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We give a new approach to study the lower semicontinuity properties of nonau-
tonomous variational integrals whose energy densities satisfy general growth
conditions. We apply the theory of Young measures and properties of Orlicz-
Sobolev spaces to prove semicontinuity result.

1. Introduction

In the last years there has been a particular interest in the research of minimizers
of nonautonomous variational integrals whose energy densities satisfy general
growth conditions such as

0≤ f (x,s,z)≤ E(x,s)
{

1 +Φ
(|z|)}, (1.1)

where f = f (x,s,z) is a real Carathéodory function defined in Ω×Rm ×Rmn,
quasiconvex with respect to z, in Morrey’s sense, that is, for every (x0, s0, z0) ∈
Ω×Rm×Rmn and ϕ∈ C∞0 (Ω,Rm) there holds

f
(
x0, s0, z0

)|Ω| ≤
∫
Ω
f
(
x0, s0, z0 +Dϕ(y)

)
dy. (1.2)

The function E : Ω×Rm → R is a positive Carathéodory’s and Φ is an N-func-
tion.

A convex function Φ : [0,+∞[→ [0,+∞[ is called N-function if it satisfies the
following conditions: Φ(0)= 0, Φ(t) > 0 for t > 0, and

lim
t→0

Φ(t)
t
= 0, lim

t→+∞
Φ(t)
t
= +∞. (1.3)

When Φ(z)= zp, we say that f verifies standard growth conditions.
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The study of nonautonomous variational integrals is relevant for studying the
applications in the theory of elastic and magnetostatic material behaviors. Often
a starting point is the necessary and sufficient conditions ensuring sequential
weak lower semicontinuity of the functional

F(u)=
∫
Ω
f
(
x,u(x),Du(x)

)
dx. (1.4)

Acerbi and Fusco [5]and Marcellini [11] give a well-known weak lower semi-
continuity theorem, when f is quasiconvex in Morrey’s sense and satisfies the
standard growth.

Theorem 1.1. Let Ω be an open set in Rm. Assume that f = f (x,s,z) is a real
Carathéodory function defined in Ω×Rm×Rmn, quasiconvex with respect to z in
Morrey’s sense, and such that

0≤ f (x,s,z)≤ a(x) + c
(|s|p + |z|p) for a.e. x ∈Ω, ∀s∈R

m, ∀z ∈R
mn,

(1.5)

where c is a positive constant, p ≥ 1, and a∈ L1
loc(Ω).

Then the functional

u∈W1,p(Ω;Rm
)−→

∫
Ω
f
(
x,u(x),Du(x)

)
dx (1.6)

is sequentially lower semicontinuous in the weak topology of W1,p(Ω;Rm).

In [4], the result has been generalized by Bianconi et al. for general growth
(1.1) and the lower semicontinuity in the weak∗ topology of the Orlicz-Sobolev
spaces is proved.

In some physical problems, there may be situations where we need to identify
limn→∞F(un) for an oscillatory sequence {un} which does not minimize the en-
ergy. Consequently, this will entail a full characterization of the Young measure
generated by the sequence under consideration.

In [7], there is a new proof of Theorem 1.1 by using Young measures. In this
setting the semicontinuity is a direct consequence of the Jensen inequality.

In this paper, we give a new proof of the lower semicontinuity for quasiconvex
integrals satisfying (1.1) in the framework of Young measures.

The first step is the Jensen-type inequality for Young measures in Orlicz-
Sobolev spaces.

Theorem 1.2. Let Ω⊂ Rn be a bounded set, uj ∈W1,Φ,1(Ω,Rm), and Φ∈ ∆2∩
∇2. Suppose that uj → u in L1

loc norm and liminf j
∫
ΩΦ(|Duj(x)|)dx < +∞.

Let f : Ω×Rmn→ [0,+∞] verifying that

(a) f (x,λ) is a Carathéodory function,
(b) a measurable function E : Ω→ R exists such that for almost every x ∈ Ω

and for all λ∈Rmn, f (x,λ)≤ E(x)(1 +Φ(|λ|)) holds,
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(c) the function λ→ f (x,λ) is quasiconvex for almost every x ∈Ω.

Then

f
(
x,
∫

Rmn
λdνx(λ)

)
≤
∫

Rmn
f (x,λ)dνx(λ), (1.7)

Du(x)=
∫

Rmn
λdνx(λ), (1.8)

where {νx}x∈Ω is the Young measure generated by a subsequence of {Duj} j∈N.

In the proof of the Jensen’s inequality for Young measures, an approxima-
tion theorem is fundamental which is an improvement of the result obtained by
Acerbi and Fusco in [1] in the framework of Orlicz-Sobolev spaces.

