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We give an example of an unbounded, convex, and closed set C in the Hilbert
space I? with the following two properties: (i) C has the approximate fixed-point
property for nonexpansive mappings, (ii) C is not contained in a block for every
orthogonal basis in 2.

1. Introduction

In [6], Goebel and the author observed that some unbounded sets in Hilbert
spaces have the approximate fixed-point property for nonexpansive mappings.
Namely, they proved that every closed convex set C, which is contained in a
block, has the approximate fixed-point property for nonexpansive mappings
(AFPP). This result was extended by Ray [14] to all linearly bounded subsets
of l,, 1 < p < oo, Next, he proved that a closed convex subset C of a real Hilbert
space has the fixed-point property for nonexpansive mappings if and only if it
is bounded [15]. The first result of Ray [14] was generalized by Reich [16] (for
other results of this type see [1, 2,4, 5,7, 8,9, 10, 11, 12, 13, 17, 19]). Reich [16]
proved the following remarkable theorem: a closed, convex subset of a reflexive
Banach space has the AFPP if and only if it is linearly bounded. Next, Shafrir
[18] introduced the notion of a directionally bounded set. Using this concept,
he proved two important theorems [18].

(1) A convex subset C of a Banach space X has the AFPP if and only if C is
directionally bounded.

(2) For a Banach space X, the following two conditions are equivalent: (i) X
is reflexive; (ii) every closed, convex, and linearly bounded subset C of X is di-
rectionally bounded.

Therefore, the following statements are equivalent: (a) X is reflexive; (b) a
closed, convex subset C of X has the AFPP if and only if C is linearly bounded.
This result is strictly connected with the above-mentioned Reich theorem [16].
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Now, it is worth to note that, recently, there is a return to study the AFPP First,
Espinola and Kirk [3] published a paper about the AFPP in the product spaces.
They proved that the product space D = (M X C)« has the AFPP for nonexpan-
sive mappings whenever M is a metric space which has the AFPP for such map-
pings and C is a bounded, convex subset of a Banach space. Next, Wisnicki wrote
a paper about a common approximate fixed-point sequence for two commuting
nonexpansive mappings (see [20] for details). Therefore, the author decided to
publish an example of a set which is closely related to the AFPP Namely, it is
obvious that every blockable set in [ is linearly bounded, but there are linearly
bounded sets in > which are not contained in any block with respect to an ar-
bitrary basis. This was mentioned in [6] but never published. The aim of this
paper is to show the construction of such a set.

2. Preliminaries

Throughout this paper, 2 is real, (-, -) denotes the scalar product in I, and {e,,}
is the standard basis in 2.

For any nonempty set K C I?, the closed convex hull of K is denoted by
convK.

Let C be a nonempty subset of a Banach space X. A mapping T : C — C is said
to be nonexpansive if for each x, y € C,

IT(x) =TI < llx=yll. (2.1)

A convex subset C of a Banach space X has the approximate fixed-point prop-
erty (AFPP) if each nonexpansive T': C — C satisfies

inf {||x— T(x)||:x € C} =0. (2.2)

It is obvious that bounded convex sets always have the AFPP.
A set K C I? is said to be a block in the orthogonal basis {é,} if K is of the
form

K={xelP:|(xé)| <M, n=12,..}, (2.3)

where {M,,} is a sequence of positive reals.

The set C C I? is called a block set if there exists a block K C I such that C is
a subset of K.

A subset C of a Banach space X is linearly bounded if C has bounded inter-
sections with all lines in X.
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3. The construction

Let {k,},_, and {l,},-, be two sequences of positive reals such that
Z l—" +00, limk, = +oo.

For example, we may take k, = n and I, = n’ for n = 2,3,.... Next, we set
a, = k,e1 +1l,e,, b, = —k,e1 +1,e,,
for n=2,3,..., and finally,
C=convixel:an=2(x=a,vx=>b,)}.

