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Let F be a C? diffeomorphism on a Banach space B. F has a homoclinic tube
asymptotic to an invariant manifold. Around the homoclinic tube, Bernoulli
shift dynamics of submanifolds is established through a shadowing lemma. This
work removes an uncheckable condition of Silnikov (1968). Also, the result of
Silnikov does not imply Bernoulli shift dynamics of a single map, but rather only
provides a labeling of all invariant tubes around the homoclinic tube. The work
of Silnikov was done in R" and the current work is done in a Banach space.

1. Introduction

In [4], Silnikov introduced the concept of a homoclinic tube which can be ob-
tained through a transversal intersection of the center-unstable and center-stable
manifolds of a normally hyperbolic invariant manifold under a map in R”. In-
tuitively speaking, a homoclinic tube can be regarded as a homoclinic orbit on
which points are replaced by submanifolds. Under a certain assumption [4, equa-
tion (11), page 625] which is uncheckable, all the invariant tubes in the neigh-
borhood of the homoclinic tube can be labeled symbolically. Such a symbolic
labeling does not imply Bernoulli shift of a single map. The result was proved
through a contraction map argument on a sequence of metric spaces. In the
current paper, we adopt a different approach developed in [1]. We will estab-
lish Bernoulli shift dynamics of submanifolds through a shadowing lemma. The
uncheckable assumption of Silnikov is removed. We will work in a Banach space,
while Silnikov worked in R".

Especially for high-dimensional systems, homoclinic tubes are more domi-
nant structures than homoclinic orbits. In fact, the invariant manifold that the
homoclinic tube is asymptotic to, can contain smaller scale chaotic dynamics
as discussed in [2, 3]. Although structures in a neighborhood of a homoclinic
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orbit have been extensively and intensively investigated, structures around a ho-
moclinic tube have not been well studied [2, 3, 4]. We believe that homoclinic
tubes will play an important role in the theory of chaos in Hamiltonian partial
differential equations.

The paper is organized as follows: Section 2 contains the setup and defini-
tions, Section 3 deals with Fenichel fiber coordinates and a A-lemma, and Section
4 deals with shadowing lemma and chaos.

2. The setup and definitions

The setup is as follows.

(A1) Let B be a Banach space on which a C* diffeomorphism F is defined.
There is a normally (transversally) hyperbolic invariant C*> submanifold S. Let
W< and W* be the C? center-unstable and center-stable manifolds of S. There
exist a C? invariant family of C* unstable Fenichel fibers {F“(q):qe S} and a
C? invariant family of C? stable Fenichel fibers {F* (q) : g € S} inside W and
W<, respectively, such that

W — U F(q), Wes = U F(q). (2.1)
q€s q€s

There are positive constants x and C such that

[F7"(q7) —F @l <Ce™|lg” —qll, VneZ', VqeSVq €F(g),
[F*(q*) = F"(q)l| < Ce™"|lqg" —4qll, VneZ', VqgeSVqteF(q),

[F"(q1) = F* ()|l < Ce""||q1 —qal, VneZVq,q €S
(2.2)

where k; < &; for example, x; < ¥/300. W and W* intersect along an isolated
transversal homoclinic tube & asymptotic to S,

E=(--S18S81--), (2.3)
where §; = FiS,, for all j € Z,and Sy is C3. For all j € Zand forall g; € S;, g; is
on a unique stable fiber #°(q.), g+ € S and a unique unstable fiber F%(q_), q- €

S. We denote such correspondences by ¢; and ¢;, respectively, where ¢; (S) =
Sj. ¢j are C* diffeomorphisms. Let

o7 —id|c: = su};{max{llqof(q) —qll,[|Dg; (q) —id|[}}, (2.4)
q€<

where id is the identity map and Dgj; denotes the differential of ¢;. As j — +oo,

gt —id||ci — 0. (2.5)
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Asj — —oo,
llp; —id|lc — o. (2.6)
Let

0= inf _Amin{lu-vlIlv-wl,lw-ul} |ueT,F"(q),
uv,w,q; €S}, jEZ

(2.7)
ve Ty F(qr), we Ty, S, llull = IIvll = llwll = 1},

where T,; indicates the tangent space at g;. In this paper, transversality always
implies that such angle 0 is positive.