Theorem 1.3. Let Ω ⊆ Rn be the unit ball and u ∈W1,Φ,1(Ω,Rm) with Φ a
genericN-function, then for every constant h > 0, there exist a function uh ∈ Lip(Ω,
Rm) and a closed set Fh ⊂Ω such that

(i) ‖Φ(∇uh)‖L∞(Ω,Rm) ≤Φ(h),
(ii) ∇u=∇uh a.e. in Fh,

(iii) limh→+∞ |Ω \Fh| = 0,
(iv) if Φ∈ ∆2∩∇2, then limh→+∞Φ(h)|Ω \Fh| = 0.

The Jensen inequality is the main tool of the following theorem.

Theorem 1.4. Let Ω⊆Rn be a bounded set and let f : Ω×Rm×Rmn → [0,+∞]
with the following properties:

(1) f (x,s,λ) is a Carathéodory function,
(2) a Carathéodory function E(·,·) exists such that, for a.e. x and for almost

(s,λ), f (x,s,λ) ≤ E(x,s)(1 +Φ(|λ|)), where Φ is an N-function with Φ ∈
∆2∩∇2,

(3) for a.e. x and for all s, the mapping λ → f (x,s,λ) is quasiconvex.

Then for every {uj} j∈N, uj ∈W1,Φ,1(Ω,Rm) such that uj → u in L1
loc(Ω,Rm) and

liminf j
∫
ΩΦ(|Duj(x)|)dx < +∞,

I(u)≤ liminf
j

I
(
uj
)
. (1.9)

Proof. Let α = liminf j I(uj). If α = +∞, the assertion is satisfied. Suppose that
α < +∞. In this case the sequence { f (x,uj(x),Duj(x))} j∈N is bounded in L1(Ω).
Then we can find a subsequence {ul}l of {uj} j∈N with the following properties:

(1) I(ul)→ α as l→ +∞,
(2) {Dul}l generates the Young measure {νx}x∈Ω,
(3) there exists a family {Ek}k∈N of sets such that |Ek| → 0 as k→ +∞ and

{ f (x,ul(x),Dul(x))}l is weakly convergent in L1(Ω \ Ek) to
∫
Rmn f (x,

u(x),λ)dνx(λ).
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Since fu(x,λ)= f (x,u(x),λ) satisfies the assumptions of Theorem 1.2, we have∫
Rmn

fu(x,λ)dνx(λ)≥ fu
(
x,Du(x)

)
, (1.10)

hence ∫
Rmn

f
(
x,u(x),λ

)
dνx(λ)≥ f

(
x,u(x),Du(x)

)
(1.11)

for a.e. x. Now it suffices to note that

α= liminf
j→+∞

I
(
uj
)= lim

l→+∞

∫
Ω
f
(
x,ul(x),Dul(x)

)
dx

≥ lim
l→+∞

∫
Ω\Ek

f
(
x,ul(x),Dul(x)

)
dx.

(1.12)

The sequence f (x,ul(x),Dul(x)) is weakly convergent in L1(Ω \ Ek), then by
dominate convergence

lim
l→+∞

∫
Ω\Ek

f
(
x,ul(x),Dul(x)

)
dx =

∫
Ω\Ek

∫
Rmn

f
(
x,u(x),λ

)
dνx(λ)dx

≥
∫
Ω\Ek

f
(
x,u(x),Du(x)

)
dx

= I(u)|Ω\Ek ,

(1.13)

the last inequality holds for Theorem 1.2. Now by the fact that |Ek| → 0, we have
that in Ω, (1.9) is true, then

liminf
j→+∞

I
(
uj
)≥ I(u). (1.14)

�

2. Notations and preliminaries

We denote by 〈·,·〉 the Euclidean scalar product in Rn and by | · | the usual Eu-
clidean norm. Throughout the paper, Ω denotes an open and bounded subset of
Rn with Lipschitz boundary. We denote by | | the Lebesgue measure on Rn and
the notation a.e. stands for almost everywhere with respect to Lebesgue mea-
sure. We use standard notations for spaces of classically differentiable functions,
Lebesgue and Sobolev spaces.

We recall some definitions and known properties of N-functions and Orlicz
spaces (see [9, 14]).

In the sequel, we will often use the following convexity inequality: for every s,
t ∈R and λ > 1,

Φ(s+ t)≤ 1
λ
Φ(λs) +

(
1− 1

λ

)
Φ
(

λ

λ− 1
t
)
. (2.1)

Now we will consider a special class of N-functions.
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Definition 2.1. An N-function Φ satisfies the ∆2 condition, that is Φ ∈ ∆2, if
there exist r > 1 and t0 ≥ 0 such that for every t ≥ t0 and λ > 1 there holds

Φ(λt)≤ λrΦ(t). (2.2)

Definition 2.2. An N-function Φ satisfies the ∇2 condition, that is Φ ∈ ∇2, if
there exist r > 1 and t1 ≥ 0 such that for every t ≥ t1 and k > 1 there holds

Φ(kt)≥ krΦ(t). (2.3)

