+yl <I-
0i+2), |Bl <1—s; (1Bl <1~ ;) the derivatives DD} F;(x,7) (D{D}Gi(x,{)) as
functions of x € Q, y € R™, [yl <M (x € V, { € R™, [{| < M) satisfy Holder
condition in x uniformly in # ({) and Lipschitz condition in # ({) uniformly in
x (with constants possibly depending on M). We use the notations introduced
in Section 2.1.

The domain Q is supposed to be of class C"*+*%, where A = max(—s;, —0;,;)
and to satisty the conditions of Section 2.

Denote F = (Fi,...,Fp), G = (Gy,..., G,). Then (F, G) acts from Ej,, into E,.

In Section 3.2 we study properness of the operator (F, G). We preface the
study with a result on properness of operators in Banach spaces (Section 3.1).

3.1. Lemma on properness of operators in Banach spaces. Let Ey and E be
two Banach spaces. Suppose that a topology is introduced in Ey such that the
convergence in this topology, which we denote —, has the following property:
for any sequence {u,}, u, € Ey, bounded in Ej-norm, there is a subsequence
{un, } 2y, — g € Ep.

We consider the operator T(u) : D — E, where D C Ey. Suppose that this op-
erator is closed with respect to the convergence — in the following sense: if
T(ux) = fo, ux € D, fi € E and ux — up € Ey, fi — fo in E, then uy € D and
T(uo) = f()

LEmMMA 3.1. Suppose that D is a bounded closed set in Ey, the operator T(u) is
closed with respect to the convergence — and for any ug € D there exists a linear
bounded operator S(uo) : Ey — E, which has a closed range and finite-dimensional
kernel, such that for any sequence {vi}, vk € D, vk — ug € D, we have

IIT (uo) — T (vic) = S(uo) (10 — vi) ||z — O. (3.7)

Then T (u) is a proper operator.

Proof. Consider a sequence {u,} in D such that f, = T(u,) — fo in E. We have
to prove that there exists a subsequence of {1, } which is convergent in E;. Con-
sider a subsequence {u,,} such that u,, — uy € Ey. Then since T(u) is closed,
we have uy € D and T(uy) = fy. Denote v; = u,, — uyp and h; = S(up)v;. Then
i = [S(t0) (1, — o) — (T (1) — T(up))] + (T(ttn,) — T(tig)) — 0 in E. Suppose
that wy, ..., wy is a basis of Ker S(u9) and {¢;} is a biorthogonal sequence of func-
tionals in the dual to E, space. Denote E; = {u € Eo, {(@;,u) =0, i=1,...,k}.
Then we have

k
vi= D {ppviywi+vl, vl €Eu. (3.8)
j=1
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Denote by S the restriction of S(ug) on E;. Then S;v! = h;. By Banach theo-
rem, S; has bounded inverse. So v} is a convergent in Ey sequence. Since u,, € D
and so v; is a bounded sequence in Ey, it follows from (3.8) that we can find a
convergent subsequence of v;. The lemma is proved. O

3.2. Properness of elliptic operators. In this section, we prove that the oper-
ator T = (F,G) : Ey, — E, defined above satisfies the conditions of Lemma 3.1
under the assumptions formulated below. The convergence — is convergent in
the space Ep,(Qg) for & = 0 and any R > 0. Here Qg is the intersection of Q2 with
a ball Bg in R" with a radius R and the center at 0. It is clear that any bounded
sequence in E, has a — convergent subsequence.

As a domain D we take a closed ball in Eq, with the center at zero. Obviously
the operator T = (F, G) is closed with respect to the convergence —.

We construct below the operator S introduced in Lemma 3.1. Let F =
(F1,...,Fp), where F; is the operator (3.1), and let #; = (#i1,...,7in,) and 11? =
(70>, 1) be two vectors in R". Then by Taylor’s formula we can write

Fi(-x’ 7/1) x ’71 zFWU X, ;71)(’71] 771])
j=1

J (1-5) Z Fipon Gon? +s(ni=n?)) ds(ni — ) (i — 1)
k=1
(3.9)

Therefore, for any u, u® € Ey, we have
Fi(x,D;u) — Fi(x,Diu°) = A;j(u— 1u°, Diu°) + D; (u, u®), (3.10)

where A, is given by (3.4) and

D, (u, J 1-5) Z Fiy .y (x,v O+s(v—v ))ds(vj—v?)(vk—v,?), (3.11)
k=1
v(x) = Diu(x), v (x) = Dul(x).

LemMa 3.2. The convergence || ®;(u™, u®) ”cl’”*"‘(o) — 0 takes place if u™ — u® and
(d
|t || gy, is bounded.

