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We give necessary and sufficient conditions for the existence of positive solu-
tions for sublinear Dirichlet periodic parabolic problems Lu= g(x, t,u) in Ω×R

(where Ω⊂RN is a smooth bounded domain) for a wide class of Carathéodory
functions g : Ω×R× [0,∞)→R satisfying some integrability and positivity con-
ditions.

1. Introduction

Let Ω be a smooth bounded domain in RN , N ≥ 2. For T > 0, 1 ≤ p ≤∞, and
1 ≤ q ≤∞, let Lp(Lq) be the Banach space of T-periodic functions f on Ω×R

(i.e., satisfying f (x, t)= f (x, t+T) a.e. (x, t)∈Ω×R) such that

‖ f ‖Lp(Lq) :=
∥∥∥∥∥ f (·, t)∥∥Lq(Ω)

∥∥∥
Lp(0,T)

<∞. (1.1)

Similarly, let L
p
T be the Banach space ofT-periodic functions f such that f |Ω×(0,T)

∈ Lp(Ω× (0,T)), equipped with the norm ‖ f ‖Lp
T

:= ‖ f |Ω×(0,T)‖Lp(Ω×(0,T)). Fi-

nally, let CT be the space of continuous and T-periodic functions on Ω×R pro-
vided with the L∞-norm.

For the whole paper, we fix v,s ∈ (1,∞] such that N/2v + 1/s < 1, s > 2. Let
{ai j} and {bj}, 1 ≤ i, j ≤ N , be two families of functions satisfying ai j ,b j ∈
L∞T and ai j = aj,i. Assume that

∑
ai j(x, t)ξiξ j ≥ α0|ξ|2 for some α0 > 0 and all

(x, t) ∈ Ω×R, ξ ∈ RN . Let A be the N ×N matrix whose i, j entry is ai, j , let
b = (b1, . . . ,bN ), let 0≤ c0 ∈ Ls(Lv), and let L be the parabolic operator given by

Lu= ut −div(A∇u) + 〈b,∇u〉+ c0u. (1.2)

Let W={u∈L2((0,T),H1
0 (Ω)) : ut∈L2((0,T),H−1(Ω))}. Given f ∈L1

T,loc(Ω
×R), we say that u is a (weak) solution of the Dirichlet periodic problem Lu= f
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in Ω×R, u= 0 on ∂Ω×R, if u is T-periodic, u|Ω×(0,T) ∈W , and∫
Ω×(0,T)

[
−u

∂h

∂t
+ 〈A∇u,∇h〉+ 〈b,∇u〉h+ c0uh

]
=
∫
Ω×(0,T)

f h (1.3)

for all h ∈ C∞c (Ω×R) (and so for all h ∈ L∞T such that h|Ω×(0,T) ∈ V0, where
V0 := L2((0,T),H1

0 (Ω))). For u ∈W , the inequality Lu ≥ f (resp., ≤) will be
understood in the same sense.

Let W̃ = {u∈ L2((0,T),H1(Ω)) : ut ∈ L2((0,T),H−1(Ω))}. Following [6], we
say that v is a supersolution of the above problem if v|Ω×(0,T) ∈ W̃ , vt ∈ L2((0,T),
H−1(Ω)) +L1+η(Ω× (0,T)) for η > 0 small enough, v|∂Ω×(0,T) ≥ 0, v(·,0)≥ v(·,
T) a.e. in Ω, and∫

Ω×(0,T)

[
− v

∂h

∂t
+ 〈A∇v,∇h〉+ 〈b,∇v〉h+ c0vh

]
≥
∫
Ω×(0,T)

f h (1.4)

for all 0 ≤ h ∈ C∞c (Ω× (0,T)) (and so for all h ∈ L∞T such that h|Ω×(0,T) ∈ V0

with V0 as above). A subsolution is similarly defined by reversing the above in-
equalities.

