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Let F be a C3 diffeomorphism on a Banach space B. F has a homoclinic tube
asymptotic to an invariant manifold. Around the homoclinic tube, Bernoulli
shift dynamics of submanifolds is established through a shadowing lemma. This
work removes an uncheckable condition of Silnikov (1968). Also, the result of
Silnikov does not imply Bernoulli shift dynamics of a single map, but rather only
provides a labeling of all invariant tubes around the homoclinic tube. The work
of Silnikov was done in Rn and the current work is done in a Banach space.

1. Introduction

In [4], Silnikov introduced the concept of a homoclinic tube which can be ob-
tained through a transversal intersection of the center-unstable and center-stable
manifolds of a normally hyperbolic invariant manifold under a map in Rn. In-
tuitively speaking, a homoclinic tube can be regarded as a homoclinic orbit on
which points are replaced by submanifolds. Under a certain assumption [4, equa-
tion (11), page 625] which is uncheckable, all the invariant tubes in the neigh-
borhood of the homoclinic tube can be labeled symbolically. Such a symbolic
labeling does not imply Bernoulli shift of a single map. The result was proved
through a contraction map argument on a sequence of metric spaces. In the
current paper, we adopt a different approach developed in [1]. We will estab-
lish Bernoulli shift dynamics of submanifolds through a shadowing lemma. The
uncheckable assumption of Silnikov is removed. We will work in a Banach space,
while Silnikov worked in Rn.

Especially for high-dimensional systems, homoclinic tubes are more domi-
nant structures than homoclinic orbits. In fact, the invariant manifold that the
homoclinic tube is asymptotic to, can contain smaller scale chaotic dynamics
as discussed in [2, 3]. Although structures in a neighborhood of a homoclinic
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orbit have been extensively and intensively investigated, structures around a ho-
moclinic tube have not been well studied [2, 3, 4]. We believe that homoclinic
tubes will play an important role in the theory of chaos in Hamiltonian partial
differential equations.

The paper is organized as follows: Section 2 contains the setup and defini-
tions, Section 3 deals with Fenichel fiber coordinates and a λ-lemma, and Section
4 deals with shadowing lemma and chaos.

2. The setup and definitions

The setup is as follows.
(A1) Let B be a Banach space on which a C3 diffeomorphism F is defined.

There is a normally (transversally) hyperbolic invariant C3 submanifold S. Let
W cu and W cs be the C3 center-unstable and center-stable manifolds of S. There
exist a C2 invariant family of C3 unstable Fenichel fibers {�u(q) : q ∈ S} and a
C2 invariant family of C3 stable Fenichel fibers {�s(q) : q ∈ S} inside W cu and
W cs, respectively, such that

W cu =
⋃
q∈S

�u(q), W cs =
⋃
q∈S

�s(q). (2.1)

There are positive constants κ and C such that∥∥F−n(q−)−F−n(q)
∥∥≤ Ce−κn

∥∥q− − q
∥∥, ∀n∈ Z

+, ∀q ∈ S∀q− ∈�u(q),∥∥Fn
(
q+)−Fn(q)

∥∥≤ Ce−κn
∥∥q+− q

∥∥, ∀n∈ Z
+, ∀q ∈ S∀q+ ∈�s(q),∥∥Fn

(
q1
)−Fn

(
q2
)∥∥≤ Ceκ1|n|∥∥q1− q2

∥∥, ∀n∈ Z∀q1,q2 ∈ S,
(2.2)

where κ1 � κ; for example, κ1 < κ/300. W cu and W cs intersect along an isolated
transversal homoclinic tube ξ asymptotic to S,

ξ = (···S−1S0S1 ···
)
, (2.3)

where Sj = F jS0, for all j ∈ Z, and S0 is C3. For all j ∈ Z and for all qj ∈ Sj , qj is
on a unique stable fiber �s(q+), q+ ∈ S and a unique unstable fiber �u(q−), q− ∈
S. We denote such correspondences by ϕ+

j and ϕ−j , respectively, where ϕ±j (S) =
Sj . ϕ±j are C2 diffeomorphisms. Let

∥∥ϕ±j − id
∥∥
C1 = sup

q∈S

{
max

{∥∥ϕ±j (q)− q
∥∥,∥∥Dϕ±j (q)− id

∥∥}}, (2.4)

where id is the identity map and Dϕ±j denotes the differential of ϕ±j . As j → +∞,

∥∥ϕ+
j − id

∥∥
C1 −→ 0. (2.5)
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As j →−∞,

∥∥ϕ−j − id
∥∥
C1 −→ 0. (2.6)

Let

θ = inf
u,v,w,qj∈Sj , j∈Z

{
min

{‖u− v‖,‖v−w‖,‖w−u‖} | u∈ Tqj �
u
(
q−
)
,

v ∈ Tqj �
s
(
q+
)
, w ∈ Tqj Sj , ‖u‖ = ‖v‖ = ‖w‖ = 1

}
,

(2.7)

where Tqj indicates the tangent space at qj . In this paper, transversality always
implies that such angle θ is positive.