Proof. Tt is sufficient to prove that

||D iv; Vk(X,V +S( VO))(V;n_V?)(V}T_Vk ||C0’ —0 (312)
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for |B| < I—s;. Here v"(x) = D;u™(x). We will prove that

IDPE, (690 +5(v" = V)|l oy <M, 1Bl <=3 (3.13)
where M is a constant and
||Dﬁ((vj’-” D) =Dl — 0 1Bl <l—siasm — 0. (3.14)

We begin with (3.13). Let u™ = (u’l",...,ug‘). By assumption IIuZ’IICszM(Q) <
u
M, (k=1,...,p). (Here and below M with subscripts denotes constants inde-

pendent of u and v.) It follows that
||uz‘||cl+tk+a(0) < Mz. (315)

Indeed, denote w = puy". Then ||w cirgera(q) < My, uf' = (1/u)w, and (3.15) fol-
lows easily from the properties of the function p(x) since by (2.9), DF(1/u) is
bounded for any multi-index .

Obviously (3.15) implies

va”CFstﬂx(Q) SM3. (316)
Inequality (3.13) follows from this inequality and from the conditions of smooth-
ness of the functions F;.

Now we prove (3.14). Denote w/" = v//' — v?. Obviously Dﬁ(w;”w,'j"u) is a sum
of expressions of the form

D'w'D™wi'D°u = [uD'w}' | [uD*w}] i (inm) (3.17)

with constant coefficients, where y, 7, 0 are multi-indices, y + 7+ 0 < . The last
factor in (3.17) is bounded by virtue of (2.9). From the properties of the function
p we conclude that 1/y and D;(1/u) (i=1,...,n) tend to 0 as |x| — o, x € Q. So

s

Here Qy is the intersection of Q) with the ball |x| > R.
We prove next that

— 0 asR— oo. (3.18)
C¥(Qg)

|[uD? W

oy < M, (3.19)
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where |y| < I—s;. Denote yi* = u]' — u). Then w" has the form D? " with |o| <
si+tk. So DVW]m has the form D*? yi" with |0 +y| < [+ t. By the conditions of
the lemma IIy,Z”HCLHW(Q) < Ms, and (3.19) follows.

From (3.18) and (3.19) we obtain the convergence ||Dﬂ(W;nW;:l‘bl)”Ca(Q§) -0
as R — o0. So to prove (3.14) it is sufficient to verify that ||Dﬁ(w;”w,'(”/,¢) lcaap) — 0
for any R as m — oo. This follows from (3.17) and the fact that || ‘LlDﬂW;n”Ca(QR)
is bounded and IIyDﬂw]'-”IIC(QR) — 0 as m — oo for |B| <I—s; since u™ — uP.
Therefore, the Holder norm of the product of the first two factors in the right-
hand side of (3.17) converges to zero. The lemma is proved. O

Lemma 3.2 implies the convergence

Fi(x,D;u™) — Fi(x,D;u°) — A; (™ — 1°, Diu°) || 4550 0 (3.20)
c

O

if u™ — 1% and [|u™|g,,, is bounded.
Similarly, we have for the operators Gj(x,@?u(x)) (j=1,...,r):

||G; (x,@?u’”) - G;j (x,@b?uo) - Bj(u™ - uo,@?uo) ||Cifaj+a(am —0 (3.21)

if u™ — u° and [[u™ ||, is bounded.
Consider the operator

S(uo)u = (A1 (1, D1ug), ..., Ap (1, Dpuo),

(3.22)
Bi (1, 9%uo), ..., B, (1, %%ug)) : Eoyy — E,..

We are interested in limiting operators for S(u) in the sense of the previous
section. We consider also the operator

Sou = (A1(14,0),...,Ap(4,0),B1(4,0),...,B,(11,0)) : Epy — Ey, (3.23)

which does not depend on wuy.
LEmMA 3.3. For any ug € Eq, the limiting operators for S(ug) and Sy coincide.

Proof. Consider first the operator A;(u;#;) defined by (3.4). Since ug € Eq, then
‘uDﬁuok(x) € C*(Q) for |B| < I+ tx. So uDiuy € C*(Q) and therefore

Do) < - o, (3.24)
p(x)
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Let [x™] — o0, x™ € Q. Then |x + x™| — oo for all x € Bg. So there exists m, such
that for all m > my and all x € Q4 N Bg, the inequality |Z;uy(x +x™)| < 1 holds.
Here Q. is a limiting domain which corresponds to the sequence x™.

Denote flf (x, ;) = OF;(x, 11,-)/811’,3 . It follows from the properties of the func-
tion F; that for m > my we have

|f£(x+x’”,0) —ﬁf(x+x’”,9b,-uo(x+x’”)) |
KM (3.25)

SK|@,‘MQ(X+X )| S[m—'o

as |x™| — oo, x € Bg. Therefore, if one of the functions
fif(x+x'”,0), fif(x+x'”,§b,-u0(x+x’”)) (3.26)

has a limit as |x™| — oo, then the same is true for another one and the limits
coincide. Thus the lemma is proved for the operator (3.4). The proof is similar
for the operator (3.5). The lemma is proved. O

THEOREM 3.4. Suppose that the system of operators (3.1) is uniformly elliptic and
for the system of operators (3.1) and (3.2) Shapiro-Lopatinskii conditions are satis-
fied. Assume further that all the limiting operators for the operator Sy satisfy Con-
dition NS. Then the operator (F, G) : Eo,, — E, is proper.

