
A WEAK ERGODIC THEOREM FOR INFINITE
PRODUCTS OF LIPSCHITZIAN MAPPINGS

SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Received 16 May 2002

Let K be a bounded, closed, and convex subset of a Banach space. For a Lips-
chitzian self-mapping A of K , we denote by Lip(A) its Lipschitz constant. In this
paper, we establish a convergence property of infinite products of Lipschitzian
self-mappings of K . We consider the set of all sequences {At}∞t=1 of such self-
mappings with the property limsupt→∞Lip(At) ≤ 1. Endowing it with an ap-
propriate topology, we establish a weak ergodic theorem for the infinite products
corresponding to generic sequences in this space.

1. Introduction

The asymptotic behavior of infinite products of operators finds applications in
many areas of mathematics (see, e.g., [1, 2, 3, 4, 5, 8, 9, 10, 12, 14, 15, 16, 17, 18]
and the references therein). Given a bounded, closed, and convex subset K of a
Banach space and a sequence A = {At}∞t=1 of self-mappings of K, we are inter-
ested in the convergence properties of the sequence of products {An ···A1x}∞n=1,
where x ∈ K . In the special case of a constant sequence A, we are led to study the
asymptotic behavior of a single operator. In their seminal paper [7], De Blasi
and Myjak show that the powers of a generic nonexpansive self-mapping of K
do converge. Such an approach, when a certain property is investigated for a
whole space of operators and not just for a single operator, has already been suc-
cessfully applied in many areas of analysis. For instance, in a recent paper [15],
we have extended the De Blasi-Myjak result in several directions to certain se-
quence spaces of nonexpansive operators. One of these directions has involved
weak ergodicity in the sense of population biology (see [6, 11, 13, 15]). More
precisely, we have shown that for most (in the sense of Baire’s categories) se-
quences, the distances between the corresponding (random) infinite products
with different initial points tend to zero, uniformly on K . The main result of
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the present paper (Theorem 1.1 below) is an extension of [15, Theorem 2.2] to
Lipschitzian mappings which are not necessarily nonexpansive.

Assume that (X,‖ · ‖) is a Banach space and that K ⊂ X is a bounded, closed,
and convex subset of X .

For any A : K → X , define

Lip(A)= sup
{‖Ax−Ay‖/‖x− y‖ : x, y ∈ K and x �= y

}
. (1.1)

Denote by � the set of all sequences A= {At}∞t=1, where each At : K → K satisfies
Lip(At) <∞, t = 1,2, . . ., and

limsup
t→∞

Lip
(
At
)≤ 1. (1.2)

Set

d(K)= sup
{‖x− y‖ : x, y ∈ K

}
. (1.3)

For A= {At}∞t=1 and B= {Bt}∞t=1 in �, define

ds(A,B)= sup
{∥∥Atx−Btx

∥∥ : t = 1,2, . . . and x ∈ K
}

+ sup
{

Lip
(
At −Bt

)
: t = 1,2, . . .

}
.

(1.4)

Clearly, (�,ds) is a complete metric space. The metric ds induces in � a topology
which we call the strong topology. For each A = {At}∞t=1 and B = {Bt}∞t=1 in �,
we set

dw(A,B)= sup
{∥∥Atx−Btx

∥∥ : t = 1,2, . . . and x ∈ K
}
. (1.5)

Clearly, (�,dw) is also a metric space. The metric dw induces in � a topology
which we call the weak topology. In the sequel, for each A = {At}∞t=1 ∈�, we
denote

Lip(A)= sup
{

Lip
(
At
)

: t = 1,2, . . .
}
. (1.6)

Now we are ready to state our main result. Its proof will be given in Section 3.
Section 2 is devoted to two auxiliary assertions.

Theorem 1.1. There exists a set � ⊂� which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of � such
that for each C = {Ct}∞t=1 ∈� and each ε > 0, the following property holds: there
exist an open neighborhood � of C in � with the weak topology and a natural
number N , such that for each B= {Bt}∞t=1 ∈�, each x, y ∈ K , each integer n≥N ,
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and each injective mapping r : {1, . . . ,n} → {1,2, . . .},
∥∥Br(n) ···Br(1)x−Br(n) ···Br(1)y

∥∥ < ε. (1.7)

A theorem of this type is called a weak ergodic theorem in the population
biology literature [6, 11, 13, 15].