(A2) Let Q2 be a neighborhood of S. Then there exists a J > 0 such that §; C O
forall |j| = ]. Let

d= inf dist: , 001 2.8
qesjluns,\j\z]{ istance{q,0Q}} (2.8)

then d > 0. Let Q); be a neighborhood of S}, for all | j| <7,

d; = inf {distance {g,0Q;}}, (2.9)
q€s;

then d; > 0. The collection Bg = {Q), Q; |j| <]} is called a tubular neighborhood
of £ U S. For any 0 < n < oo, there exists such a tubular neighborhood B of EU S
such that for any q; € Bt thereisa g € £ U S, g; and q belong to the same Q or
Q] ‘]l < ]y

[|[D'F*"(q,) — D'F*"(g)|| <1 (£=1,2). (2.10)
Moreover,
max sup ||D*F*"(g)|| < oo. (2.11)
+— ge&us
Let
A, = maxsup ||[D°F**(q)|| < o (£=1,2). (2.12)
+~ q€B;

If £ U S is compact, then assumption (A2) holds [1]. Next we will introduce a
pseudoinvariant tube. An invariant tube is a sequence of submanifolds {B;} ez
such that

F(Bj) =Bj.1, F'(Bj)=Bj.;, Vje€L. (2.13)
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Definition 2.1. Segment-0 is defined as the finite sequence of 2N +1) S’s
Mo =(S---9), (2.14)
and segment-1 is defined as the finite sequence
M= (S-NS-Nt1---So---SN-15N), (2.15)

where N is a large positive integer.

Definition 2.2. Let X be a set that consists of elements of the doubly infinite
sequence form

a=(---asaap,amar---), (2.16)

where a; € {0, 1}, k € Z. We introduce a topology in X by taking as a neighbor-
hood basis of

a*=(---a*a*af afas ) (2.17)
the set
Aij={acZ|ar=af (k| <j)} (2.18)

for j = 1,2,.... This makes ¥ a topological space. The Bernoulli shift automor-
phism y is defined on X by

x:X—2% VaeZX yx(a)=0b wherebr=ar.. (2.19)
The Bernoulli shift automorphism y exhibits sensitive dependence on initial
conditions, which is a hallmark of chaos.
For any 6 > 0, there exists N > 0 such that

o —id[lci <8 [l9=; —id[|ci <8 Vj=N, (2.20)

by assumption (Al).

Definition 2.3. To each ay € {0, 1}, we associate the segment-ay, #,,. Then each
doubly infinite sequence

a=(---asa_ap,aay---) (2.21)
is associated with a §-pseudoinvariant tube

Ha= (" Ma Ma  Hap Ny Hay " * ) (2.22)
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3. Fenichel fiber coordinates and a A-lemma
3.1. Fenichel fiber coordinates. We will introduce Fenichel fiber coordinates in
a neighborhood of S. For any 8 € §, let

E*(0) = TeF"(0), E(0) = ToS, ES(0) = ToF*(0), (3.1)

where Tp indicates the tangent space at 6. E* and E® provide a coordinate system
for a neighborhood of S, that is, any point in this neighborhood has a unique
coordinate

(#,0,v), ¥ cE(H), v cE (D), Hes (3.2)

Fenichel fibers provide another coordinate system for the neighborhood of S.
For any 0 € S, the Fenichel fibers %°(8) and F*(0) have the expressions

Y
0=0+0,%0), 0=0+0,("0), (3.3)
=V,(,0), ¥ =V,(»"0),

where v* and v are the parameters parametrizing F*(0) and %*(9),

0.(0.6) = -2.0(0,0) = V-(0,0) = -

—V.(0,0)=0, z=u,s, (3.4)
vz ov?

and @,(v%,0) and V,(+%,0) (z = u,s) are C? in v# and C? in 0. The coordinate
transformation from (v5, 6, v*) to (¥, 6, %)

P =v+V,(v4,0),
0 =0+0,(v.0)+0,(+,0), (3.5)
="+ V(v 0)
is a C? diffeomorphism. In terms of the Fenichel coordinate (v%,6,v*), the
Fenichel fibers coincide with their tangent spaces. From now on, we always work

with the Fenichel coordinate (v5, 6, v¥).

3.2. A-lemma. For all j € Z and for all g; € Sj, g; is on a unique stable fiber
%(g+), g+ € S and a unique unstable fiber F*(g-), g- € S. Let

E*(qj) = Tg;9"(q-),  E(q)) =T4S;,  E(qj) = Ty;F(q+).  (3.6)

By assumption (A1), E“(q;), E‘(q;), and E*(q;) are C* in g; € §;.
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LemMa 3.1 (A-lemma). For any € >0, there exists a ] >0 such that

(1) when j = ], E*(q;) ® E°(q;) is €-close to E*(q+) ® E°(q+);
(2) when j < -], E*(q;) ® E°(q;) is €-close to E*(q-) ® E°(q-).