Proof. We use Lemma 3.1 for the operator T = (F, G). For any ug € Eq, we take

S(uo) = (Al(uO)gbluO))--~)Ap(u(),gbpu0),

(3.27)
B (uo,@?uo),. . .,B,(uo,@fuo)) ZE(),‘,A i E’u.
From (3.20) and (3.21) we obtain
T (uo) = T (™) = S(uo) (o — u™)[5, — 0 (3.28)

if u™ — ug and ||u™|| Eo, is bounded. If all limiting operators for Sy satisfy Condi-
tion NS, then according to Lemma 3.3 the same is true for all limiting operators
for S(ug) for any ugy € Eo,. The results of the previous section imply that S(u)
has a closed range and a finite-dimensional kernel. The theorem is proved. O

Remark 3.5. Functions from the weighted space E, tend to zero at infinity. If
we look for solutions, which are not zero at infinity, we can represent them in
the form u + v, where y is a given function with a needed behavior at infinity,
and u belongs to Eq,. (See, for example, [30] where such reduction is done for
travelling waves.)
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3.3. Operators depending on parameter. Consider an operator T'(u,t) : D X
[0,1] — E, D C Ey depending on parameter t € [0,1]. We suppose here as in
Section 3.1 that Ey and E are arbitrary Banach spaces. We will obtain conditions
of its properness with respect to both variables # and .
First of all, we modify the definition of closed operators given in Section 3.1.
Let T(ug, tx) = fi, tx — to, ux € D, fx € E, ux — up € Ey, fx — fo in E, then
up € D and T (uo, to) = fo.

LEMMA 3.6. Suppose that D is a bounded set in Ey, the operator T(u,t) is closed,
and for any uy € D there exists a linear bounded operator S(uy) : Ey — E, which
has a closed range and a finite-dimensional kernel, such that for any sequence {vi},
Vi € D, vk — ug € D and t; — ty, we have

|IT (o, t0) — T'(vi> tk) — S(uo) (o — vi) ||z — 0. (3.29)

Then T (u,t) is a proper operator.

The proof of the lemma remains the same as above.

Suppose now that the operator T'(u, t) satisfies the conditions of Lemma 3.1
for any t € [0, 1] fixed, and it depends on  continuously in the operator norm,
that is,

[|T(ut)— T(uto)l|lp <c(t.ty), VYueD, (3.30)
where ¢(t,ty) — 0 as t — to. Then

1T (uo,to) = T (v tr) — S(uo) (tio — vie) ||
< ||T (o, to) — T (vi, to) — S(uo) (t0 — vi) || (3.31)
+||T(Vk,to) —T(Vk,tk)HE.

Therefore, if the conditions of Lemma 3.1 are satisfied for each ¢ fixed and the
operator depends continuously on parameter, then Lemma 3.6 holds.

On the other hand, if the operator T'(y, ) is closed in the sense of Section 3.1
for each t fixed, and if it depends continuously on parameter, then it is also closed
in the sense of the definition given in this section.

Thus, under the conditions of Section 3.2, elliptic operators depending con-
tinuously on parameter are proper with respect to two variables.

4. Topological degree

In this section, we construct a topological degree for a class of operators in Ba-
nach spaces. We recall the definition of a topological degree (see, e.g., [18, 20]).
Let Ey and E be two Banach spaces. Suppose we are given a class F of operators
acting from E to E and a class H of homotopies, that is, the mappings

Ar(u):Egx[0,1] —E, 7€[0,1], u€Ey (4.1)
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such that A;(u) € F for any 7 € [0, 1]. Assume, moreover, that for any bounded
open set D C Ey and any operator A € F such that

A(u)#0, ueoD (4.2)

(0D denotes the boundary of D), there is an integer y(A, D) satisfying the fol-
lowing conditions.
(i) Homotopy invariance. Let A, (u) € H and

A (u)#0, ueoD, T][0,1]. (4.3)
Then
V(A0>D) = Y(AI:D) (44)

(ii) Additivity. Let D C E, be an arbitrary bounded open set in Ey, and let
Dy, D, C D be open sets such that D; N D, = &. Suppose that A € F and

A(u) +0, uec D\ (D1 U Dz). (4.5)
Then
Y(A,D) = y(A,D1) +y(A, D). (4.6)

(iii) Normalization. There exists a bounded linear operator J : Ey — E with a
bounded inverse defined on all of E such that for any bounded open set D C E
with 0 € D,

y(U,D) = 1. (4.7)

The integer y(A, D) is called topological degree.