THEOREM 3.1. If

[e) [e)
x= Z Cnen, = Cre + Z dul,e, = cre; +x
n=1 n=2

is an element of the set C, then
d, =0

forn=2,3,...,

>d, <1
n=2

and there exist sequences {a, } 5, and {f,} -, such that

Z onkn — Bukn),  owBn =0, ay+ Py = dn,

for n=2,3,.... Additionally, there exists a positive constant Mz such that

forn=2,3,....
Proof. Set

(3.1)

(3.4)

(3.6)

(3.7)

(3.8)
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Observe that, there exists a sequence {x]} ? , such that

X = li§nxj (3.10)
with
= i (otnjan + Pnjbn)
n=2
= iz Onjkn — Pujkn) €1 + Z &njln+ Bujln) en (3.11)
= i (etnjkn — Bujkn)er +xj € G,
n=2
where

[eY)

Z (Xn]l +ﬂn] €ns (xnj;ﬁnj > 0, Z (anj+ﬁnj) =1. (312)
n=2

Without loss of generality, we can assume that {«a,, J} ~, and {f,; };’° , tend to «,
and B, respectively, for n = 2,3,.... Hence, we have

[eY]

c1 = > (otnky — Pukn) +Hm D" (ctnjkn = Bujkn) (3.13)

n=2 T n=m+1

for each m > 2. On the other hand,

)

‘—hmx] —11 Z (0tnjln + Bujln) (3.14)

and, therefore, there exists a constant 0 < M < +oo such that
‘xnjln +ﬂnjlﬂ < M; (3.15)

for all # > 2 and j € N. This implies that

0< (ankn +ﬁnjkn = (Otnjln +ﬁnjln) k—n < M,’(&,
I, I,
K (3.16)
0 < (an+Pu)kn = dukn < M,—cl—",
for all j, n, and finally,
sup Z (“n] = Bujkn) | < sup Z (“njkn +/3)njkn)
] n=m+1 ] n=m+1 (317)

ZM_ z_"ﬂ,o,

n=m+1 n=m+1 ”
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Combining (3.13) with (3.17), we conclude that
= Z (ankn 7ﬁnkn)- (3.18)
n=2

This completes the proof. O

THEOREM 3.2. The set C is linearly bounded but is not a block set in any orthogonal
basis in I2.

Proof. First, we show that C is not a block set in any orthogonal basis,
{éi}:i1 = { zcinen} (3.19)
n=1 i=1
in 2. Indeed, there exists iy such that c;,; # 0. Since we have
max( | <an’ éio) |’ | <b"’ éio) | ) = kn | Cigl | +1 | Cign | (320)
for every n > 2, these two facts imply that
sup{|(x,é,)| :x € C} = +c0. (3.21)
Therefore, C is not a block set in {&;}7,.
Now, we prove that the set C is linearly bounded. We begin with the following
simple observation:

sup{|(x,e,) | :x€C} <1, (3.22)

forn=2,3,.... Next, if x € C is of the form

X = Z Cne, = cre1 + Z d.l,e, = cre; + %, (3.23)

n=1 n=2

then, by Theorem 3.1, we see that
d, >0 (3.24)

forn=2,3,...,

>dy <1, (3.25)
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and there exist sequences {a, },—, and {f3,},_, such that

= Z ((xnkl’l _ﬂnkn); ‘xmﬁn = O) ai’l +ﬁﬂ = dn: (326)
n=2

for n =2,3,.... Additionally, there exists a positive constant Mj such that

0 < (an+fu)kn = dnky, < MJ—C% (3.27)
for n=2,3,.... Hence, we obtain
ler] = | D (ks <> (an+Pu)kn <Mz > l—” (3.28)
n=2 n=2 n=2

Then, it follows from (3.22) and (3.28) that an intersection of C with any line
{y+tv:t € R}, where y,v € I> and v # 0, is either empty or bounded which
completes the proof. O
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