
MINIMAX THEOREMS ON C1 MANIFOLDS
VIA EKELAND VARIATIONAL PRINCIPLE

MABEL CUESTA

Received 10 January 2003

We prove two minimax principles to find almost critical points of C1 functionals
restricted to globally defined C1 manifolds of codimension 1. The proof of the
theorems relies on Ekeland variational principle.

1. Introduction

Let X be a Banach space and Φ : X →R of class C1. We are interested in finding
critical points for the restriction of Φ to the manifold M = {u ∈ X : G(u)= 1},
where G : X → R is a C1 function having 1 as a regular value. A point u ∈M is
a critical point of the restriction of Φ to M if and only if dΦ(u)|TuM = 0 (see the
definition in Section 2).

Our purpose is to prove two general minimax principles to find almost critical
points ofΦ restricted toM. A compactness condition of (PS) type will then imply
the existence of a critical point.

The applications of minimax principles in the theory of elliptic PDEs are well
known and the reader is referred, for instance, to [15] for a thorough introduc-
tion to the subject. For applications of minimax principles on C1 manifolds, we
refer, for instance, to [2, 8, 11, 13, 16].

In this paper, we present two general minimax principles, Theorems 2.1 and
2.6, for functionals Φ restricted to M. The first one, Theorem 2.1, is a theo-
rem of “mountain-pass type” and the second one, Theorem 2.6, is a theorem of
“Ljusternik-Schnirelman type.”

A standard approach to prove such results is to first derive a deformation
lemma on the manifold M. In the case of Theorem 2.6, one would ask fur-
thermore the deformation to be symmetric, that is, equivariant under the ac-
tion of the group Z2. Classically the deformation homotopy is constructed with
the help of integral lines of a pseudogradient vector field of Φ on M. Since the
construction of the integral lines requires the vector field to be locally Lipschitz
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continuous, it seems necessary to assume that M is at least C1,1. Deformation
lemmas and their equivariant versions for C1,1 manifolds are well-established
results and we refer to [15].

However, in some applications the manifold M is merely of class C1 and
then one has to construct the deformation more carefully. As a matter of fact,
several deformation lemmas on C1 manifolds have already been proved by [3,
4, 7, 13] and, precisely, the deformation lemma of [7] could be used to prove
Theorem 2.1. According to our knowledge, the only symmetric version of the
deformation lemma on C1 manifolds has been proved by [3, 4]. The equivariant
deformation lemmas of [13, 15] are stated for manifolds of class C1,1 and the
symmetric deformation lemma of [7] is stated on Banach spaces. These defor-
mation theorems do not seem to apply directly in the proof of Theorem 2.6 or
Proposition 2.7.

The main novelty of this paper is that we present a proof that relies mainly on
the variational principle of Ekeland without any use of a deformation lemma. The
only cost of this approach is that we need to assume the space X to be uniformly
convex. This is not however a restriction for the applications that we have in

mind where X =W
1,p
0 (Ω) or Lp(Ω) for 1 < p <∞ and Ω is an open set of Rn.

This approach via Ekeland principle to prove a minimax principle similar to
Theorem 2.1 has already been used by [5, 9, 14] in the case of no constraint,
that is, when M = X . Our proof follows the general lines of [9]. Our approach
also seems to be new in proving the analogue of Theorem 2.6 in the case of no
constraint or for the proofs of Theorems 2.1 and 2.6 in the case of more regular
manifolds.

2. Statement of the theorems

Let X be a Banach space with norm ‖ · ‖X , X∗ a dual space, and 〈·,·〉 a dual-
ity pairing between X∗ and X . We will assume throughout this paper that X is
uniformly convex (see [10]).

Let G : X →R be given and assume that G∈ C1(X,R) and 1 is a regular value

of G. We consider the C1 manifold M
def= {u∈ X : G(u)= 1}. For Φ∈ C1(X,R),

the norm of the derivative at u ∈M of the restriction Φ̃ of Φ to M is defined
as ‖Φ̃′(u)‖∗ def= ‖dΦ(u)‖(TuM)∗ , where TuM = {v ∈ X : 〈dG(u),v〉 = 0} denotes
the tangent space to M at u and ‖ · ‖(TuM)∗ denotes the norm on the dual space
(TuM)∗.

In what follows K is a given compact metric space and K0 ⊂ K is a closed
subset.