In Section 4.1, we study orientation of linear operators used for construction
of the topological degree. In Section 4.2, topological degree is constructed for
a class of operators. It contains in particular elliptic operators, which are Fred-
holm, proper, and for which the Fréchet differentials satisfy some spectral prop-
erties (Section 4.3). Fredholm property and properness of elliptic operators are
discussed in the previous sections. The needed spectral properties follow in par-
ticular from the sectoriality of elliptic operators (see [13, 17] and the references
therein).

4.1. Orientation of operators. Let Ey, E1, and E, be Banach spaces. We suppose
that Ey C E,. This means that if u € Ey, then u € E, and ||ullg, < Kllullg,, where
K does not depend on u. Denote E = E; X E,. We consider linear operators
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Ay :Ey—E;, Ay Ey — E, A= (A, Az) : Ey — E, and the following class of op-
erators: class O is a class of bounded operators A : Ey — E satisfying the following
conditions:

(i) operator (A} + AL A,) : Ey — E is Fredholm with index zero for all A > 0,
(ii) equation A u =0, A,u = 0 (u € Ey) has only zero solution,
(iii) there exists Ay = Ag(A) such that the equation

(A1+AI)M=0, Au=0 (uEE()) (4.8)

has only zero solution for all A > Ay. Here I is the identity operator in Ey.

ProposiTION 4.1. Let the operator A = (A, A;) belong to class O. Then the eigen-
value problem

Au+du=0, Au=0 (u€ck) (4.9)

has only finite number of positive eigenvalues A. Each of them has a finite multi-
plicity.

Remark 4.2. Instead of the eigenvalue problem (4.9) we can consider the eigen-
value problem

Al,zu +Au=0, uec Eo», (4.10)

where Ej, is the space of all u € E such that Au =0, and A, is the restriction
of A; on the space Ey,. By multiplicity of A in (4.9) we mean the multiplicity of
Ain (4.10).

Proof of Proposition 4.1. Since A € O, the operator A;; + Al is Fredholm with
index zero for all A = 0 and invertible for A = 0 and A > Ay. The proposition
follows from known properties of Fredholm operators (see [14]). O

Definition 4.3. The number
o(A) = (-1), (4.11)

where v is the sum of multiplicities of all positive eigenvalues of problem (4.9), is
called orientation of the operator A. Operators A belonging to class O are called
orientable.

Definition 4.4. Operators A° € O and A! € O are said to be homotopic if there
exists an operator A(7) : Ep X [0,1] — E such that A(r) € O for all 7 € [0,1],
A(71) is continuous in the operator norm with respect to 7, 1o(A(7)) is bounded,
and

A(0) = A°, A(1) = AL (4.12)
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TuEOREM 4.5. If A® and A are homotopic, then
0(A%) =o(AY). (4.13)
Proof. Let 15 € [0, 1]. It is sufficient to prove that
0(A(1)) = 0(A(70)) (4.14)

for 7 in some neighborhood of 7j. Indeed, covering the interval [0, 1] by such
neighborhoods and taking a finite subcovering we get (4.13).
To prove (4.14) consider the eigenvalue problems

Al(To)u‘f'/\M:O, Az(To)MZO, u € Ey, (415)
A()u+Au=0, Ay(t)u=0, u€E,. (4.16)

We should prove that for 7 close to 7y the sum of multiplicities of positive
eigenvalues A of problems (4.15) and (4.16) coincide modulo 2. It is convenient
to consider the problem

Al(ro)u+Aiu=0, Ayt)u=0, u€ckE (4.17)

and to compare (4.15) and (4.16) with (4.17).
Consider first problems (4.15) and (4.17). Consider also the operators A1 (7o)
and A1, (1), the restrictions of A;(7o) on the spaces

Eo,z(‘l’o) = {MZUEE(), Az(To)MZO}, (4.18)
Eo2(1) = {u:u € Ey, Ay(t)u =0}, (4.19)

respectively. By (i) and (ii) of the definition of class O, A}, (1) is invertible.