(A2) Let Ω be a neighborhood of S. Then there exists a J > 0 such that Sj ⊂Ω
for all | j| ≥ J . Let

d = inf
q∈Sj∪S,| j|≥J

{
distance{q,∂Ω}}, (2.8)

then d > 0. Let Ω j be a neighborhood of Sj , for all | j| < J ,

dj = inf
q∈Sj

{
distance

{
q,∂Ω j

}}
, (2.9)

then dj > 0. The collection Bξ = {Ω,Ω j | j| < J} is called a tubular neighborhood
of ξ ∪ S. For any 0 < n <∞, there exists such a tubular neighborhood Bξ of ξ ∪ S
such that for any q1 ∈ Bξ there is a q ∈ ξ ∪ S, q1 and q belong to the same Ω or
Ω j | j| < J ,

∥∥D�F±n
(
q1
)−D�F±n(q)

∥∥ < 1 (� = 1,2). (2.10)

Moreover,

max
+,−

sup
q∈ξ∪S

∥∥D2F±n(q)
∥∥ <∞. (2.11)

Let

Λ� =max
+,−

sup
q∈Bξ

∥∥D�F±n(q)
∥∥ <∞ (� = 1,2). (2.12)

If ξ ∪ S is compact, then assumption (A2) holds [1]. Next we will introduce a
pseudoinvariant tube. An invariant tube is a sequence of submanifolds {Bj} j∈Z

such that

F
(
Bj
)= Bj+1, F−1(Bj

)= Bj−1, ∀ j ∈ Z. (2.13)
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Definition 2.1. Segment-0 is defined as the finite sequence of (2N + 1) S’s

η0 = (S···S), (2.14)

and segment-1 is defined as the finite sequence

η1 =
(
S−NS−N+1 ···S0 ···SN−1SN

)
, (2.15)

where N is a large positive integer.

Definition 2.2. Let Σ be a set that consists of elements of the doubly infinite
sequence form

a= (···a−2a−1a0,a1a2 ···
)
, (2.16)

where ak ∈ {0,1}, k ∈ Z. We introduce a topology in Σ by taking as a neighbor-
hood basis of

a∗ = (···a∗−2a
∗
−1a

∗
0 ,a

∗
1 a

∗
2 ···

)
(2.17)

the set

� j =
{
a∈ Σ | ak = a∗k

(|k| < j
)}

(2.18)

for j = 1,2, . . . . This makes Σ a topological space. The Bernoulli shift automor-
phism χ is defined on Σ by

χ : Σ �−→ Σ, ∀a∈ Σ, χ(a)= b, where bk = ak+1. (2.19)

The Bernoulli shift automorphism χ exhibits sensitive dependence on initial
conditions, which is a hallmark of chaos.

For any δ > 0, there exists N > 0 such that

∥∥ϕ+
j − id

∥∥
C1 < δ,

∥∥ϕ−− j − id
∥∥
C1 < δ, ∀ j ≥N, (2.20)

by assumption (A1).

Definition 2.3. To each ak ∈ {0,1}, we associate the segment-ak, ηak . Then each
doubly infinite sequence

a= (···a−2a−1a0,a1a2 ···
)

(2.21)

is associated with a δ-pseudoinvariant tube

ηa =
(···ηa−2ηa−1ηa0 ,ηa1ηa2 ···

)
. (2.22)
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3. Fenichel fiber coordinates and a λ-lemma

3.1. Fenichel fiber coordinates. We will introduce Fenichel fiber coordinates in
a neighborhood of S. For any θ ∈ S, let

Eu(θ)= Tθ�u(θ), Ec(θ)= TθS, Es(θ)= Tθ�s(θ), (3.1)

where Tθ indicates the tangent space at θ. Eu and Es provide a coordinate system
for a neighborhood of S, that is, any point in this neighborhood has a unique
coordinate

(
ṽs, θ̃, ṽu

)
, ṽs ∈ Es

(
θ̃
)
, ṽu ∈ Eu

(
θ̃
)
, θ̃ ∈ S. (3.2)