Let m∈ Ls(Lv) and let

P(m) :=
∫ T

0
esssupx∈Ωm(x, t)dt (1.5)

(with the value “+∞” allowed). For such m (cf. [8, Theorem 3.6]), P(m) > 0 is
necessary and sufficient for the existence of a positive principal eigenvalue for the
periodic parabolic Dirichlet problem with weight function m (i.e., an eigenvalue
with a positive T-periodic eigenfunction associated to the problem Lu= λmu in
Ω×R, u = 0 on ∂Ω×R). Moreover, this positive principal eigenvalue denoted
by λ1(L,m) (or λ1(m)), if exists, is unique.

We are interested in the existence of positive solutions for the semilinear pe-
riodic parabolic problem

Lu= g(x, t,u) in Ω×R,

u= 0 on ∂Ω×R,

uT-periodic,

(1.6)

where g is a given function on Ω×R× [0,∞).
In [9, Theorem 3.7], it is proved that

λ1

(
sup
ξ>0

g(·, ξ)
ξ

)
< 1 < λ1

(
inf
ξ>0

g(·, ξ)
ξ

)
(1.7)

is a necessary and sufficient condition for the existence of positive solutions in
CT for (1.6) provided that g satisfies ξ → g(x, t,ξ) ∈ C1[0,∞), ξ → g(x, t,ξ)/ξ
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nonincreasing in (0,∞), and some integrability and positivity conditions. In [10,
Theorem 3.1], with the same monotonicity and regularity assumptions, and as-
suming also some integrability conditions, it is proved that if either inf ξ>0(g(·,
ξ)/ξ)∈ Ls(Lv) and P(inf ξ>0(g(·, ξ)/ξ))≤ 0 or inf ξ>0(g(·, ξ)/ξ)≤ 0, then

λ1

(
sup
ξ>0

g(·, ξ)
ξ

)
< 1 (1.8)

is necessary and sufficient for the existence of a positive solution u∈ CT of (1.6).
Our aim in this paper is to prove, following a different approach, similar

results without monotonicity and C1-regularity assumptions on g (see The-
orems 3.1, 3.2, 3.3, and 3.4). Moreover, we will also cover some cases where
limξ→0+ (g(·, ξ)/ξ) =∞. These theorems will be obtained using the well-known
sub- and supersolutions method combined with some facts concerning linear
problems with weight.

In order to relate our results to others in the literature, we mention that, for
the case ξ → g(·, ξ)/ξ nonincreasing, similar results to Theorem 3.1 for elliptic
problems have been obtained, for example, in [4, 5, 13], assuming more regu-
larity in the function g. In the periodic parabolic case, there are also well-known
results if ξ → g(·, ξ)/ξ is concave and Hölder-continuous, and g(·,0) = 0 (see
[2, 3, 12] and the references therein).

On the other side, necessary and sufficient conditions for the existence of pos-
itive solutions for equations of type Lu = a(x)u− b(x)up, p > 1, b ≥ 0 (logistic
equation), are also known (see, e.g., [11, 12]). More general equations of the
form Lu = a(x)u− b(x) f (x,u), with b ≥ 0 and f superlinear, were studied, for
example, in [7] for f ∈ Cµ,1+µ(Ω× [0,∞)), f strictly increasing, and b > 0, and,
for the Laplacian, the case f = f (u) is treated in [1] assuming f ∈ C([0,∞)).
Theorem 3.2 generalizes the aforementioned results, while Theorems 3.3 and
3.4 also extend some well-known results, see, for example, [2, 3, 11, 12].

Some examples are also given at the end of the paper.

2. Preliminaries and auxiliary results

As usual, for ξ ∈ [0,∞) and u : Ω× R → [0,∞), we write g(ξ) and g(u) for
the functions (x, t)→ g(x, t,ξ) and (x, t)→ g(x, t,u(x, t)), (x, t) ∈Ω×R. We as-
sume, from now on, that g : Ω×R× [0,∞)→R is a Carathéodory function (i.e.,
(x, t)→ g(x, t,ξ) is measurable for all ξ ∈ [0,∞), and ξ → g(x, t,ξ) is continuous
in [0,∞) a.e. (x, t)∈Ω×R) such that supσ≥ξ(g(σ)/σ) and inf0<σ≤ξ(g(σ)/σ) are
measurable functions for all ξ > 0, and inf ξ>0(g(ξ)/ξ) �= supξ>0(g(ξ)/ξ), that is,
(1.6) is not a linear problem.