It is easy to see that for 7 sufficiently close to 1y, the operator A;,(7) is also
invertible and has uniformly bounded inverse. Indeed, denote K(7) = (A, (7o),
Ay (1)) : Ey — E. Obviously [|K(7) — K(7o)Il < l|A2(7) — A2(70)ll. Since K (1) is
invertible, we conclude that if 7 is sufficiently close to 7y, then K(7) has uni-
formly bounded inverse. Consider the equation A;,(7)u = f, u € Eg»(7) or
Ai(to)u = f, Ay(1)u =0, u € Ey, f € E;. Since K(7) is invertible, this equation
has a unique solution for any f € E;. So A;,(7) is invertible and ||A£%(T)|| <
1K= (7))l

Denote

J = A5 (1)A12(70) : Eo2(10) — Eoa(7). (4.20)
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Problems (4.15) and (4.17) can be written as

A1,2(T())V+AV=O, VEE(),Q(T()), (4.21)
Al,z(T)u +Au=0, wuec E0,2(T). (4.22)

Letu=Jv,v € Eg»(10), u € Egp(7). Then from (4.22)

%V'l‘S]V:O, VEEo,z(T()), (4.23)

where S; = ]_IAI)%(T)] = Ai%(To)Ai%(T)Am(TO). We have from (4.21)

1
XV +Sv=0, ve Eo,z(‘[’o), (424)

where Sy = A7} (19).
We will prove that for any € > 0, there exists § > 0 such that

[|S1 = Sol| <€ if |[T—70] <. (4.25)
Consider the problems
Ai(t)u=f, Ax(to)u=0, uck, f€E, (4.26)
Ai(t)m = f, Ay(T)uy =0, uy €Ey, fEE (4.27)
or
Ana(to)u=f, Ap(t)ur=f, u€Ey(r), u1 € Eop(1). (4.28)

Let B = A,(19) — A»(7). Denote w = u — u;. Then from (4.26) and (4.27)
A (tg)w=0, Ay (19)w = —Buj. (4.29)
We have from (4.28)
A (to)w=0, Az (mo)w = —BA[3 (1) f. (4.30)
Denote

L= (Ai(1),A2(19)) : Ey — E. (4.31)
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Then (4.30) implies

lwlle, < 1L BITALSINf N, - (4.32)
By (4.28) we have
1472 (70) £ = AT () fllg, < IL7HNBIATI 1L, - (4.33)
Therefore,
1473 (70) = ATz (D] < [IL7H[IBI|AT2 (D] (4.34)

Since A»(7) — A»(19) as T — 7 in the operator norm, we get [|B|| — 0 as 7 —
Ty, and from (4.34) we obtain (4.25).

Using (4.25) we prove that if 7 is sufficiently close to 79, then the sum of mul-
tiplicities of the negative eigenvalues of the operator S; coincides modulo 2 with
the sum of multiplicities of the negative eigenvalues of the operator Sy. Indeed,
taking into account that ||S || and Ao(A(7)) are uniformly bounded, we conclude
that there exists an interval [a, f], « < § < 0, such that all negative eigenvalues of
the operators S; and Sy lie in this interval. Let I' be a rectifiable contour in the
A-plane which contains the interval [«, 8] and such that all points inside this
contour, except for negative eigenvalues of the operator Sy, are regular points of
this operator. From the known results on root spaces (see [14]), it follows that
the sum of multiplicities of all eigenvalues of S, lying inside I coincides with the
sum of the multiplicities of the negative eigenvalues of Sy if § in (4.25) is suffi-
ciently small. Therefore, the sum of multiplicities of negative eigenvalues of S,
and §; coincide modulo 2. It follows that the sum of the multiplicities of positive
eigenvalues of problems (4.21) and (4.22), and consequently of problems (4.15)
and (4.17) coincide modulo 2.

We obtain now the same results for problems (4.16) and (4.17). Denote by
B(19) and B(t) the restrictions of A;(1y) and A;(r) on the space Ey,(1) (see
(4.19)), respectively. Then obviously

|IB(7) = B(m0)|| = [|A(7) — A(70)|| — 0O (4.35)

as T — Tp. By the same arguments that we used for the operators Sy and S; above
we prove that the sum of multiplicities of the negative eigenvalues of the opera-
tors B(t) and B(1) coincide modulo 2. The theorem is proved. O

Remark 4.6. The requirement Ao(A(7)) is bounded in Definition 4.4 can be
omitted if we replace (iii) in class O by the following:

(iiis ) There exists Ay = Ao(A) such that the operator (A, +1IA, A;) : Eg — E has
inverse for A > Ay which is uniformly bounded.
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Indeed, denote A(T,A) = (A(7) + IA, A»(7)). Let 79 € [0,1]. Then A(T,A) =
A(19,A) + B(1), where B(t) = A(t) — A(1p). For A > Ao(A(7g)) we have

A(1,A) = A(10,A) [T+ A7 (10,A) B(1)]. (4.36)

Since ||B(7)]| — 0 as T — 19, we can take §(1y) > 0 such that [|[A~(19,1)B(7)]| <
1/2 forall A > Ag(A(70)), |T — 70| < 6(70). So for these values of 7 and A the opera-
tor A(7,A) has a uniformly bounded inverse. Taking the corresponding covering
of the interval [0, 1] and choosing a finite subcovering, we obtain that Ao(A(7))
is bounded for T € [0,1].

Class O with the property (iiix) instead of (iii) will be used in the construc-
tion of the topological degree.