For further properties of N-functions of classes ∆2 and ∇2, see [2, 9, 10, 14].
Let Ω be an open bounded set of Rn, the Orlicz class KΦ(Ω,Rm) is the set of all
equivalence classes modulo equality a.e. in Ω of measurable functions u : Ω→
Rm satisfying ∫

Ω
Φ
(|u|)dx < +∞. (2.4)

The Orlicz space LΦ(Ω,Rm) is defined to be the linear hull of KΦ(Ω,Rm).
The Orlicz-Sobolev spaceW1LΦ(Ω,Rm) is defined to be the set of all functions

in LΦ(Ω,Rm) whose first-order distributional derivatives are in LΦ(Ω,Rm). In
the sequel, for a fixed λ > 0 we will consider the convex functional set

W1,Φ,λ(Ω,Rm
)= {u∈W1,1(Ω,Rm

)
:
∫
Ω
Φ
(
λ|Du|)dx < +∞

}
. (2.5)

3. An approximation theorem

In this section, we give an approximation theorem for functions in W1,Φ,1; we
will use the properties of the maximal function, some of which are related with
the properties of N-functions. For details see [15].

Definition 3.1. For every f ∈ L1
loc(Rn), set

M f (x)= sup
r>0

1∣∣B(x,r)
∣∣
∫
B(x,r)

∣∣ f (y)
∣∣dy, (3.1)

and if f ∈W1,1
loc (Rn), set M′ f (x)=M(|∇ f |), that is,

M′ f (x)=
n∑
i=1

M fxi(x). (3.2)

We state particular properties for the maximal function (see [8, 12]).

Theorem 3.2. Let Φ ∈ ∆2 be an N-function and f a given positive function in
L1

loc(Rn).
Then if there exists a constant a > 1 such that

Φ(t) <
1

2a
Φ(at), t ≥ 0, (3.3)
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then

∫
Rn
Φ
(
M f (x)

)
dx ≤ c

∫
Rn
Φ
(
f (x)

)
dx. (3.4)

The maximal function M′ permits to control the difference quotient of u ∈
W1,1

loc (Rn) outside a set of small measure.

Definition 3.3. Set, for any u∈W1,1
loc (Rn) and for any λ > 0,

Hλ,u =
{
x ∈R

n :M′u(x) < λ
}
. (3.5)

Lemma 3.4. There exists a constant c1 = c1(n) such that, for every u∈ C∞0 (Rn,Rm),

∣∣u(x)−u(y)
∣∣

|x− y| ≤ c1λ ∀x, y ∈Hλ,u. (3.6)

We now give other properties which relate the maximal function and the N-
function.

Lemma 3.5. Let Φ be an N-function, then for every f ∈ L1(Rn) and for every
constant λ > 0,

Φ(λ)
∣∣{x ∈R

n :M f (x)≥ λ}∣∣≤
∫

Rn
Φ
(
f (x)

)
dx. (3.7)

Proof. By the Jensen inequality applied to the convex function Φ, we obtain

Φ
(
M f (x)

)≤M(Φ( f (x)
))

; (3.8)

for the monotonicity of Φ there is

Φ(λ)
∣∣{x ∈R

n :M f (x)≥ λ}∣∣=Φ(λ)
∣∣{x ∈R

n : Φ
(
M f (x)

)≥ φ(λ)
}∣∣

≤Φ(λ)
∣∣{x ∈R

n :M
(
Φ
(
f (x)

))≥Φ(λ)
}∣∣

≤
∫

Rn
Φ
(
f (x)

)
dx.

(3.9)

The last inequality is a property of the maximal operator M [15]. �

In the sequel, we will use the following approximation result (for the proof
see [6]).
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Lemma 3.6. Let Ω be a regular open set of Rn; if u∈W1,Φ,1(Ω,Rm), there exist a
constant σ > 0 and a sequence uk ∈ C∞0 (Ω,Rm) which converges modularly to u:
uk

σ−−→
mod

u, that is,

lim
k→+∞

∫
Ω
Φ

(∣∣Du(x)−Duk(x)
∣∣

σ

)
dx = 0. (3.10)

Remark 3.7. In [6] the last result was proved only in the scalar case, but it is easy
to show that it holds in general.

Now we have all the necessary ingredients to prove the approximation theo-
rem.

Proof of Thereom 1.3. Let u∈W1,Φ,1(Ω,Rm), uk ∈ C∞0 (Ω,Rm), and let σ be as in
Lemma 3.6.