Fenichel fibers provide another coordinate system for the neighborhood of S.
For any θ ∈ S, the Fenichel fibers �s(θ) and �u(θ) have the expressions

ṽs = vs, ṽu = vu,

θ̃ = θ +Θs
(
vs,θ

)
, θ̃ = θ +Θu

(
vu,θ

)
,

ṽu =Vs
(
vs,θ

)
, ṽs =Vu

(
vu,θ

)
,

(3.3)

where vs and vu are the parameters parametrizing �s(θ) and �u(θ),

Θz(0,θ)= ∂

∂vz
Θ(0,θ)=Vz(0,θ)= ∂

∂vz
Vz(0,θ)= 0, z = u,s, (3.4)

and Θz(vz,θ) and Vz(vz,θ) (z = u,s) are C3 in vz and C2 in θ. The coordinate
transformation from (vs,θ,vu) to (ṽs, θ̃, ṽu)

ṽs = vs +Vu
(
vu,θ

)
,

θ̃ = θ +Θu
(
vu,θ

)
+Θs

(
vs,θ

)
,

ṽu = vu +Vs
(
vs,θ

) (3.5)

is a C2 diffeomorphism. In terms of the Fenichel coordinate (vs,θ,vu), the
Fenichel fibers coincide with their tangent spaces. From now on, we always work
with the Fenichel coordinate (vs,θ,vu).

3.2. λ-lemma. For all j ∈ Z and for all qj ∈ Sj , qj is on a unique stable fiber
�s(q+), q+ ∈ S and a unique unstable fiber �u(q−), q− ∈ S. Let

Eu
(
qj
)= Tqj �

u
(
q−
)
, Ec

(
qj
)= Tqj Sj , Es

(
qj
)= Tqj �

s
(
q+
)
. (3.6)

By assumption (A1), Eu(qj), Ec(qj), and Es(qj) are C2 in qj ∈ Sj .
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Lemma 3.1 (λ-lemma). For any ε > 0, there exists a J > 0 such that

(1) when j ≥ J , Eu(qj)⊕Ec(qj) is ε-close to Eu(q+)⊕Ec(q+);
(2) when j ≤−J , Es(qj)⊕Ec(qj) is ε-close to Es(q−)⊕Ec(q−).

Proof. When j (> 0) is large enough, qj is in a neighborhood of Swhere �s(q+)=
Es(q+). Let v1 ∈ Eu(qj)⊕ Ec(qj), ‖v1‖ = 1. One can represent v1 in the frame
(Es(q+),Eu(q+)⊕Ec(q+)),

v1 =
(
vs1,v

uc
1

)
. (3.7)

Let λ1 = ‖vs1‖/‖vuc1 ‖. By assumption (A1), transversality implies that λ1 has an
absolute upper bound. The rest of the argument is the same as that in [1]. �

3.3. A rectification. Next we conduct a rectification in a neighborhood of S,
which is necessary for graph transform argument later on. When j (> 0) is large
enough, qj is in a neighborhood of S where �s(q+) = Es(q+). Thus Es(qj) =
Es(q+). For any ṽu ∈ Eu(q+), ‖ṽu‖ = 1, ṽu has the representation in the frame
(Es(qj),Eu(qj)⊕Ec(qj)),

ṽu = vs + vuc. (3.8)

All such vuc’s span the projection Ẽu(qj) of Eu(q+) onto Eu(qj)⊕Ec(qj), where
Eu(qj)⊕ Ec(qj) is C2 in qj . Shifting Eu(q+), Ec(q+), and Es(q+) to qj , they are
also C2 in qj . Representing Eu(qj)⊕Ec(qj) in the frame (Eu(q+),Ec(q+),Es(q+)),
Ẽu(qj) can be obtained from Eu(qj)⊕Ec(qj) by restricting θ = 0, where θ coor-
dinatizes Ec(q+). Thus Ẽu(qj) is also C2 in qj . The rectification amounts to re-
placing Eu(qj) by Ẽu(qj). We will use the same notation Eu(qj). Similarly, when
j (> 0) is large enough, one can rectify Es(q− j) inside Es(q− j)⊕Ec(q− j).