4.2. Topological degree for Fredholm operators. Let Ey, E;, E;, and E = E; X
E, be the same spaces as in Section 4.1, and let G C Ej be an open bounded set.
We consider the following classes of linear (®) and nonlinear (F) operators.

Class O is a class of bounded linear operators A = (A3, A;) : Ey — E satisfying
the following conditions:

(i) the operator (A + I\, Ay) : Ey — E is Fredholm for all A > 0,
(ii) there exists Ay = Ag(A) such that operators (A, +IA, A;) : Eg — E have
inverse which are uniformly bounded for all A > A,.

Class F is a class of proper operators f € C'(G,E) such that for any x € G the
Fréchet derivative f'(x) belongs to ®.

We introduce also the following class of homotopies.

Class H is a class of proper operators f(x,t) € C'(G x [0, 1], E) which for any
t € [0, 1] belong to class F.

Two operators fy(x): G — E and fi(x) : G — E are said to be homotopic if
there exists f(x,t) € H such that

Jolx) = f(x,0),  filx) = f(x1). (4.37)

In this section, we construct a topological degree for the classes F and H. In
what follows D denote an open set such that D C G.
Leta € E, f € C/(GE),

fx)#a (xedD), (4.38)
where 0D is the boundary of D. Suppose that the equation

f(x)=a (xeD) (4.39)
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has finite number of solutions x,...,x, and f'(xx) (k = 1,...,m) are invertible
operators belonging to the class ®@. Then the orientation of these operators is
defined. We will use the following notation:

y(f.Dsa) = S ol (x1)). (4.40)
k=1

If (4.39) does not have solutions, it is supposed that y( f, D;a) = 0.

LemMma 4.7. Let f(x,t) € H, a € E be a regular value of f(-,0) and f(-,1). Sup-
pose that

f(x,t)#a (xe€dD, te]0,1]). (4.41)
Then

y(f(-,0),D;a) = y(f(-,1),D;a). (4.42)

Proof. The main part of the proof of the lemma is done under the assumption
that a is a regular value of the homotopy under consideration. Since this is not
supposed in the formulation of the lemma, we replace f(x, t) by a close function
g(x,t) for which a is a regular value and

y(g(-,0),Dsa) = y(f(+,0),D;a), (4.43)
y(g(-,1),Dsa) =y(f(-,1),D;a) (4.44)

(see [23]). Then we prove that

y(g(+,0),Dsa) =y(g(+, 1), D;a). (4.45)

To construct the function g(x,t), we use the following result (see [23]). For
any 77 > 0 an operator h € C'(G x [0, 1] x [0, 1], E) with the following properties
can be constructed:

() Ih(-,7) = fllGx[0,1) <7 forany T € [0,1],
(ii) h is proper,
(iii) for T € [0, 1], h(-, T) is Fredholm of index 1,
(iv) h(-,0) = f and a is a regular value of h(-, 1).

Here we use the notation || f |[1,gxj0,1] = sup | f (x, t) | +sup || f' (x, )|l for f €
CY(G x [0,1],E) (the supremum is taken over (x,t) € Gx [0,1] and f' is the
Fréchet derivative of f).

We can put now g(x,t) = h(x,t,1), x € G, t € [0,1]. From (4.41) it follows
that # > 0 can be taken such that

gx,t)#a (xe€dD, te0,1]). (4.46)
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We will prove that for a proper choice of 7 > 0 equality (4.43) holds. Since a is
a regular value of f(x,0), f(x,0) # a, x € 0D and f(x,0) is a proper operator, it
follows that the equation

f(x0)=a, xe€D, (4.47)

has finite number of solutions.
If (4.47) does not have solutions, then taking # sufficiently small we conclude
that the equation

g(x,0)=a, xe€D, (4.48)

does not have solutions either. In this case both parts of equality (4.43) are equal
0.

Suppose that (4.47) has solutions. We denote them by x,...,x,,. Let Bx (k =
1,...,m) be open balls with centers at x; and radius r. We suppose that r is taken
such that the closures of the balls are disjoint and belong to D. If 5 > 0 is taken
sufficiently small, then (4.48) has exactly m solutions and moreover the equa-
tion g(x,0) = a, x € B has one and only one solution (k = 1,...,m) (see [23]).
Denote this solution by &.

Taking into account that f;(xx,0) belongs to ®@ and that it is invertible, it is
easy to prove, for a proper choice of r and #, that g;(&,0) also belongs to @
and is invertible. So the orientation of this operator is defined. Moreover using
Theorem 4.5 to the homotopy (1 — 7) f{ (xk,0) + 7¢:(&, 0), T € [0, 1] we obtain

0(g:(&.0)) = o(f; (xx,0)) (4.49)

and (4.43) follows from this. Decreasing #, if necessary, we obtain (4.44) in the
same way.
We prove now (4.45). If both of the equations

g(x,0)=a, g(x,1)=a (xeD) (4.50)

have no solutions, then (4.45) is true, both parts of the equality are equal 0.