In this framework we prove that if fk ∈ C∞0 (Rn,Rm) and f ∈W1,Φ,1(Rn,Rm)
with fk

σ−−→
mod

f , then a subsequence, which we will denote by fk, exists, such that

M′ fk →M′ f in measure.
In fact, by the property |Mg1(x)−Mg2(x)| ≤M(g1− g2)(x), for α > 0, there

is

∣∣{x ∈R
n :
∣∣M′ f (x)−M′ fk(x)

∣∣≥ σα}∣∣

≤
∣∣∣∣∣
{
x ∈R

n :M

(∣∣D f (x)−D fk(x)
∣∣

σ

)
≥ α

}∣∣∣∣∣;
(3.11)

applying Lemma 3.5 in (3.11) and the modular convergence, we have

∣∣{x ∈R
n :
∣∣M′ f (x)−M′ fk(x)

∣∣≥ σα}∣∣

≤ 1
Φ(α)

∫
Rn
Φ

(∣∣D f (x)−D fk(x)
∣∣

σ

)
dx

k→+∞−−−−→ 0;
(3.12)

therefore, M′ fk →M′ f in measure, then a subsequence M′ fkj of M′ fk, which
we will denote by M′ fk, exists such that M′ fk →M′ f a.e. in Rn.

Let E ⊂Rn be the set with |E| = 0 and

R
n \E = {x ∈R

n : fk(x)−→ f (x), M′ fk(x)−→M′ f (x)
}
. (3.13)

We define another sequence as

vk(x) := 1
1 + σ

uk(x) ∀k ∈N. (3.14)
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Then vk ∈ C∞0 (Ω,Rm) for all k > 0. Let v∗k be the natural extension of vk on Rn,
still denoted with vk, then compute

∫
Rn
Φ
(∣∣Dvk(x)

∣∣)dx ≤
∫
Ω

σ

1 + σ
Φ
(∣∣Duk(x)−Du(x)

∣∣)dx
+
∫
Ω

1
1 + σ

Φ
(∣∣Du(x)

∣∣)dx
= σ

1 + σ

∫
Ω
Φ

(∣∣Duk(x)−Du(x)
∣∣

σ

)
dx

+
1

1 + σ

∫
Ω
Φ
(∣∣Du(x)

∣∣)dx.

(3.15)

By the modular convergence and since u∈W1,Φ,1(Ω,Rm), we have

∫
Rn
Φ
(∣∣Dvk(x)

∣∣)dx < Γ < +∞; (3.16)

therefore, vk ∈W1,Φ,1(Rn,Rm).
For h > 0, define

Ωh,u =
{
x ∈Ω :M′u(x) <

h

c1

}
, (3.17)

where c1 is the constant of Lemma 3.4.
Since M′uk →M′u a.e. on Ω, then a constant k0 exists such that, for every

k > k0,

M′uk(x) <
h

c1
a.e. x ∈Ωh,u, (3.18)

and for Lemma 3.4∣∣uk(x)−uk(y)
∣∣

|x− y| ≤ c1
h

c1
= h a.e. x, y ∈Ωh,u. (3.19)

As k→ +∞ we obtain ∣∣u(x)−u(y)
∣∣

|x− y| ≤ h a.e. x, y ∈Ωh,u, (3.20)

and we can conclude that the function u is h-Lipschitz continuous in Ωh,u.
Furthermore, note that

Ω \Ωh,u =
{
x ∈Ω :M′u(x)≥ h

c1

}

=
{
x ∈Ω :M′u(x)−M′uk(x) +M′uk(x)≥ h

c1

}
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⊂
{
x ∈Ω :

∣∣M′u(x)−M′uk(x)
∣∣+M′uk(x)≥ h

c1

}

⊂
{
x ∈Ω :

∣∣M′u(x)−M′uk(x)
∣∣≥ h

2c1

}

∪
{
x ∈Ω :M′uk(x)≥ h

2c1

}
,

(3.21)

and then

∣∣Ω \Ωh,u

∣∣≤
∣∣∣∣
{
x ∈Ω :

∣∣M′u(x)−M′uk(x)
∣∣≥ h

2c1

}∣∣∣∣
+
∣∣∣∣
{
x ∈Ω :M′uk(x)≥ h

2c1

}∣∣∣∣.
(3.22)

The first term becomes

∣∣∣∣
{
x ∈Ω :

∣∣M′u(x)−M′uk(x)
∣∣≥ h

2c1

}∣∣∣∣
=
∣∣∣∣
{
x ∈Ω :

∣∣M′u(x)−M′uk(x)
∣∣

σ
≥ h

2c1σ

}∣∣∣∣
≤ 1

Φ
(
h/2c1σ

) ∫
Ω
Φ

(∣∣Duk(x)−Du(x)
∣∣

σ

)
dx;

(3.23)

for the second term, we compute

∣∣∣∣
{
x ∈Ω :M′uk(x)≥ h

2c1

}∣∣∣∣=
∣∣∣∣
{
x ∈Ω :M′vk(x)≥ h

2c1(1 + σ)

}∣∣∣∣
≤
∣∣∣∣
{
x ∈R

n :M
(∣∣Dvk(x)

∣∣)≥ h

2c1(1 + σ)

}∣∣∣∣
≤ 1

Φ
(
h/2c1(1 + σ)

) ∫
Rn
Φ
(∣∣Dvk(x)