We start recalling some facts about periodic parabolic problems with weight.

Remark 2.1. (a) Let D = {m∈ Ls(Lv) : P(m) > 0}. Then D is open in Ls(Lv) and
the map m→ λ1(m) is continuous from D into R (cf. [8, Theorem 3.9]). Also,
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the following comparison principle holds: if m1,m2 ∈ Ls(Lv) and m1 ≤ m2 in
Ω×R, then λ1(m1) ≥ λ1(m2); and if, in addition, m1 < m2 in a set of positive
measure, then λ1(m1) > λ1(m2) (cf. [8, Remark 3.7]).

(b) For λ∈R and m∈ Ls(Lv), let µm(λ) be defined as the unique µ∈R such
that the Dirichlet periodic problem Lu = λmu + µm(λ)u in Ω×R has a posi-
tive solution u. We recall that µm(λ) is well defined and that the map (λ,m)→
µm(λ) is continuous from R×Ls(Lv) into R (cf. [9, Proposition 2.7]). Moreover,
µm(0) > 0, µm is concave and continuous, and a given λ∈R is a principal eigen-
value associated to the weight m if and only if µm(λ) = 0 (cf. [8, Lemma 3.2]).
Also, if λ1(m) exists, then for λ > 0, µm(λ) > 0 if and only if λ < λ1(m), and if
λ1(m) does not exist, µm(λ) > 0 for all λ > 0.

(c) Let m∈ Ls(Lv) such that P(m) > 0 and let mj be a sequence such that mj

converges to m in Ls(Lv). Then it follows from [9, Remark 2.5] that P(mj) > 0
for j large enough.

Remark 2.2. If u∈ L∞T is a positive solution of (1.6) and

inf
0<ξ≤M

(
g(ξ)
ξ

)
∈ Ls

(
Lv
)
,

sup
0<ξ≤M

(
g(ξ)
ξ

)
∈ Ls

(
Lv
)
,

(2.1)

for all M > 0, then u∈ CT and u(x, t) > 0 for all (x, t)∈Ω×R. Indeed, this fol-
lows from [9, Remark 2.2 and Corollary 2.12].

We introduce some additional notation. For (x, t,ξ)∈Ω×R× (0,∞), let

g(x, t,ξ)= ξ sup
0<ξ≤σ

(
g(x, t,σ)

σ

)
,

g(x, t,ξ)= ξ inf
0<σ≤ξ

(
g(x, t,σ)

σ

) (2.2)

(with the values “±∞” allowed). It is easy to check that if g(ξ) is finite for ξ ≤ ξ0,
then ξ → g(ξ) is continuous in (0, ξ0) a.e. in Ω×R, and that if g(ξ) is finite for
ξ0 ≤ ξ, then ξ → g(ξ) is continuous in (ξ0,∞) a.e. in Ω×R. We also set

m∞(x, t)= inf
ξ>0

(
g(x, t,ξ)

ξ

)
, m0(x, t)= sup

ξ>0

(
g(x, t,ξ)

ξ

)
,

m0(x, t)= liminf
ξ→0+

(
g(x, t,ξ)

ξ

)
, m∞(x, t)= limsup

ξ→∞

(
g(x, t,ξ)

ξ

)
.

(2.3)



T. Godoy and U. Kaufmann 979

Note that

m∞ = lim
ξ→∞

(g(ξ)

ξ

)
, m0 = lim

ξ→0+

(
g(ξ)
ξ

)
,

m0 = lim
ξ→0+

(g(ξ)

ξ

)
, m∞ = lim

ξ→∞

(
g(ξ)
ξ

)
.

(2.4)

Lemma 2.3. Let ξ0 > 0. Assume that g(ξ) ∈ Ls(Lv) for all ξ ≥ ξ0 and that either
m∞ ∈ Ls(Lv) with λ1(m∞) > 1 (if λ1(m∞) exists) or m∞ ≤ 0. Then, for all c > 0,
there exists a supersolution w ∈ CT of (1.6) such that w ≥ c.