4. Shadowing lemma and chaos

Let ηa be a δ-pseudoinvariant tube defined in Definition 2.3,

ηa =
(··· S̃−1S̃0S̃1 ···

)
, (4.1)

where S̃ j = Sk or S; j,k ∈ Z. Denote by Ê the transversal bundle

Ê = {(q,Eu(q),Es(q)
) | q ∈ ηa

}
(4.2)

which serves as a coordinate system around ηa with the coordinate denoted by

(
q,xu,xs

)
, q ∈ ηa, x

u ∈ Eu(q), xs ∈ Es(q). (4.3)
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In this coordinate system, the map Fn has the representation

Fn
(
q,xu,xs

)= ( f (q,xu,xs), gu(q,xu,xs), gs(q,xu,xs)), (4.4)

where n is a large positive integer. If q ∈ S̃ j , then f (q,xu,xs)∈ S̃ j+n.

Lemma 4.1. For all µ > 0, fix an n large enough and fix an ε small enough if δ is
sufficiently small, then

(
Λ1
)k
Πs

3 <
1
2

(0≤ k ≤ 2), Πs
� < µ (� = 1,2),(

Λ1
)k
Π̂u

2 <
1
2

(0≤ k ≤ 2), Πu
� < µ (� = 1,3),

(4.5)

where ‖xu‖ ≤ ε, ‖xs‖ ≤ ε, D1 =Dq, D2 =Dxu , D3 =Dxs , and

Πs
� = sup

q,xu,xs

∥∥D�g
s
(
q,xu,xs

)∥∥ (� = 1,2,3),

Πu
� = sup

q,xu,xs

∥∥D�g
u
(
q,xu,xs

)∥∥ (� = 1,2,3),

Π̂u
2 = sup

q,xu,xs

∥∥∥{D2g
u
(
q,xu,xs

)}−1
∥∥∥.

(4.6)

Proof. The proof of this lemma follows from assumptions (A1) and (A2) and
the fact that along segment-0 and segment-1, the center-unstable and center-
stable bundles Eu(q)⊕Ec(q) and Es(q)⊕Ec(q) are invariant under the linearized
flow [1]. �

Let Γε be the space of sections of Ê,

Γε =
{
σ | σ(q)= (q,xu(q),xs(q)

)
, q ∈ ηa,

∥∥xu(q)
∥∥≤ ε, ∥∥xs(q)

∥∥≤ ε}. (4.7)

We define the C0 norm of σ ∈ Γε as

‖σ‖C0 =max

{
sup
q∈ηa

∥∥xu(q)
∥∥, sup

q∈ηa

∥∥xs(q)
∥∥}. (4.8)

Then we define a Lipschitz seminorm on Γε as

Lip{σ} =max

{
sup

‖q1−q2‖≤∆

∥∥xu(q1
)− xu

(
q2
)∥∥∥∥q1− q2

∥∥ , sup
‖q1−q2‖≤∆

∥∥xs(q1
)− xs

(
q2
)∥∥∥∥q1− q2

∥∥
}
(4.9)



930 Chaos and shadowing around a homoclinic tube

for some small fixed ∆ > 0. Let Γε,γ be a subset of Γε,

Γε,γ =
{
σ ∈ Γε | Lip{σ} ≤ γ

}
. (4.10)

For any σ ∈ Γε,γ,

σ(q)= (q,xu(q),xs(q)
)
, q ∈ ηa, (4.11)

we define the graph transform G as follows:

(Gσ)(q)= (q,xu1 (q),xs1(q)
)
, (4.12)

where

f
(
q−,xu

(
q−
)
,xs
(
q−
))= q,

gs
(
q−,xu

(
q−
)
,xs
(
q−
))= xs1(q),

f
(
q,xu1 (q),xs(q)

)= q+,

gu
(
q,xu1 (q),xs(q)

)= xu
(
q+),

(4.13)

for some q− and q+.

Theorem 4.2. The graph transform G is a contraction map on Γε,γ. The graph of
the fixed point σ∗ of G is an invariant tube under F.

Proof. The proof of this theorem is similar to that given in detail in [1]. �

Graph{σ∗} is the invariant tube that ε-shadows the δ-pseudoinvariant tube
ηa. Let S∗ be the element of Graph{σ∗} that shadows the midelement of ηa,
which is either S0 or S. Such S∗’s for all ηa form a set Ξ of submanifolds. It is
obvious that the following theorem holds.

Theorem 4.3 (chaos theorem). The set Ξ of submanifolds is invariant under the
map F2N+1. The action of F2N+1 on Ξ is topologically conjugate to the action of
the Bernoulli shift automorphism χ on Σ. That is, there exists a homeomorphism
φ : Σ �→ Ξ such that the following diagram commutes:

Σ
φ

χ

Ξ

F2N+1

Σ
φ

Ξ .

(4.14)
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