2. Two auxiliary assertions

Fix θ ∈ K . For each A= {At}∞t=1 ∈� and each γ ∈ (0,1), define Aγ = {Atγ}∞t=1 ∈
� by

Atγx = (1− γ)Atx+ γθ, x ∈ K, t = 1,2, . . . . (2.1)

It is easy to see that for each γ ∈ (0,1) and each A∈�,

dw
(

A,Aγ
)≤ γd(K),

ds
(

A,Aγ
)≤ γd(K) + γ sup

{
Lip
(
At
)

: t = 1,2, . . .
}
.

(2.2)

The second inequality in (2.2) implies that the set {Aγ : A ∈�, γ ∈ (0,1)} is
everywhere dense with respect to the strong topology.

Lemma 2.1. Let A= {At}∞t=1 ∈�, γ ∈ (0,1), and ε > 0. Then, there exists a nat-
ural number N ≥ 4 such that for each injective mapping r : {1, . . . ,N} → {1,2, . . .}
and each x, y ∈ K ,

∥∥Ar(N)γ ···Ar(1)γx−Ar(N)γ ···Ar(1)γ y
∥∥≤ ε. (2.3)

Proof. Let x, y ∈ K and let t be a natural number. It follows from (2.1) that

∥∥Atγx−Atγ y
∥∥≤ (1− γ)

∥∥Atx−At y
∥∥≤ (1− γ)Lip

(
At
)‖x− y‖. (2.4)

Therefore, for each natural number t,

Lip
(
Atγ
)≤ (1− γ)Lip

(
At
)
. (2.5)

Since limsupt→∞Lip(At) ≤ 1, it follows from (2.5) that there exists a natural
number n0 such that

Lip
(
Anγ

)≤
(

1− γ

2

)
, for each integer n≥ n0. (2.6)
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Choose an integer n1 ≥ 2 such that

(
Lip(A) + 1

)n0

(
1− γ

2

)n1

d(K)≤ ε. (2.7)

Set

N = n0 +n1 + 1. (2.8)

Let the mapping r : {1, . . . ,N} → {1,2, . . .} be injective. Define

E1 =
{
t ∈ {1, . . . ,N} : r(t) < n0

}
, E2 = {1, . . . ,N} \E1. (2.9)

Since the mapping r is injective, the cardinality

Card
(
E1
)
< n0. (2.10)

By (2.8), (2.9), and (2.10), we have

Card
(
E2
)
> n1. (2.11)

It follows from (1.3), (2.9), (2.6), (2.5), (1.6), (2.10), (2.11), and (2.7) that for
each x, y ∈ K ,

∥∥Ar(N)γ ···Ar(1)γx−Ar(N)γ ···Ar(1)γ y
∥∥

≤
N∏
i=1

Lip
(
Ar(i)γ

)‖x− y‖

≤
∏
i∈E1

Lip
(
Ar(i)γ

)∏
i∈E2

Lip
(
Ar(i)γ

)
d(K)

≤
(

1− γ

2

)Card(E2)

Lip(A)Card(E1)d(K)

≤
(

1− γ

2

)n1(
Lip(A) + 1

)n0d(K)≤ ε.

(2.12)

Lemma 2.1 is proved. �

Lemma 2.2. Let A= {At}∞t=1 ∈�, γ ∈ (0,1), and ε > 0. Then, there exist a natural
number N ≥ 4 and a neighborhood � of Aγ in the space � with the weak topol-
ogy such that for each B = {Bt}∞t=1 ∈�, each injective mapping r : {1, . . . ,N} →
{1,2, . . .}, and each x, y ∈ K ,

∥∥Br(N) ···Br(1)x−Br(N) ···Br(1)y
∥∥ < ε. (2.13)
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Proof. By Lemma 2.1, there exists a natural number N ≥ 4 such that for each
injective mapping r : {1, . . . ,N} → {1,2, . . .} and each x, y ∈ K ,

∥∥Ar(N)γ ···Ar(1)γx−Ar(N)γ ···Ar(1)γ y
∥∥≤ ε

8
. (2.14)

Choose a positive number

δ < 16−1ε
(

Lip(A) + 1
)−N

(2.15)

and set

�= {B∈� : dw
(

Aγ,B
)≤ δ

}
. (2.16)

Assume that B= {Bt}∞t=1 ∈� and that the mapping r : {1, . . . ,N} → {1,2, . . .} is
injective. We show, by induction, that for any integer n∈ [1,N] and any z ∈ K ,