Proof. We first study the case m∞ ∈ Ls(Lv). Let c > 0. We claim that there exists
ξ ≥ c such that µg(ξ)/ξ(1) > 0. Indeed, for ξ ≥ ξ0, we have m∞ ≤ g(ξ)/ξ ≤ g(ξ0)/ξ0

and also limξ→∞(g(ξ)/ξ) =m∞ with convergence a.e. Thus, by dominated con-
vergence, limξ→∞(g(ξ)/ξ) = m∞ in Ls(Lv) and then Remark 2.1(b) implies
limξ→∞µg(ξ)/ξ(λ)= µm∞(λ) for all λ. Moreover, either if P(m∞) > 0 and λ1(m∞) >
1 or if P(m∞) ≤ 0, the last statement in Remark 2.1(b) also gives µm∞(1) > 0.
Thus, it follows that µg(ξ)/ξ(1) > 0 for ξ large enough.

We fix ξ∗ ≥max(ξ0, c) such that µg(ξ∗)/ξ∗(1) > 0. Let k be a function defined
by k(x, t) = supξ≥ξ∗ |g(ξ)/ξ|. Since m∞ ≤ k ≤ g(ξ∗)/ξ∗, we get k ∈ Ls(Lv). For
ξ ∈ [0,∞), let g∗(x, t,ξ)= g(x, t,ξ) + k(x, t)ξ. Then g∗(x, t,ξ)≥ 0 and g∗(ξ)/ξ ∈
Ls(Lv) for ξ ≥ ξ∗. Also, µL+λk,g∗(ξ∗)/ξ∗(λ) = µL,g(ξ∗)/ξ∗(λ) for all λ. In particular,
µL+k,g∗(ξ)/ξ∗(1)= µL,g(ξ∗)/ξ∗(1) > 0. Thus, Lemma 2.9 in [9] says that the Dirichlet
periodic problem (L+ k− g∗(ξ∗)/ξ∗)Φ = g∗(ξ∗) in Ω×R has a solution Φ ∈
CT satisfying Φ(x, t) > 0 a.e. (x, t)∈Ω×R. Now,

g
(
ξ∗ +Φ

)≤ g
(
ξ∗ +Φ

)
≤ g

(
ξ∗
)

ξ∗
(
ξ∗ +Φ

)
≤ g

(
ξ∗
)

+ kξ∗ +
g
(
ξ∗
)

ξ∗
Φ

= g∗
(
ξ∗
)

+
g∗
(
ξ∗
)

ξ∗
Φ− kΦ

= LΦ≤ L
(
ξ∗ +Φ

)
,

(2.5)

and therefore ξ∗ +Φ is a supersolution for (1.6).
Consider now the case m∞ ≤ 0. In this case, we have limξ→∞(g+(ξ)/ξ)= 0 a.e.

in Ω×R, where, as usual, we write f = f +− f −. Also, 0 ≤ g+(ξ)/ξ ≤ g+(ξ0)/ξ0

for all ξ ≥ ξ0, and thus limξ→∞(g+(ξ)/ξ)= 0 in Ls(Lv). So, limξ→∞µg+(ξ)/ξ(λ)= λ1

for all λ, where λ1 is the (positive) principal eigenvalue for L associated to the
weight 1 (because for m ≡ 1, µm ≡ λ1). Thus, we can choose ξ∗ ≥ max(ξ0, c)
such that µg+(ξ∗)/ξ∗ > 0, and then, as above, the Dirichlet periodic problem (L−
g+(ξ∗)/ξ∗)Φ= g+(ξ∗) in Ω×R has a solution Φ∈ CT satisfying Φ(x, t) > 0 a.e.
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(x, t) in Ω×R . Also,

g
(
ξ∗ +Φ

)≤ g+(ξ∗ +Φ
)

≤ g+(ξ∗)
ξ∗

(
ξ∗ +Φ

)
= g+(ξ∗)+

g+(ξ∗)
ξ∗

Φ

= LΦ≤ L
(
Φ+ ξ∗

)
,

(2.6)

and this concludes the proof. �

Lemma 2.4. Let ξ0 > 0. Assume that g(ξ0)∈ Ls(Lv), P(g(ξ0)/ξ0) > 0, and λ1(g(ξ0)/
ξ0)≤ 1. Then there exists a subsolution v ∈ CT of (1.6) such that v(x, t) > 0 for all
(x, t)∈Ω×R.