∣∣)dx
≤ Γ

Φ
(
h/2c1(1 + σ)

) .
(3.24)

By (3.23) and (3.24), we have

∣∣Ω \Ωh,u

∣∣≤ 1
Φ
(
h/
(
2c1σ

)) ∫
Rn
Φ

(∣∣Duk(x)−Du(x)
∣∣

σ

)
dx

+
Γ

Φ
(
h/2c1(1 + σ)

) .
(3.25)
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As is well known, there exists an h-Lipschitzian function uh : Ω→Rm with uh ≡
u a.e. in Ωh,u and supΩ |uh| = supΩh,u

|u| for every h > 0.
Moreover, {x ∈Ω : uh �= u} =Ω \ (Ωh,u \E) and |E| = 0.
Then

∣∣{x ∈Ω : uh �= u
}∣∣= ∣∣Ω \Ωh,u

∣∣. (3.26)

Since Ωh,u is a measurable open bounded set, then for every h > 0 there exists a
closed set Fh ⊂Ωh,u such that |Ωh,u \Fh| ≤ 1/Φ2(h).

Then Du≡Duh a.e. in Fh; hence

∣∣Ω \Fh∣∣= ∣∣Ω \Ωh,u

∣∣+
∣∣Ωh,u \Fh

∣∣≤ ∣∣Ω \Ωh,u

∣∣+
1

Φ2(h)
. (3.27)

By (3.25),

lim
h→+∞

∣∣Ω \Fh∣∣= 0 (3.28)

and Theorem 1.2(c) is proved.
When Φ∈ ∆2∩∇2, we will prove

lim
h→+∞

Φ(h)
∣∣Ω \Fh∣∣= 0. (3.29)

In fact,

Φ(h)
∣∣Ω \Fh∣∣=Φ(h)

∣∣Ω \Ωh,u

∣∣+Φ(h)
∣∣Ωh,u \Fh

∣∣
≤ 2

Φ(h)
+Φ(h)

∣∣Ω \Ωh,u

∣∣. (3.30)

Since Φ∈ ∆2, we can compute

Φ(h)
∣∣∣∣
{
x ∈Ω :M′u(x)≥ h

c1

}∣∣∣∣
≤ cΦ

(
h

c1

)∣∣∣∣
{
x ∈Ω :M′u(x)≥ h

c1

}∣∣∣∣
≤ cΦ

(
h

c1

)∣∣∣∣
{
x ∈Ω :MΦ

(∣∣Du(x)
∣∣)≥Φ

(
h

c1

)}∣∣∣∣
≤ c

∫
{x∈Ω:M(Φ(|Du|))(x)≥Φ(h/c1)}

M
(
Φ(|Du|))(x)dx.

(3.31)

By assumption, Φ ∈ ∇2 and Φ(|Du|) ∈ L1(Ω,Rm) and by Theorem 3.2,
M(Φ(|Du|))∈ L1(Ω) holds, so we have

Φ(h)
∣∣∣∣
{
x ∈Ω :M′u(x)≥ h

c1

}∣∣∣∣ h→+∞−−−−→ 0 (3.32)
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and we obtain (3.29). Finally for the monotonicity of Φ and the property of uh,
we have

∣∣Duh∣∣≤ h=⇒Φ
(∣∣Duh∣∣)≤Φ(h)=⇒ ∥∥Φ(∣∣Duh∣∣)∥∥L∞(Ω,Rm) ≤Φ(h), (3.33)

which completes the proof. �

4. Young measures and Jensen inequality

In this section, we give the proof of Theorem 1.2, based on arguments of the
theory of Young measures. Hence we recall the most important properties; for
the related proofs and particular results, we refer to [3, 7, 13].

A Young measure is a family of probability measures ν= {νx}x∈Ω associated
with a sequence of functions f j : Ω ⊂ Rn → Rm, such that supp(νx) ⊂ Rm, de-
pending measurably on x ∈Ω in the sense that for any continuous φ : Rm →R,
the function of x

φ̄(x)=
∫

Rm
φ(λ)dνx(λ)= 〈φ,νx〉 (4.1)

is measurable.
If {uj} j∈N is a sequence of measurable functions uj : Ω→Rm such that

sup
j

∫
Ω
g
(∣∣uj∣∣)dx < +∞, (4.2)

where g : [0,+∞) → [0,+∞] is a continuous nondecreasing function and
limx→+∞ g(x)= +∞, then by Young existence theorem, there exist a subsequence,
not relabeled, and a family of probability measures {νx}x∈Ω (the associated
Young measure) depending measurably on x with the property that whenever
the sequence {ψ(x,uj(x))} j∈N is weakly convergent in L1(Ω) for any Carathéo-
dory function ψ(x,λ) : Ω × Rm → R̄, the weak limit is the function ψ̄(x) =∫
Rm ψ(x,λ)dνx(λ).