∥∥Br(n) ···Br(1)z−Ar(n)γ ···Ar(1)γz
∥∥≤ δ

(
Lip(A) + 1

)n
. (2.17)

First we show that (2.17) holds for n= 1. Let z ∈ K . By (2.16) and the definition
of dw,

∥∥Br(1)z−Ar(1)γz
∥∥≤ δ, (2.18)

so that (2.17) is true for n = 1. Let z ∈ K , i ∈ {1, . . . ,N − 1}, and assume that
(2.17) holds for n= i. When combined with (1.1), (1.5), (2.5), and the definition
of dw, this inductive assumption implies that

∥∥Br(i+1)Br(i) ···Br(1)z−Ar(i+1)γAr(i)γ ···Ar(1)γz
∥∥

≤ ∥∥Br(i+1)Br(i) ···Br(1)z−Ar(i+1)γBr(i) ···Br(1)z
∥∥

+
∥∥Ar(i+1)γBr(i) ···Br(1)z−Ar(i+1)γAr(i)γ ···Ar(1)γz

∥∥
≤ Lip

(
Aγ
)∥∥Br(i) ···Br(1)z−Ar(i)γ ···Ar(1)γz

∥∥
+
∥∥Br(i+1)Br(i) ···Br(1)z−Ar(i+1)γBr(i) ···Br(1)z

∥∥
≤ Lip(A)δ

(
Lip(A) + 1

)i
+ δ ≤ δ

(
Lip(A) + 1

)i+1
.

(2.19)

Thus, (2.17) holds for n = i+ 1 too. Therefore, (2.17) holds for n = N and for
any z ∈ K . Combined with (2.15), this fact implies that

∥∥Br(N) ···Br(1)z−Ar(N)γ ···Ar(1)γz
∥∥≤ δ

(
Lip(A) + 1

)N
<
ε
16

. (2.20)
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Now let x, y ∈ K . It follows from (2.20) and the definition of N (see (2.14)) that
∥∥Br(N) ···Br(1)x−Br(N) ···Br(1)y

∥∥
≤ ∥∥Ar(N)γ ···Ar(1)γx−Ar(N)γ ···Ar(1)γ y

∥∥
+
∥∥Br(N) ···Br(1)x−Ar(N)γ ···Ar(1)γx

∥∥
+
∥∥Br(N) ···Br(1)y−Ar(N)γ ···Ar(1)γ y

∥∥
≤ 2ε

16
+
ε
8
< ε.

(2.21)

Lemma 2.2 is proved. �

3. Proof of Theorem 1.1

Let A = {At}∞t=1 ∈�, γ ∈ (0,1), and let n be a natural number. By Lemma 2.2,
there exist an open neighborhood �(A,γ,n) of Aγ in � with the weak topology
and a natural number N(A,γ,n) such that the following property holds:

(i) for each B= {Bt}∞t=1 ∈�(A,γ,n), each injective mapping

r :
{

1, . . . ,N(A,γ, i)
}−→ {1,2, . . .}, (3.1)

and each x, y ∈ K , we have

∥∥Br(N(A,γ,n)) ···Br(1)x−Br(N(A,γ,n)) ···Br(1)y
∥∥≤ 1

n
. (3.2)

Define

�=
∞⋂
n=1

∪{�(A,γ, i) : A∈�, γ ∈ (0,1), i≥ n
}
. (3.3)

Clearly, � is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of �.

Let C= {Ct}∞t=1 ∈� and ε > 0. We may assume that ε < 1. Choose a natural
number

q >
8
ε
. (3.4)

By the definition of �, there exist A ∈�, γ ∈ (0,1), and an integer i ≥ q such
that

C∈�(A,γ, i). (3.5)

Let B= {Bt}∞t=1 ∈�(A,γ, i). It follows from the definition of �(A,γ, i) and prop-
erty (i) that for each injective mapping r : {1, . . . ,N(A,γ, i)} → {1,2, . . .} and each
x, y ∈ K , we have

∥∥Br(N(A,γ,i)) ···Br(1)x−Br(N(A,γ,i)) ···Br(1)y
∥∥≤ 1

i
≤ 1

q
< ε. (3.6)
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This implies that for each x, y ∈ K , each integer n≥N(A,γ, i), and each injective
mapping r : {1, . . . ,n} → {1,2, . . .}, we have

∥∥Br(n) ···Br(1)x−Br(n) ···Br(1)y
∥∥ < ε. (3.7)

This completes the proof of Theorem 1.1.
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