Proof. Let Φ be the positive eigenfunction of

(
L+

g−
(
ξ0
)

ξ0

)
Φ= λ1

(g+
(
ξ0
)

ξ0

)(g+
(
ξ0
)

ξ0

)
Φ in Ω×R,

Φ= 0 on ∂Ω×R,

ΦT-periodic.

(2.7)

Then Φ∈ CT and Φ(x, t) > 0 for all (x, t)∈Ω×R. Now, λ1(L,g(ξ0)/ξ0) < 1 im-
plies µL,g(ξ0)/ξ0 (1) ≤ 0. Thus, since µL,g(ξ0)/ξ0 (1) = µL+g−(ξ0)/ξ0,g+(ξ0)/ξ0 (1), we get
λ1(g+(ξ0)/ξ0)≤ 1.

Let ε > 0 be such that ε < ξ0/‖Φ‖∞. Taking into account the above-mentioned
facts and that ξ → g(ξ)/ξ is nonincreasing, we have

L(εΦ) + g−(εΦ)≤
(
L+

g−
(
ε‖Φ‖)

ε‖Φ‖
)
εΦ

≤
(
L+

g−
(
ξ0
)

ξ0

)
εΦ

≤
(g+

(
ξ0
)

ξ0

)
εΦ

≤
(g+

(
ε‖Φ‖)
ε‖Φ‖

)
εΦ

≤ g+(εΦ),

(2.8)

and the lemma follows. �
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3. The main results

Theorem 3.1. (a) Assume that

(1) m0,m∞ ∈ Ls(Lv), P(m0) > 0, and P(m∞) > 0,
(2) g(ξ0)∈ Ls(Lv) for some ξ0 > 0 and g(ξ1)∈ Ls(Lv) for some ξ1 > 0.

Then, if λ1(m0) < 1 < λ1(m∞), there exists a solution u∈ L∞T of (1.6) satisfying
u(x, t) > 0 for all (x, t)∈Ω×R.

(b) Assume (1), m0 =m0, m∞ =m∞, and that for all ξ > 0,

m0 �= g(ξ)
ξ

, (3.1)

m∞ �=
g(ξ)

ξ
. (3.2)

Then there exists a positive solution u ∈ L∞T of (1.6) if and only if λ1(m0) < 1 <
λ1(m∞).

Proof. Suppose that λ1(m0) < 1 < λ1(m∞). Since, for 0 < ξ ≤ ξ1, we have g(ξ1)/ξ1

≤ g(ξ)/ξ ≤m0 and limξ→0+ g(ξ)/ξ =m0 a.e. in Ω×R, taking into account (1)
and (2), we get g(ξ)/ξ ∈ Ls(Lv) for such ξ and so limξ→0+ g(ξ)/ξ =m0 with con-
vergence in Ls(Lv). Then, by Remark 2.1(c), we have limξ→0+ P(g(ξ)/ξ)= P(m0)
> 0, and thus there exists λ1(g(ξ)/ξ) for ξ > 0 small enough. Moreover, Remark
2.1(a) says that limξ→0+ λ1(g(ξ)/ξ) = λ1(m0) < 1 and so λ1(g(ξ)/ξ) < 1 for such
ξ. Hence, Lemma 2.4 can be applied to give a subsolution v ∈ CT of (1.6) with
v(x, t) > 0 for all (x, t)∈Ω×R.

