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We establish a multiplicity result to an eigenvalue problem related to second-
order Hamiltonian systems. Under new assumptions, we prove the existence of
an open interval of positive eigenvalues in which the problem admits three dis-
tinct periodic solutions.

1. Introduction

In this paper, we consider the following eigenvalue problem:

ü−A(t)u= λ∇F(t,u) a.e. in [0,T],

u(T)−u(0)= u̇(T)− u̇(0)= 0,
(1.1)

with T > 0 and λ≥ 0.
Throughout the paper, we assume that A : [0,T] → RN ×RN is a mapping

into the space of N-order symmetric matrices with A ∈ L∞([0,T]) and there
exists µ > 0 such that

(
A(t)x,x

)≥ µ|x|2 (1.2)

for almost everywhere t ∈ [0,T] and each x ∈ RN . The function F : [0,T]×
RN → R is measurable in t, for each x ∈ RN , continuously differentiable in x,
for almost every t ∈ [0,T], and satisfying the following condition:

max
{∣∣F(t,x)

∣∣,∣∣∇F(t,x)
∣∣}≤ a

(|x|)b(t)
(
a.e. t ∈ [0,T], x ∈R

N
)

(1.3)

for some a ∈ C(R+,R+) and b ∈ L1(0,T ;R+). For convenience, we also assume
that F(t,0)≡ 0.
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Under such assumptions, the functionals

Φ(u)= 1
2

(∫ T

0

∣∣u̇(t)
∣∣2
dt+

∫ T

0

(
A(t)u(t),u(t)

)
dt

)
,

Ψ(u)=
∫ T

0
F
(
t,u(t)

)
dt

(1.4)

are continuously differentiable and weakly lower semicontinuous on H1
T (see

[11]), where

H1
T =

{
u : [0,T]−→R

N

∣∣∣∣∣u is absolutely continuous,
u(0)= u(T), u̇∈ L2

(
0,T ;RN

)
}

(1.5)

is a Hilbert space with norm defined by

‖u‖ =
(∫ T

0

∣∣u(t)
∣∣2
dt+

∫ T

0

∣∣u̇(t)
∣∣2
dt

)1/2

(1.6)

for all u∈H1
T . The critical points of the functional Φ+ λΨ are solutions of prob-

lem (1.1).
Then we define

k(A)= sup
u∈H1

T\{0}

‖u‖∞(∫ T
0

(
A(t)u(t),u(t)

)
dt+

∫ T
0

∣∣u̇(t)
∣∣2
dt
)1/2 , (1.7)

where ‖ · ‖∞ denotes the sup-norm in C0(0,T ;RN ).
Our main result, Theorem 2.1, gives conditions that assure the existence of an

open interval Λ⊂ [0,∞[ and real number ρ > 0 such that (1.1), for each λ∈ Λ,
admits at least three distinct solutions whose norms are less than ρ. Moreover,
we are able to give information about the location of such interval Λ since it
results that Λ⊆ [0,a], where a is a positive real number whose dependence from
data is given.

The proof of Theorem 2.1 is essentially based on a result due to Bonanno
[3], which specifies the three critical points theorem obtained by Ricceri [12,
Theorem 1], which has been widely applied to obtain multiplicity results for
some Dirichlet and Neumann problems [2, 4, 5, 6, 7, 9, 10, 12, 13].

Theorem 1.1 [3, Theorem 2.1]. Let X be a separable and reflexive real Banach
space and let Φ, J : X →R be two continuously Gâteaux differentiable functionals.
Assume that there exists x0 ∈ X such that Φ(x0) = J(x0) and Φ(x) ≥ 0 for every
x ∈ X , and that there exist x1 ∈ X and r > 0 such that

(i) r <Φ(x1);
(ii) supx∈Φ−1(]−∞,r]) J(x) < r(J(x1)/Φ(x1)).
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Further, put

a= hr

r
(
J
(
x1
)
/Φ
(
x1
))− supx∈Φ−1(]−∞,r]) J(x)

, h > 1, (1.8)

and assume that the functional Φ− λJ is sequentially weakly lower semicontinuous
and satisfies the Palais-Smale condition and

(iii) lim‖x‖→+∞(Φ(x)− λJ(x))= +∞ for every λ∈ [0,a].

Then there exist an open interval Λ⊆ [0,a] and a positive real number ρ such that,
for each λ∈Λ, the equation

Φ′(x)− λΨ′(x)= 0 (1.9)

admits at least three solutions in X whose norms are less than ρ.