Finally if we have that uj = (wj,v j) : Ω→Rm×Rk generates the Young mea-
sure {µx}x∈Ω, wj → w in measure and that the sequence {v j} j∈N generates the
Young measure {νx}x∈Ω, then for almost every x ∈ Ω we have µx = δw(x) ⊗ νx,
which means that for any f ∈ C0(Rm×Rk) and almost every x ∈Ω,

∫
Rm×Rk

f (s,λ)dµx(s,λ)=
∫

Rk
f
(
w(x),λ

)
dνx(λ). (4.3)

Before giving the proof of Jensen inequality of Theorem 1.2 we need the fol-
lowing proposition.



892 Semicontinuity by Young measures

Proposition 4.1. Let λ∈Rmn and let f : Rmn→R be a continuous function such
that

f (λ)≤ c(1 +Φ
(|λ|)) (4.4)

with Φ∈ ∆2∩∇2.
For {uj} j∈N in W1,φ,1(Ω,Rm) such that

sup
j

∫
Ω
Φ
(∣∣Duj(x)

∣∣)dx ≤M, (4.5)

let u
j
k ∈ Lip(Ω,Rm) be the Lipschitz function sequence of Theorem 1.3. Let {νx}x∈Ω

and {νkx}x∈Ω be the Young measures generated by the sequences {Duj} j∈N and

{Dujk} j∈N, respectively. Then for all ε > 0 there exists a subset E ⊂ Ω such that
|E| < ε and 〈 f ,νkx〉 → 〈 f ,νx〉 in L1(Ω \E) as k→ +∞.

Proof. Take ε > 0; according to the Biting lemma (see [13]), we can find a set
E ⊂Ω such that |E| < ε and f (Duj)⇀ f̄ in L1(Ω \E).

By the Young existence theorem, 〈 f ,νx〉 is the weak limit of f (Duj); hence
f̄ = 〈 f ,νx〉 a.e. in Ω. Then,∫

Ω\E

∣∣〈 f ,νkx〉− 〈 f ,νx〉∣∣dx
= sup
‖ψ‖L∞≤1

∣∣∣∣
∫
Ω\E

ψ(x)
(〈
f ,νkx

〉− 〈 f ,νx〉)dx
∣∣∣∣

= sup
‖ψ‖L∞≤1

∣∣∣∣ lim
j→+∞

∫
Ω\E

ψ(x)
(
f
(
Du

j
k

)− f
(
Duj

))
dx
∣∣∣∣

≤ sup
‖ψ‖L∞≤1

lim
j→+∞

∫
Ω\E

∣∣ψ(x)
∣∣∣∣ f (Dujk)− f

(
Duj

)∣∣dx
= sup
‖ψ‖L∞≤1

lim
j→+∞

∫
(Ω\E)\F jk

∣∣ψ(x)
∣∣∣∣ f (Dujk)− f

(
Duj

)∣∣dx
+ sup
‖ψ‖L∞≤1

lim
j→+∞

∫
(Ω\E)∩F jk

∣∣ψ(x)
∣∣∣∣ f (Dujk)− f

(
Duj

)∣∣dx
≤ sup

j

∫
(Ω\E)\F jk

∣∣ f (Dujk)− f
(
Duj

)∣∣dx
≤ sup

j

∫
(Ω\E)\F jk

∣∣ f (Dujk)∣∣dx+ sup
j

∫
(Ω\E)\F jk

∣∣ f (Duj)∣∣dx.

(4.6)

Since

sup
j

∫
(Ω\E)\F jk

∣∣ f (Dujk)∣∣dx
≤ sup

j

∫
(Ω\E)\F jk

c
(
1 +Φ

(∣∣Dujk∣∣))dx
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≤ sup
j
c
∣∣(Ω \E) \F j

k

∣∣+ sup
j

∫
(Ω\E)\F jk

cΦ
(∣∣Dujk∣∣)dx

≤ sup
j
c
∣∣(Ω \E) \F j

k

∣∣+ sup
j
cΦ(k)

∣∣(Ω \E) \F j
k

∣∣
(4.7)

by Theorem 1.3 for all j ∈N,

∣∣(Ω \E) \F j
k

∣∣ k→+∞−−−−→ 0, Φ(k)
∣∣(Ω \E) \F j

k

∣∣ k→+∞−−−−→ 0. (4.8)

For the second term of (4.6),

sup
j

∫
(Ω\E)\F jk

∣∣ f (Duj)∣∣dx ≤ sup
j

∫
(Ω\E)\F jk

c
(
1 +Φ

(∣∣Duj∣∣)). (4.9)

Passing to the limit for k in (4.7) and (4.9), we have 〈 f ,νkx〉 → 〈 f ,νx〉 in L1(Ω \E)
as k→ +∞ and the theorem is proved. �

Finally we get the Jensen’s inequality.