On the other hand, for all ξ ≥ ξ0, we have m∞ ≤ g(ξ)/ξ ≤ g(ξ0)/ξ0, and so
g(ξ)/ξ ∈ Ls(Lv). Therefore, taking c = ‖v‖∞ in Lemma 2.3, we obtain a super-
solution w ∈ CT of (1.6) with w ≥ c ≥ v. Now, [6, Theorem 1] gives a solution
u∈ L∞T such that v ≤ u≤w and then u(x, t) > 0 for all (x, t)∈Ω×R. Thus (a) is
proved.

To prove (b), suppose that u ∈ L∞T is a positive solution of (1.6). By Remark
2.2, we have u(x, t) > 0 for all (x, t). Let mu : Ω×R→ R be defined by mu =
g(u)/u. Since mu is measurable and m∞ ≤mu ≤m0, it follows that mu ∈ Ls(Lv).
Moreover, we have Lu=muu and so 1= λ1(mu). Now, the comparison principle
in Remark 2.1(a) gives 1 = λ1(mu) ≥ λ1(m0) = λ1(m0) and also 1 ≤ λ1(m∞) =
λ1(m∞). Suppose λ1(m0) = 1. Since λ1(mu) = 1 and mu ≤ m0, we must have
mu(x, t)=m0(x, t) a.e. (x, t)∈Ω×R (see Remark 2.1(a)), but sup0<ξ≤‖u‖∞(g(ξ)/
ξ) ≥ g(u)/u=m0 in Ω×R contradicting (3.1). Then λ1(m0) < 1. Suppose now
that λ1(m∞) = 1. Reasoning as above, we get 1 = λ1(mu) ≤ λ1(m∞) = 1 and so
mu = m∞. Thus, inf0<ξ≤‖u‖∞(g(ξ)/ξ) ≤ g(u)/u = inf ξ>0(g(ξ)/ξ) a.e., which is
again a contradiction. Then λ1(m∞) > 1. �

Theorem 3.2. (a) Assume that

(3) m0 ∈ Ls(Lv), P(m0) > 0,
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(4) g(ξ0)∈ Ls(Lv) for some ξ0 > 0 and g(ξ)∈ Ls(Lv) for all ξ > 0,
(5) either m∞ ∈ Ls(Lv) and P(m∞)≤ 0 or m∞ ≤ 0.

Then, if λ1(m0) < 1, there exists a solution u∈ L∞T of (1.6) satisfying u(x, t) > 0
for all (x, t)∈Ω×R.

(b) Assume, in addition, (3.1) andm0 =m0. Then there exists a positive solution
u∈ L∞T of (1.6) if and only if λ1(m0) < 1.

Proof. As in the above theorem, we have g(ξ)/ξ ∈ Ls(Lv) and λ1(g(ξ)/ξ) < 1 for
ξ > 0 small enough, and so Lemma 2.4 gives a subsolution v ∈ CT satisfying
v(x, t) > 0 for all (x, t). On the other side, since g(ξ)/ξ ≤ g(ξ)/ξ ≤ g(ξ0)/ξ0 for
ξ ≥ ξ0, from (4), we have g(ξ)/ξ ∈ Ls(Lv) for such ξ. Therefore, (a) follows as in
Theorem 3.1 taking c = ‖v‖∞ in Lemma 2.3, and the proof of (b) follows simi-
larly to part (b) of Theorem 3.1. �

Theorem 3.3. (a) Assume (2) and that

(6) m∞ ∈ Ls(Lv) and P(m∞) > 0,
(7) P(g(ξ)/ξ) > 0 for ξ > 0 small and limξ→0+ λ1(g(ξ)/ξ)= 0.

Then, if λ1(m∞) > 1, there exists a solution u∈ L∞T of (1.6) satisfying u(x, t) > 0
for all (x, t)∈Ω×R.

(b) Assume, in addition, (3.2) and m∞ =m∞. Then there exists a positive solu-
tion u∈ L∞T of (1.6) if and only if λ1(m∞) > 1.