Theorem 2.1. Let Φ ∈ C1(X,R) and let h0 ∈ C(K0,M) be fixed. Consider the
family Γ= {h∈ C(K,M) : h|K0

= h0} and assume that Γ 
= ∅. Assume further that
the following condition holds:

max
z∈K0

Φ
(
h0(z)

)
< max

z∈K
Φ
(
h(z)

)
(2.1)
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for all h∈ Γ. Define c
def= infh∈Γ maxz∈K Φ(h(z)). Let ε > 0 and h∈ Γ be such that

maxz∈K Φ(h(z)) < c+ ε2. Then there exists u∈M such that

c ≤Φ(u)≤ c+ ε2, dist
(
u,h(K)

)≤ ε, ∥∥Φ̃′(u)
∥∥∗ ≤ ε. (2.2)

The following propositions follow directly from Theorem 2.1. We recall that
Φ is said to satisfy the (PS) condition on M at level c ((PS)c,M for short) if any
sequence un ∈M, such that limn→∞Φ(un)= c and limn→∞‖Φ̃′(un)‖∗ = 0, pos-
sesses a convergent subsequence.

Proposition 2.2. Let Φ, Γ, and c be as in Theorem 2.1 and assume that (2.1)
holds. If Φ satisfies (PS)c,M , then there exists u∈M such that Φ(u)= c and Φ̃′(u)
= 0.

Proposition 2.3. Let Φ, Γ, and c be as in Theorem 2.1 and assume that (2.1)
holds. Assume further that there exists a path h∈ Γ such that maxz∈K Φ(h(z))= c.
Then there exists u∈ h(K) such that Φ(u)= c and Φ̃′(u)= 0.

Remark 2.4. Theorem 2.1 with the stronger condition

max
z∈K0

Φ
(
h0(z)

)
< inf

h∈Γ
max
z∈K

Φ
(
h(z)

)
(2.3)

instead of condition (2.1) has been proved by [13, Lemma 3.7 and Theorem 3.2]
using a deformation lemma.

Remark 2.5. The result of Proposition 2.3 was already observed by [5] in the case
of no constraint and it can also be proved using a deformation argument. No-
tice that the (PS)c,M condition is not required in Proposition 2.3 to get a critical
point.

Next we state a second minimax principle that will give almost critical points
of Φ restricted to M when we minimize along continuous odd maps defined on
spheres of finite dimension. To that effect, we assume that the map G is even, so
in particular, −M =M.

For any k ∈N, we denote by Sk the unit sphere of Rk+1. We also denote

Co
(
Sk,M

)
:= {h∈ C

(
Sk,M

)
: h is odd

}
. (2.4)

Theorem 2.6. Let Φ∈ C1(X,R) be an even function. We define

d
def= inf

h∈Co(Sk,M)
max
z∈Sk

Φ
(
h(z)

)
(2.5)
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and assume that d ∈R. Let ε > 0 and h∈ Co(Sk,M) be such that

max
z∈Sk

Φ
(
h(z)

)
< d+ ε2. (2.6)

Then there exists u∈M such that

d ≤Φ(u)≤ d+ ε2, dist
(
u,h
(
Sk
))≤ ε, ∥∥Φ̃′(u)

∥∥∗ ≤ ε. (2.7)

As a consequence of the theorem, we have the following results.

Proposition 2.7. Let Φ and d be as in Theorem 2.6. If Φ satisfies (PS)d,M , then
there exists u∈M such that Φ(u)= d and Φ̃′(u)= 0.

Proposition 2.8. Let Φ and d be as in Theorem 2.6 and assume that there exists
a path h ∈ Co(Sk,M) such that maxz∈Sk Φ(h(z))= d. Then there exists u ∈ h(Sk)
such that Φ(u)= d and Φ̃′(u)= 0.

3. Proof of Theorem 2.1

Before starting the proof of Theorem 2.1, we will give a result concerning the
existence of C1 paths in C(K,M) with a prescribed derivative.

In the sequel we will consider the complete metric spacesC(K,X) andC(K,R)
endowed with the supremum norms ‖ · ‖X,∞ and ‖ · ‖∞, respectively. The space
C(K,M) will be inherited with the norm of C(K,X).

Lemma 3.1. Let f ∈ C(K,M) and let q ∈ C(K,X) be such that q(z)∈ Tf (z)M for
all z ∈ K . Then there exist r0 > 0 and γ ∈ C1((−r0, r0),C(K,M)) such that

γ(0)= f ,

∀r ∈ [− r0, r0
]
, ∀z ∈ K, γ(r)(z)= f (z) iff q(z)= 0 or r = 0,

γ′(0)= q.