Proof of Theorem 1.2. We can assume that Ω is a ball of Rn.
For the proof of (1.8), we define the Carathéodory functionΨ(h,s) : Ω×Rmn→

R, with Ψ(h,s)(x,λ) = λh,s, where λh,s is the element in position (h,s) of the ma-
trix λ∈Rmn. Then for what recalled about Young measures, Ψ(h,s)(x,Duj(x))⇀
Ψ̄(h,s)(x) = ∫

RmnΨ(h,s)(x,λ)dνx(λ) holds, as j → +∞, in L1(Ω), and by hypothe-
sis, Ψ(h,s)(x,Duj(x))⇀ (Du(x))h,s as j → +∞. So by uniqueness of weak limit we
have

(
Du(x)

)
h,s =

∫
Rmn

λh,s dνx(λ) for almost every x ∈Ω, (4.10)

for all h= 1,2, . . . ,m and s= 1,2, . . . ,n, then

Du(x)=
∫

Rmn
λdνx(λ) for almost every x ∈Ω. (4.11)

Now we divide the proof into 4 steps.

Step 1. Suppose that f = f (λ) is continuous and uj ∈W1,∞(Ω,Rm) and take
x ∈ Ω and r > 0 such that Q(x,r) ⊂ Ω. Let σ be a constant with 0 < σ < r and
φσ ∈ C∞0 (Q(x,r)), where φσ ≡ 1 on Q(x,r − σ). Applying standard arguments,

the function w
j
σ = φσ · (uj −u) can be substituted in the definition of quasicon-

vexity; hence we have

f (A)≤ 1∣∣Q(x,r)
∣∣
∫
Q(x,r)

f
(
A+Dφσ ·

(
uj −u)+φσ ·

(
Duj −Du))dy (4.12)

for all A∈Rmn.
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Let

I(x,r,σ, j)= 1∣∣Q(x,r)
∣∣
∫
Q(x,r)

f
(
A+Dφσ ·

(
uj −u)+φσ ·

(
Duj −Du))dy.

(4.13)

Since {Dwj
σ} is uniformly bounded on Ω, the sequence { f (A+Dw

j
σ)} j∈N is rel-

atively compact in L1(Ω). We define

v j = (uj −u,Duj) : Ω−→R
m×R

mn, (4.14)

which generates the Young measure {µy}y∈Ω; furthermore, uj −u→ 0 in L1(Ω)
as j → +∞ andDuj generates the Young measure {νy}y∈Ω; then for almost every
y ∈Ω, µy = δ0⊗ νy holds. If we consider ḡ(s,λ)= f (A+Dφσ · s+φσ · (λ−Du)),
where s = uj − u and λ = Duj , we have |ḡ(s,λ)| ≤ K , where K is a constant de-
pending only on A, hence the following holds:∫

Rm×Rmn
ḡ(s,λ)dµy(s,λ)=

∫
Rmn

ḡ(0,λ)dνy(λ). (4.15)

Furthermore, the Young existence theorem gives

ḡ(s,λ)⇀
∫

Rm×Rmn
ḡ(s,λ)dµy(s,λ). (4.16)

Then, by the definition of ḡ, the following holds:

f
(
A+Dφσ · s+φσ · (λ−Du)

)
⇀
∫

Rmn
f
(
A+ϕσ(λ−Du)

)
dνy(λ). (4.17)

Hence by (4.17), we have

I(x,r,σ, j)
j→+∞−−−−→ 1∣∣Q(x,r)

∣∣
∫
Q(x,r)

∫
Rmn

f
(
A+ϕσ(λ−Du)

)
dνy(λ)dy

= I(x,r,σ),
(4.18)

where νy is supported on a bounded set. Applying the Lebesgue convergence
theorem and taking the limit on σ , we have

I(x,r,σ)−→ 1∣∣Q(x,r)
∣∣
∫
Q(x,r)

∫
Rmn

f (A+ λ−Du)dνy(λ)dy. (4.19)

By the theorem about the Lebesgue’s points for every A∈ Rmn, a set Ω(A)⊂Ω
exists such that |Ω \Ω(A)| = 0 and for all x ∈Ω(A),

f (A)≤
∫

Rmn
f (A+ λ−Du)dνy(λ). (4.20)

Furthermore, we can suppose that supx∈Ω(A) |Du(x)| <∞. Let {Aj} be a dense
and countable subset of Rmn.
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Consider now the set Ω1 =
⋂

jΩ(Aj) of full measure in Ω

∣∣Ω \Ω1
∣∣=

∣∣∣∣∣∣
⋃
j

Ω \Ω(Aj
)∣∣∣∣∣∣≤

∑
j

∣∣Ω \Ω(Aj
)∣∣= 0. (4.21)

Hence for every x ∈Ω1, (4.20) holds with A = Aj . Let x ∈Ω1, then by density,
there exists a subsequence Ajk which converges to Du(x)∈ Rmn as k→ +∞. Fi-
nally, it is sufficient to note that f (Ajk )→ f (Du(x)) by continuity of f , and