Proof. When j (> 0) is large enough, g; is in a neighborhood of S where #°(g,) =
E*(g+). Let v; € E*(qj) ® E°(g}), llv1]l = 1. One can represent v; in the frame
(E*(q+), E“(q+) ® E*(q+))s

vi = (VL v). (3.7)

Let A; = [[vi[I/llv{|l. By assumption (A1), transversality implies that A; has an
absolute upper bound. The rest of the argument is the same as thatin [1]. O

3.3. A rectification. Next we conduct a rectification in a neighborhood of S,
which is necessary for graph transform argument later on. When j (> 0) is large
enough, g; is in a neighborhood of S where F°(q,) = E*(g+). Thus E*(q;) =
E*(q4). For any ¥ € E*(q+), ||#*]l = 1, #* has the representation in the frame

(E*(q)), E*(q;) ® E°(q;)),

= ke (3.8)

All such v*“’s span the projection E¥(q;) of E*(q.) onto E*(q;) ® E°(q;), where
E*(q;j) ® E°(q;) is C* in g;. Shifting E“(q+), E°(q+), and E(q+) to qj, they are
also C? in g;. Representing E“(g;) ® E°(q;) in the frame (E“(q+), E°(q+), E*(q+))s
E“(qj) can be obtained from E*(q;) ® E°(q;) by restricting 6 = 0, where 6 coor-
dinatizes E°(q+). Thus E%(q ;) is also C* in g;. The rectification amounts to re-
placing E“(q;) by E*(g;). We will use the same notation E*(q;). Similarly, when
j (>0) is large enough, one can rectify E°(q;) inside E°(q—;) ® E°(q-;).

4. Shadowing lemma and chaos

Let #, be a §-pseudoinvariant tube defined in Definition 2.3,
’7(1:("'5—18081"'): (4.1)
where §; = Si or S; j, k € Z. Denote by E the transversal bundle
E={(¢.E“q1E(q) | q € na) (4.2)
which serves as a coordinate system around 7, with the coordinate denoted by

(g.x".x°), q€n. x" €E*(q), x € E(q). (4.3)
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In this coordinate system, the map F" has the representation
F"(gq,x*,x°) = (f (g, x*,x°),g" (g, x*, x°),¢° (¢, x*, x°) ), (4.4)
where 1 is a large positive integer. If g € §;, then f(g,x*,x°) € 1.

LemMA 4.1. For all y >0, fix an n large enough and fix an € small enough if § is
sufficiently small, then

AT <L (0<k=2), TIh<u (€=12),

A % (4.5)
(A1) TIY < 5 (0=k=2, Ij<p (€=13)
where [|x*|| < ¢, ||x°|| < €, Dy = Dy, Dy = Dyu, D3 = Dys, and
¢ = sup |[Deg’(q.x",x°)[|  (£=1,23),
q,xH,x*

u __ u u S —
I} = qugsllDeg (g.xx)|| (€=1,2,3), (4.6)
1y = sup ||{Dag"(qx" )} ||

gx,x°

Proof. The proof of this lemma follows from assumptions (Al) and (A2) and
the fact that along segment-0 and segment-1, the center-unstable and center-
stable bundles E*(q) ® E°(q) and E*(q) @ E°(q) are invariant under the linearized
flow [1]. O

Let I'c be the space of sections of E,

Te = {o|0(q) = (.x"(9), x*(9), q € 1a [Ix" (@] <€ [Ix°(q)|| <€} (47)

We define the C° norm of ¢ € I'¢ as

ol = max{supuxu(q) ] sup||xs<q>||} (48)
q€Ha

q€Ma

Then we define a Lipschitz seminorm on T¢ as

Lip{o} _max{ sup |lx*(q1) —x (qz)”, [lx*(q1) — x (qz)”}
lg-gi<a g —ql| la-gl=a  |lg1—ql|

(4.9)
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for some small fixed A > 0. Let I'¢ , be a subset of T'c,
Tey= {0 €l |Lip{o} <y} (4.10)
For any o € T,
o(q) = (:x"(9),x°(q)), g € Na, (4.11)
we define the graph transform G as follows:
(Go)(q) = (g, x{(9), xi(q)), (4.12)
where
flq.x"(q7),x(q7))
g'(qx"(q7),x'(q7))
f(a.x{(q).x°(q) = q",
g“(q,x1(q),x°(q)) = x*(q"),

(4.13)

for some g~ and g*.

Tueorem 4.2. The graph transform G is a contraction map on Ic,,. The graph of
the fixed point o* of G is an invariant tube under F.

Proof. The proof of this theorem is similar to that given in detail in [1]. O

Graph{c*} is the invariant tube that €-shadows the §-pseudoinvariant tube
Ha. Let S* be the element of Graph{o*} that shadows the midelement of #,,
which is either Sy or S. Such §*’s for all #, form a set £ of submanifolds. It is
obvious that the following theorem holds.

THEOREM 4.3 (chaos theorem). The set & of submanifolds is invariant under the
map F*N*1. The action of F>N*! on E is topologically conjugate to the action of
the Bernoulli shift automorphism x on X. That is, there exists a homeomorphism
¢ : X — E such that the following diagram commutes:

h
X‘/
by

¢
_

pave (4.14)

M ——  m

e E——
¢
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