(3.1)

Proof. Since X is uniformly convex, the duality map J : X∗ → X defined by 〈x,
J(x)〉 = ‖x‖2

X∗ and ‖J(x)‖ = ‖x‖X∗ is well defined and uniformly continuous on
bounded sets (see [10]). For each u∈M, we define

�(u)
def= J

(
dG(u)

)
∥∥dG(u)

∥∥2
X∗

. (3.2)

Thus 〈dG(u),�(u)〉 = 1. We denote

n(z)=�
(
f (z)

)
(3.3)

for each z ∈ K . We decompose f (z) as follows: f (z)= v0(z) + t0(z)n(z), where

t0(z)= 〈dG( f (z)
)
, f (z)

〉
, v0(z)= f (z)− 〈dG( f (z)

)
, f (z)

〉
n(z). (3.4)
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Thus v0(·) ∈ Tf (·)M and it is clear from the definitions that v0 ∈ C(K,X), n ∈
C(K,X), and t0 ∈ C(K,R).

We consider the map F : C(K,X)×C(K,R) → C(K,R) defined by F(v, t) =
G(v + tn). Using that G ∈ C1 and the uniform continuity on compact sets of G
and dG, one can prove that F is of class C1. Furthermore,

∂F

∂t
(v, t)= 〈dG(v+ tn),n

〉
Id,

∂F

∂v
(v, t)= dG(v+ tn), (3.5)

and consequently (∂F/∂t)(v0, t0)= Id is an invertible map. By the implicit func-
tion theorem (see, e.g., [1]), there exist two open sets �, � such that v0 ∈�⊂
C(K,X), t0 ∈�⊂ C(K,R) and there exists a C1 map φ : �→� such that

φ
(
v0
)= t0, F

(
v,φ(v)

)= 1,

F(v, t)= 1, (v, t)∈�×�=⇒t = φ(v),
(3.6)

where 1 denotes the constant function 1. We now take q satisfying the conditions
of the lemma and let r0 > 0 be such that v0 + rq ∈ � for all r ∈ (−r0, r0). We
define the C1 path γ : (−r0, r0)→ C(K,X) as follows:

γ(r)= v0 + rq+φ
(
v0 + rq

)
n. (3.7)

Using that 1 = F(v0 + rq,φ(v0 + rq)) = G(v0 + rq + φ(v0 + rq)n), it follows that
γ(r)(z)∈M for all z ∈ K , that is, γ ∈ C1((−r0, r0),C(K,M)). It also follows from
the definition of γ that

γ(0)= v0 +φ
(
v0
)
n= v0 + t0n= f . (3.8)

Moreover γ(r)(z)= f (z) for some z ∈ K and some r 
= 0 if and only if

rq(z) +φ
(
v0 + rq

)
(z)n(z)= t0(z)n(z). (3.9)

Applying dG( f (z)) to the above identity and using that 〈dG( f ),n〉 = 1, we find
φ(v0 + rq)(z)= t0(z) and then rq(z)= 0.

Finally we differentiate with respect to v the second identity of (3.6) at v = v0.
We find dφ(v0)=−dG( f ) and hence

γ′(0)= q+
〈
dφ
(
v0
)
,q
〉
n= q (3.10)

and the proof is complete. �

Proof of Theorem 2.1. We introduce a functionalΘ : C(K,R)→R defined byΘ(x)
def= maxz∈K x(z) and a functional Ψ : Γ→ R defined by Ψ( f )

def= Θ(Φ ◦ f ). The
family Γ is a complete metric space with the norm inherited from C(K,X) and Ψ
is continuous. (To show that Ψ is continuous, one uses the uniform continuity
of Φ on f (K).) Obviously Ψ is bounded from below and inf f∈ΓΨ( f )= c. By the
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Ekeland variational principle [12], there exists f ∈ Γ such that

(a) c ≤Ψ( f )≤Ψ(h),
(b) ‖ f −h‖X,∞ ≤ ε,
(c) Ψ( f ) <Ψ(g) + ε‖ f − g‖X,∞ for all g 
= f , g ∈ Γ.

Our theorem will be proved if we show the existence of some z ∈ K such that

Φ
(
f (z)

)=Ψ( f ),
∥∥Φ̃′( f (z)

)∥∥∗ ≤ ε. (3.11)

This will follow from five different claims.
For a given u ∈M, we denote by Pu the map from X to TuM defined as

Pu(v)
def= v−〈dG(u),v〉n(u).

Claim 3.2. Let Λ0
def= {l ∈ C(K,X) : l|K0

≡ 0}. Then

sup
l∈Λ0

min
µ∈∂Θ(Φ◦ f )

〈
µ,
〈
dΦ( f ),P f (l)

〉〉≤ ε∥∥Pf (l)
∥∥
X,∞, (3.12)

where ∂Θ(x) stands for the subdifferential of Θ at x (see, e.g., [9]).