Proof. Reasoning as above, (a) follows from Lemmas 2.3, 2.4, and [6, Theorem
1]. Suppose now that u ∈ L∞T is a positive solution of (1.6). Let ε > 0 such that
ε < ‖u‖∞. Let g

ε
be defined by g

ε
(ξ)= g(ξ) if ξ ≥ ε and g

ε
(ξ)= g(ε) if ξ < ε. We

have Lu= g(u)≥ g(u)≥ g
ε
(u) and also g

ε
(u)/u∈ Ls(Lv). Thus, 1≤ λ1(g

ε
(u)/u).

Moreover, since g
ε
(u)/u≥m∞, the comparison principle in Remark 2.1(a) gives

1 ≤ λ1(m∞). Suppose 1= λ1(m∞). Then g
ε
(u)/u =m∞. But g

ε
(u)/u ≥ g

ε
(‖u‖)/

‖u‖ = g(‖u‖)/‖u‖, and therefore m∞ = g(‖u‖)/‖u‖ in contradiction with (3.2).
�

Theorem 3.4. Assume (4), (5), and (7). Then (1.6) has a positive solution u∈ L∞T
satisfying u(x, t) > 0 for all (x, t)∈Ω×R.

Proof. The theorem follows again from Lemmas 2.3, 2.4, and [6, Theorem 1].
�

3.1. Examples. (a) Suppose there exist limξ→0+ (g(ξ)/ξ) and limξ→∞(g(ξ)/ξ) and
assume inf ξ>0(g(ξ)/ξ),supξ>0(g(ξ)/ξ) ∈ Ls(Lv), with P(inf ξ>0(g(ξ)/ξ)) > 0. If
limξ→0+ (g(ξ)/ξ) = supξ>0(g(ξ)/ξ) and limξ→∞(g(ξ)/ξ) = inf ξ>0(g(ξ)/ξ), from
Theorem 3.1, we conclude that (1.6) has a positive solution u∈ L∞T if and only if
λ1(limξ→0+ (g(ξ)/ξ)) < 1 < λ1(limξ→∞(g(ξ)/ξ)).

(b) Consider the Dirichlet periodic problem Lu= sinu inΩ×R. Theorem 3.2
says that this problem has a positive T-periodic solution if and only if λ1 < 1,
where λ1 is the positive principal eigenvalue corresponding to the weight 1.
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(c1) Consider the problem

Lu= a(x, t)uγ − f (x, t,u)u in Ω×R,

u= 0 on ∂Ω×R,

uT-periodic,

(3.3)

where 0 < γ ≤ 1 and f is a Carathéodory function such that f (ξ)∈ Ls(Lv) for all
ξ > 0 and f (0)= 0. Assume that γ = 1, a∈ Ls(Lv), P(a) > 0, a≤ limξ→∞ f (ξ)≤
∞, inf ξ0≤ξ f (ξ)∈ Ls(Lv) for some ξ0 > 0, and inf0<ξ≤ξ0 f (ξ)∈ Ls(Lv) for all ξ0 > 0.
From Theorem 3.2, it follows that (3.3) has a positive solution u∈ L∞T if and only
if λ1(a) < 1.

(c2) Consider now the case 0 < γ < 1 and a(x, t) ≥ 0 a.e. (x, t) ∈ Ω×R. If
f (ξ)=−b with b ∈ Ls(Lv) and P(b) > 0, then Theorem 3.3 says that (3.3) has a
positive solution u ∈ L∞T if and only if 1 < λ1(b). On the other hand, suppose
limξ→∞ f (ξ) = ∞, inf ξ0≤ξ f (ξ) ∈ Ls(Lv) for some ξ0 > 0, and sup0<ξ≤ξ0

f (ξ) ∈
Ls(Lv) for all ξ0 > 0. Then Theorem 3.4 gives a positive solution u∈ L∞T for (3.3).

We note that in all the cases, the positive solution u satisfies u(x, t) > 0 for
all (x, t). Moreover, recalling Remark 2.2, we also have that in (a), (b), and (c1)
u∈ CT .

Remark 3.5. An inspection of the proofs shows that all the above results remain
true for the corresponding elliptic problem, replacing Ls(Lv) by Lr(Ω) with r >
N/2, and P(m) by esssupx∈Ωm(x).
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E-mail address: godoy@mate.uncor.edu
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