The authors who gave the major contribution to the existence of three so-
lutions for second-order Hamiltonian systems are Tang and Wu [14, 15, 16].
Another interesting result on this topic has been recently obtained by Faraci in
[8].

The condition present in all the papers of Tang is as follows: there exist r > 0
and an integer k ≥ 0 such that

−1
2

(k+ 1)2w2|x|2 ≤ F(t,x)−F(t,0)≤−1
2
k2w2|x|2 (1.10)

for each |x| ≤ r and almost everywhere t ∈ [0,T], where w = 2π/T .
Tang, using condition (1.10) together with coercive assumption on F (weak-

ened in [16]) or in presence of a sublinear behavior of the nonlinearity, proved
that the problem

ü=∇F(t,u) a.e. in [0,T],

u(T)−u(0)= u̇(T)− u̇(0)= 0
(1.11)

admits three solutions.
Problem (1.1), with λ = 1, has been studied by Faraci [8] when F(t,x) =

b(t)V(x), with b ∈ L1(0,T ;R+) \ {0} and V ∈ C1(RN ).
We also cite the result recently obtained by Barletta and Livrea in [1], where

the authors deal with problem (1.1) when the nonlinearity is of the type
b(t)∇G(x).

Section 3 is dedicated to a comparison with some results cited above in order
to stress the novelty of our conditions. In particular, we give a simple example
which fits all the hypotheses of Proposition 3.1 but does not satisfy condition
(1.10) and conditions (2) and (3) of [8, Theorem 2.1].

2. Main result

In this section, we state and prove our main result.
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Theorem 2.1. Besides the hypotheses in the introduction, assume also that the
following conditions hold:

(i) there exist r > 0 and c ∈RN such that

∫ T

0

(
A(t)c,c

)
dt > r,

∫ T
0 F(t, c)dt∫ T

0

(
A(t)c,c

)
dt

<
1
r

∫ T

0
inf

|x|≤k(A)
√
r
F(t,x)dt;

(2.1)

(ii) put

a= hr

2
(∫ T

0 inf |x|≤k(A)
√
r F(t,x)dt− r

(∫ T
0 F(t, c)dt/

∫ T
0

(
A(t)c,c

)
dt
)) , (2.2)

with h > 1, and assume that there exist M > 0 and α ∈ L1(0,T ;R+), with
‖α‖L1 < 1/2k(A)2a, such that

F(t,x)≥−α(t)|x|2 (2.3)

for every x ∈RN , with |x| >M, and almost everywhere t ∈ [0,T].

Then there exist an open interval Λ⊂ [0,a] and a real number ρ > 0 such that,
for each λ ∈ Λ, problem (1.1) has at least three distinct solutions whose norms in
H1

T are less than ρ.

Proof. Our end is to apply Theorem 1.1 with X = H1
T and J = −Ψ, where the

functionals Φ and Ψ have been defined in the introduction.
Taking into account (ii), for each λ∈ [0,a] and u∈H1

T , one has

Φ(u) + λΨ(u)=Φ(u) + λ
∫
{t||u(t)|≤M}

F
(
t,u(t)

)
dt+ λ

∫
{t||u(t)|>M}

F
(
t,u(t)

)
dt

≥Φ(u)− a sup
|x|≤M

a
(|x|)

∫ T

0
b(t)dt− a

∫ T

0
α(t)

∣∣u(t)
∣∣2
dt

≥Φ(u)− a sup
|x|≤M

a
(|x|)

∫ T

0
b(t)dt− a‖α‖L1‖u‖2

∞

≤ (1− ak(A)2‖α‖L1

)
Φ(u)− a sup

|x|≤M
a
(|x|)

∫ T

0
b(t)dt.

(2.4)

Hence, for every λ∈ [0,a],

lim
‖u‖→+∞

Φ(u) + λΨ(u)= +∞. (2.5)
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Put u1(t)= c for every t ∈ [0,T]. We have Φ(0)=Ψ(0)= 0 and Φ(u1) > r/2.
Moreover, since

{
u∈H1

T |Φ(u)≤ r

2

}
⊆ {u∈H1

T | ‖u‖∞ ≤ k(A)
√
r
}

(2.6)

and by (2.3), it results that

inf
Φ−1(]0,r/2])

Ψ≥ inf
‖u‖∞≤k(A)

√
r
Ψ(u)≥

∫ T

0
inf

|x|≤k(A)
√
r
F(t,x)dt

> r

∫ T
0 F(t, c)dt∫ T

0

(
A(t)c,c

)
dt
= r

2
Ψ
(
u1
)

Φ
(
u1
) .