Suppose that at least one of (4.50) has a solution. Then the set S = g 1(a) N
D x [0,1] is not empty. Since a is a regular value of g, g~ (a) is a one-dimensional
submanifold of D x [0,1]. The set S is compact since the map is proper. Because
of (4.46) the set S cannot have joint points with the set 9D X [0, 1]. Suppose that
the equation g(x,0) = a has m solutions (m >0) : &y,..., &,

g(fk:o) =a (k: 1,...,1’}’1). (451)
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We denote by i the connected component of S which contains the point (&, 0).
The set Ix is homeomorphic to a closed interval A = [0, 1]. We denote the end-
points of Iy by Py = (&, 0) and P; and suppose that Py corresponds to the point
0OinAand P; to 1.

Denote y = (x,t) (x € G, t € [0,1]). We introduce local coordinates on Ix by
finite number of sets { U;} such that each of them is homeomorphic to an open or
half-open interval A;. Moreover, we can suppose that U; is given by the equation

y=y(s) (seh) (4.52)
and that there exists a derivative in the norm || y|| = |[x]| + [¢]. We have g(y(s)) =
a and therefore

g )y (s)=0. (4.53)

Since a is a regular value, then the range of the operator g’(y(s)) coincides
with E. Moreover, the index of g’(y(s)) is 1. So y'(s) is the only (up to a real
factor) solution of (4.53). We have y(s) = (x(s), (s)), where x(s) € Ep, t(s) is a
real valued function. It is easy to see that we can construct a functional ¢(s) € E§
which is continuous with respect to s € A; and

(¢(s),x'(s)) >0 i [|x'(s)[| >0, (4.54)

where (-, -) denotes the action of a functional.

We can find 7 in (i) such that for all y satisfying the equation g(y) = a, the op-
erators g;(y) belong to @, and A¢(g.(y)) are uniformly bounded. Indeed, denote
by T the set of all solutions of the equation f(y) = a. From (i) and properness
of f it follows that for any ¢ > 0 we can find # > 0 such that all solutions of the
equation g(y) = a belong to e-neighborhood of T. Since T is compact, ¢ and 7
can be found such that g;(y) has the mentioned property.

We represent g in the form g = (g1,42), where g : GX [0,1] = E;, &2 : G X
[0,1] — E,. Denote by g/.(x,t) and g/,(x,t) (i = 1,2) the partial derivatives in x
and t, respectively.

Consider the operators

2 (y(s)) g1 (y(s))

A1(5)2|: o) () } Ax(s) = (g2, (9(5)), &5 (y(s))),  (4.55)

where A;(s) : Eg X R — E; X R, Ay(s) : Eg X R — E;, R is the space of real num-
bers.
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Denote A(s) = (Ai(s),Az(s)) : Eo X R — (E; X R) X E,. It is easy to see that A
is a Fredholm operator of index zero.

The equation A(s)w = 0, w € Ep X R has only zero solution. Indeed, let w =
(u,v), u € Ey, v € R. Then

gyEw=0,  (¢(s),u) +t (s)v=0. (4.56)
It follows that
w = a(s)y'(s), thatis, u = a(s)x’(s), v = a(s)t' (s). (4.57)
So
(p(s), u) +1'()v = als) ({B(5), ' (5)) +17(s)). (4.58)

Since y'(s) # 0, then (¢(s),x"(s)) +1%(s) # 0, and therefore a(s) = 0.
Let ] be identity operator in E; X R. Then the operator

(A1(5)+/\],A2(S)) tEgXR — (E] XR) X E, (459)
is Fredholm operator of index 0 for A > 0.
Let s € A;. We will prove that there exists 1o > 0 such that for A > A the oper-

ator (A;(s) +AJ, A(s)) has uniformly bounded inverse in A. Indeed, consider the
equation

(A1(s)+AL A (s))w=vy, weE)XR, v € (E; XR) XE,. (4.60)

Let w = (w1, w2), ¥ = (Y1, Y2, ¥3), w1 € Eog, w2 €R, 1 € Ey, y» € R, y3 € E,.
We have

(gix HAD W1 +gw2 =y (4.61)
(g wr) + (' +1)wy =y (4.62)
DaW1 +8W2 = Y. (4.63)

We can find w; from (4.61) and (4.63) for A > Aq since (g1, + AL g3,) has uni-
formly bounded inverse, and substitute in (4.62). Obviously the equation so ob-
tained for w, can be solved for A > A if Ay is sufficiently large. It is clear that
the solution wy, w, of (4.61), (4.62), and (4.63) is unique and can be estimated
by a constant independent of A. So we have proved that (A,(s) + 1], A2(s)) has
uniformly bounded inverse for A > A,.
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Operator A(s) satisfies conditions formulated in the previous subsection. So
the orientation o(A(s)) of operator A(s) can be constructed, and it does not
depend on s. By standard arguments we can prove that the orientation does not
depend on the choice of covering of I.