∫
Rmn

f
(
Ajk −Du(x) + λ

)
dνx(λ)−→

∫
Rmn

f (λ)dνx(λ). (4.22)

Furthermore, by the equality Du(x) = ∫
Rmn λdνx(λ) = 〈λ,νx〉 and by (4.20) we

have

f
(
Du(x)

)= lim
k
f
(
Ajk
)≤

∫
Rmn

f
(
Ajk −Du(x) + λ

)
dνx(λ)

=
∫

Rmn
f (λ)dνx(λ),

(4.23)

and we can conclude that

f
(∫

Rmn
λdνx(λ)

)
≤
∫

Rmn
f (λ)dνx(λ). (4.24)

Step 2. Suppose that f = f (λ) is continuous and uj ∈W1,Φ,1(Ω,Rm).
By the approximation theorem (Theorem 1.3) applied at u∈W1,Φ,1(Ω,Rm),

we have for every k > 0 a function uk ∈ Lip(Ω,Rm) such that‖Φ(|Duk|)‖L∞(Ω,Rm) ≤
Φ(k), Du≡Duk a.e. on Fk with Fk ⊂Ω closed set such that Φ(k)|Ω \Fk| → 0 as
k→ +∞.

Applying Theorem 1.3 to uj , we obtain the function u
j
k. Note that u

j
k ∈ Lip(Ω,

Rm) verifies the assumptions in Step 1, then the following holds:

f
(〈
λ,νkx

〉)≤
∫

Rmn
f (λ)dνkx(λ), (4.25)

where {νkx}x∈Ω is the Young measure generated by {Dujk} j and λ is the identity
function g(λ)= λ. Hence

f
(〈
λ,νkx

〉)= f
(∫

Rmn
λdνkx(λ)

)
. (4.26)

By Proposition 4.1 for g(λ)= λ, we have

〈
λ,νkx

〉−→ 〈
λ,νx

〉
(4.27)
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as k→ +∞. In the left-hand side of (4.25), by continuity of f , we have

f
(〈
λ,νkx

〉) k→+∞−−−−→ f
(〈
λ,νx

〉)
(4.28)

a.e. in Rmn. Applying Proposition 4.1, we obtain

〈
f ,νkx

〉 k→+∞−−−−→ 〈
f ,νx

〉
(4.29)

on Rmn. Finally, passing to the limit as k→ +∞ in (4.25), we have proved that

f
(〈
λ,νx

〉)≤ 〈 f ,νx〉, (4.30)

then for (4.26),

f
(∫

Rmn
λνx(λ)

)
≤
∫

Rmn
f (λ)νx(λ). (4.31)

Step 3. Let f = f (x,λ) be continuous and uj ∈W1,Φ,1(Ω,Rm), and let E(x) ≤
L < +∞. If {bj} j∈N is a dense set in Ω, for every j ∈ N, define f j = f (bj ,λ); so

by Step 2 there exists Ω
j
1 ⊂Ω with |Ω \Ω j

1| = 0 such that for all x ∈Ω
j
1, we have

f
(
bj ,
∫

Rmn
λdνx(λ)

)
≤
∫

Rmn
f
(
bj ,λ

)
dνx(λ). (4.32)

Define

Ω1 =
∞⋂
j=1

Ω
j
1, (4.33)

then |Ω \Ω1| = 0. For every fixed x ∈Ω1, by density of {bj} j∈N, there exists a
subsequence bjk which converges to x as k→ +∞; then by continuity of f and by
dominated convergence theorem the following holds:

f
(
bjk ,

∫
Rmn

λdνx(λ)
)

k→+∞−−−−→ f
(
x,
∫

Rmn
λdνx(λ)

)
,

∣∣ f (bjk ,λ)∣∣≤ ∣∣E(bjk)∣∣∣∣1 +Φ
(|λ|)∣∣≤ L(1 +Φ

(|λ|)).
(4.34)

Hence

∫
Rmn

f
(
bjk ,λ

)
dνx(λ)

k→+∞−−−−→
∫

Rmn
f (x,λ)dνx(λ). (4.35)
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Passing to the limit on k→ +∞ in (4.32), we have

f
(
x,
∫

Rmn
λdνx(λ)

)
≤
∫

Rmn
f (x,λ)dνx(λ). (4.36)

Step 4. Let now f (x,λ) be a Carathéodory function such that, for almost ev-
ery x ∈Ω, | f (x,λ)| ≤ E(x)(1 +Φ(|λ|)) is verified. Applying the Scorza-Dragoni
theorem to f (x,λ) and the Lusin theorem to E(x), there exists for every ε > 0
a compact set Ωε with |Ω \Ωε| < ε such that f (x,λ) is continuous in Ωε ×Rmn

and E(x) is bounded in Ωε. For Step 3, we obtain the assertion in Ωε and then in
Ω. Hence (1.7) is proved. �
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