(2.7)

Finally, we observe that the Gâteaux derivative of Ψ is compact due to the
compact embedding of H1

T into C0(0,T ;RN ). The Gâteaux derivative of Φ ad-
mits a continuous inverse by [17, Theorem 26 A]. All the hypotheses of Theorem
1.1 hold, hence the thesis is its consequence. �

3. Some consequences

A consequence of Theorem 2.1 is the following proposition.

Proposition 3.1. Let a ∈ L1(0,T ;R+) \ {0} and G,H ∈ C1(RN ) with G(0) =
H(0)= 0. Assume that

liminf
|x|→+∞

G(x)
|x|2 ≥ 0, liminf

|x|→+∞
H(x)
|x|2 ≥ 0, (3.1)

and there exists c ∈RN \ {0} such that

G(c)

k(A)2
∫ T

0

(
A(t)c,c

)
dt

< liminf
|x|→0+

G(x)
|x|2 . (3.2)

Then, there exists δ > 0 such that, for every b ∈ L1(0,T ;R+) with
∫ T

0 b(t)dt < δ,
there exist an open interval Λ⊂ [0,+∞[ and a real number ρ > 0 so that, for every
λ∈Λ, the problem

ü−A(t)u= λ
(
a(t)∇G(u) + b(t)∇H(u)

)
a.e. in [0,T],

u(T)−u(0)= u̇(T)− u̇(0)= 0,
(3.3)

admits at least three distinct solutions whose norms are less than ρ.

Proof. We have

F(t,x)= a(t)G(x) + b(t)H(x). (3.4)



1042 Three solutions to second-order Hamiltonian systems

Fix ε > 0; there exists M > 0 such that, for each x ∈RN with |x| >M,

G(x)≥−ε|x|2, H(x)≥−ε|x|2. (3.5)

Hence, one has

F(t,x)≥−ε(a(t) + b(t)
)|x|2 (3.6)

for |x| >M and almost everywhere t ∈ [0,T]. Then, owing to the arbitrariness
of ε, condition (ii) is satisfied.

One has
∫ T

0 F(t, c)dt∫ T
0

(
A(t)c,c

)
dt
=

∫ T
0 a(t)dt∫ T

0

(
A(t)c,c

)
dt
G(c) +

∫ T
0 b(t)dt∫ T

0

(
A(t)c,c

)
dt
H(c). (3.7)

Moreover, we have

1
r

∫ T

0
inf

|x|≤k(A)
√
r
F(t,x)dt ≥ 1

r

(∫ T

0
a(t)dt

)
inf

|x|≤k(A)
√
r
G(x)

+
1
r

(∫ T

0
b(t)dt

)
inf

|x|≤k(A)
√
r
H(x)

(3.8)

for every r > 0. It is easily seen that there exists a sequence of positive real num-
bers {rn}n∈N decreasingly convergent to zero and such that

lim
n→∞

inf |x|≤k(A)
√
rn G(x)

k(A)2rn
≥ liminf

|x|→0+

G(x)
|x|2 . (3.9)

Hence, by hypothesis, it follows that

lim
n→∞

inf |x|≤k(A)
√
rn G(x)

rn
>

G(c)∫ T
0

(
A(t)c,c

)
dt
. (3.10)

So fix rn <
∫ T

0 (A(t)c,c)dt for which one has

inf |x|≤k(A)
√
rn G(x)

rn
>

G(c)∫ T
0

(
A(t)c,c

)
dt
, (3.11)

condition (ii) is satisfied when
∫ T

0 b(t)dt is small enough. �

Remark 3.2. Although the hypotheses of Proposition 3.1 do not allow us to give
a bound for a, it can be calculated in concrete applications as the proof implicitly
shows.