Suppose now that for some s the operator g;(y(s)) : Ey — E is invertible and
t'(s) # 0. We will prove the following formula:

0(A(s)) = o(g:(y(s))) sgnt'(s). (4.64)

Consider the operator A(s;7) = (A1(s;7),A2(s;7)),0 <7 <1,

2 (y(s)) 181, (y(s))

Al(s;f)—[ 70(5) ¢ (s) ] A7) = (£ (¥(5)), 782, (¥ (5))).

(4.65)

As before we prove that this operator satisfies conditions of the previous subsec-
tion and, consequently,

0(A(s)) = 0(A(s;0)). (4.66)

Equality (4.64) easily follows from the definition of the orientation.

Consider now the operator A(s) at the endpoints of the line I : Py = (&.,0)
and P;. We begin with the point Py. The operator g (&, 0) is invertible. For small
t we can take s = t. Then t'(s) = 1.

There are two possibilities for the point P;:

Py =(§0) (I#k), (4.67)
Py =(x1), (4.68)

where (X, 1) is a solution of the equation
gx 1) =a. (4.69)

Consider first the case (4.67). We can take s = 1 — ¢ in the neighborhood of the
point P; (this corresponds to the positive orientation), and so t'(s) = —1. From
(4.64) it follows that

0(g:(Po)) = —o(g(P1)). (4.70)
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In the case (4.68) by the same reason we have

0(g:(Po)) = 0(gx(P1)). (4.71)

The proof of (4.45) follows directly from these equalities. The lemma is proved.
O

TueOREM 4.8. Let f € F and B be a ball ||lal| < r, a € E such that f(x) #a (x €
dD) for all a € B. Then for all regular values a € B, y(f, D;a) does not depend on a.

Proof. Let ap and a, be two regular values belonging to B. Denote a; = ag(1 —
t) +at, t € [0,1] and consider the operator f(x,t) = f(x) — a;. It is easy to
see that all conditions of Lemma 4.7 are satisfied for this operator if we set
a = 0 in this lemma. So equality (4.42) is valid. From (4.40) we get y( f, D;ay) =
y(f, Dsay). The theorem is proved. O

Using this theorem we can give the following definition of the topological

degree y(f, D).

Definition 4.9. Let f € F and f(x) # 0 (x € dD). Let B be a ball |lall <7 in E
such that f(x) # a (x € dD) for all a € B. Then

y(f.D) = y(f,D;a) (4.72)

for any regular value a € B.

Existence of regular values a € B of f follows from the Sard-Smale theorem
(see [24, 28]).

TaEOREM 4.10 (homotopy invariance). Let f(x,t) € H and (4.37) take place.
Suppose that

f(x,t)#0 (x€0D, t€0,1]) (4.73)
for an open set D, D C G. Then
y(fo,D) =y(f,D). (4.74)
Proof. We take a number € >0 so small that
fx,t)#a (x€dD, te[0,1]) (4.75)
for all a such that [lal| < e. Let a be a regular value for both fy(x) and fi(x).

Consider the function f(x,t) = f(x,t) — a. This function satisfies the conditions
of Lemma 4.7 if we set a = 0 in this lemma. So

y(f(-,0),D;0) = y(f(-,1),D;0) (4.76)
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and therefore

y(fo, Dsa) = y(fi,D;a). (4.77)

This implies (4.74). The theorem is proved. a

Additivity of the topological degree follows from (4.40). We suppose that the
class F is not empty. Let f € F,x € G, f'(x) = (A1,A;), where Ay : Eg — Ej, A;
Ey — E,. Suppose that A > 0 is so large that operator ] = (A1 + AL, Ay) : Ey — E is
invertible. Then the operator J can be taken as a normalization operator.

Thus the topological degree for the class F of operators and class H of homo-
topies is constructed.

4.3. Application to elliptic problems. In this section, we briefly discuss appli-
cation of the topological degree constructed above to elliptic problems. We recall
that we consider the class F of nonlinear operators, class ® of linearized opera-
tors, and class H of homotopies (Section 4.2).

Properness of nonlinear elliptic problems follows from Condition NS for the
linearized problems (Theorem 3.4). This condition means that all limiting prob-
lems have only zero solution. It is a necessary and sufficient condition.

Condition (i) of the definition of the class @ is satisfied in particular if the
essential spectrum of the linearized operator is in the right-half plane. Condition
(i) would follow from sectoriality (see [17]).

Sectoriality of elliptic operators is well known (see [13]). However, to our
knowledge it is not yet done for general elliptic problems in the sense of [2].
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