Now we want to make a comparison with some results cited in the intro-
duction. For the reader’s convenience, we cite the Faraci’s main theorem and,
subsequently, the one of Barletta and Livrea.
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Theorem 3.3 [8, Theorem 2.1]. Assume that

(1) there exist σ > 0 and u0 ∈RN with

∣∣u0
∣∣ <

√
σ∑

i, j

∥∥ai, j∥∥L∞(0,T)

T (3.12)

such that

V
(
u0
)= inf

|x|≤c1
√
σ
V(x), (3.13)

where c1 is the constant of the embedding of H1
T into C0(0,T ;RN );

(2) one has

liminf
|x|→+∞

V(x)
|x|2 >− 1

2c2
1‖b‖L1(0,T)

; (3.14)

(3) there exists u1 ∈RN such that

V
(
u0
)−V

(
u1
)
>

∑
i, j

∥∥ai, j∥∥L∞(0,T)T

2‖b‖L1(0,T)

∣∣u1
∣∣2
. (3.15)

Then the problem

ü−A(t)u= b(t)∇V(u) a.e. [0,T],

u(T)−u(0)= u̇(T)− u̇(0)= 0,
(3.16)

admits at least three solutions in H1
T .

Theorem 3.4 [1, Theorem 1]. Assume thatG(0)≥ 0 and that there exist a positive
constant d and c ∈RN such that

(a) |c| > d/k(A)
√
µT ;

(b) (max|x|≤d G(x))/d2 < (1/k(A)2T
∑

i, j ‖ai j‖∞)(G(c)/|c|2).

Put

λ∗ = pd2(
d2/k(A)2T

∑
i, j

∥∥ai j∥∥∞)(G(c)/|c|2)− k(A)2 max|x|≤d G(x)
(3.17)

with p > 1 and suppose that

(c) limsup|x|→+∞(G(x)/|x|2) < 1/2k(A)2λ∗.

Then, for every function b ∈ L1(0,T ;R+) \ {0}, there exist an open interval Λ ⊆
[0,λ∗/‖b‖L1 ] and a positive real number ρ such that for every λ∈Λ, the problem

ü=A(t)u− λb(t)∇G(u) a.e. in [0,T],

u(T)−u(0)= u̇(T)− u̇(0)= 0,
(3.18)

admits at least three solutions in H1
T whose norms are less than ρ.
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The last theorem may be obtained as a consequence of Theorem 2.1. In fact,
in our settings, it is F(t,x)=−b(t)(G(x)−G(0)). Then, taking into account that

µT|c|2 ≤
∫ T

0

(
A(t)c,c

)
dt ≤ T

∑
i, j

∥∥ai, j∥∥∞|c|2, (3.19)

it is easily seen that (a) and (b) imply condition (i) and (c) is equivalent to (ii).
Finally, we give the following simple application of Proposition 3.1.

Example 3.5. Consider the following eigenvalue problem:

üi−
∑
j

ai, j(t)uj = λ
[
a(t)

(
u3
i + 3u2

i

)
+ b(t)

]
eui , i= 1,2, . . . ,N a.e. in [0,T],

u(T)−u(0)= u̇(T)− u̇(0)= 0,
(3.20)

with λ ≥ 0, a,b ∈ L1(0,T ;R+) \ {0}, and ai, j(t) denoting the (i, j)-entry of an
N-order matrix A(t) satisfying (1.2).

The potential F is defined by

F(t,x)= a(t)
N∑
i=1

x3
i e

xi + b(t)

(∑
i

exi −N

)
, (3.21)

then G(x)=∑i x
3
i e

xi and H(x)=∑i e
xi −N .

It is easily seen that

liminf
|x|→+∞

G(x)
|x|2 ≥ 0, liminf

|x|→+∞
H(x)
|x|2 ≥ 0, (3.22)

lim
|x|→0+

G(x)
|x|2 = 0. (3.23)

Moreover G(c) < 0 for some c ∈RN \ {0}. So, all the hypotheses of Proposition
3.1 are satisfied without any other conditions on A(t) and a(t).

Condition (1.10) does not hold for this problem. In fact, in our case, the
function F of condition (1.10) is given by

F(t,x)= 1
2

(
A(t)x,x

)
+ λa(t)

N∑
i=1

x3
i e

xi + λb(t)

(∑
i

exi −N

)
. (3.24)

Hence (1.10) is not satisfied because F(t,x)/|x|2 is not bounded in any neigh-
borhood of the origin when λb(t) �= 0.
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Now suppose that b(t)= ba(t) with b ∈R+. Theorem 3.3 cannot be applied.
In fact

V(x)=
N∑
i=1

(
x3
i + b

)
exi −Nb, (3.25)

for every b ∈R+, has only one local minimum which is global.
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