Proof of Claim 3.2. For simplicity we write x = Φ ◦ f . We fix l ∈ Λ0. We can
assume that Pf (l) 
= 0, otherwise there is nothing to prove. Consider the C1

path γ : (−r0, r0)→ C(K,M) given by Lemma 3.1 such that γ(0)= f and γ′(0)=
Pf (l). Since Pf (l)≡ 0 in K0, then γ(r)(z)= f (z) for all z ∈ K0, and consequently
γ(r) ∈ Γ for all r ∈ (−r0, r0). Moreover, since Pf (l) 
= 0, then γ(r) 
= f for all
r 
= 0. It follows from (c) with g = γ(r), 0 < r < r0, that

Θ(x)−Θ
(
Φ
(
γ(r)

))
r

≤ ε1
r

∥∥ f − γ(r)
∥∥
X,∞. (3.13)

We compute the limit as r → 0 of both sides of inequality (3.13). The term on
the left-hand side can be written as

Θ(x)−Θ(x+ r y)
r

+
Θ(x+ r y)−Θ

(
Φ
(
γ(r)

))
r

, (3.14)

where for the sake of simplicity we have denoted y = 〈dΦ( f ),P f (l)〉. Using [9,
Proposition 5.4], the first term of (3.14) goes to −maxµ∈∂Θ(x)〈µ, y〉 as r ↘ 0. The
second term of (3.14) goes to 0 because Θ is Lipschitz continuous and the limit

lim
r↘0

Φ
(
γ(r)

)−Φ( f )
r

= 〈dΦ( f ),γ′(0)
〉= y (3.15)

holds uniformly in K .
The limit as r ↘ 0 of the right-hand side of (3.13) gives ‖γ′(0)‖X,∞ =

‖Pf (l)‖X,∞. Putting all together and passing to the limit in (3.13), we have

− max
µ∈∂Θ(x)

〈µ, y〉 ≤ ε∥∥Pf (l)
∥∥
X,∞. (3.16)
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The claim follows by replacing l by −l and taking the supremum over all l ∈
Λ0. �

Claim 3.3. Let B = {l ∈ C(K,X) : ‖Pf (l)‖X,∞ ≤ 1}. Then

min
µ∈∂Θ(x)

sup
l∈B∩Λ0

〈
µ,
〈
dΦ( f ),P f (l)

〉〉≤ ε. (3.17)

Proof of Claim 3.3. It is clear from Claim 3.2 that

sup
l∈B∩Λ0

min
µ∈∂Θ(x)

〈
µ,
〈
dΦ( f ),P f (l)

〉〉≤ ε. (3.18)

We can interchange the sup and the min above because of Ky Fan-von Neumann
minimax theorem (see [6]). Indeed, the map � : �(K,R)× C(K,X) → R de-
fined by �(µ, l)= 〈µ,〈dΦ( f ),P f (l)〉〉 is bilinear and continuous. Here �(K,R)
is the set of Borel measures endowed with the ω∗-topology. Moreover the set
∂Θ(x) is a compact convex and B∩Λ0 is convex. Claim 3.3 is proved. �

Claim 3.4. It holds that

min
µ∈∂Θ(x)

sup
l∈B

〈
µ,
〈
dΦ( f ),P f (l)

〉〉≤ ε. (3.19)

Proof of Claim 3.4. We recall (see [9, Proposition 5.6]) that

∂Θ(x)= {µ∈�(K,R) : µ≥ 0, 〈µ,1〉 = 1, suppµ⊂ K1
}
, (3.20)

where K1
def= {z ∈ K : Φ( f (z))=Θ(x)}. By (2.1) K1 and K0 are disjoint. Then we

can find a continuous map ϕ : K → [0,1] such that ϕ≡ 1 on K1 and ϕ≡ 0 on K0.
Given any l ∈ B consider l1 = ϕl. Then l1 ∈ Λ0 and by linearity ‖Pf (l1)‖X,∞ =
‖ϕPf (l)‖X,∞ ≤ 1. Thus l1 ∈ B∩Λ0. Moreover, since suppµ⊂ K1, we have

〈
µ,
〈
dΦ( f ),P f (l)

〉〉= 〈µ,〈dΦ( f ),P f
(
l1
)〉〉

(3.21)

and the claim follows. �

Claim 3.5. It holds that

min
µ∈∂Θ(x)

〈
µ,sup

l∈B

〈
dΦ( f ),P f (l)

〉�≤ ε. (3.22)

Proof of Claim 3.5. Let δ > 0 and z0 ∈ K . Then there exist lz0 ∈ B and an open
neighborhood �z0 of z0 such that for all z ∈�z0 ,

sup
l∈B

〈
dΦ
(
f
(
z0
))
,P f (z)

(
l(z)

)〉− δ ≤ 〈dΦ( f (z)
)
,P f (z)

(
lz0 (z)

)〉
. (3.23)

By compactness we can cover K with a finite subcovering �z1 ···�zn . Let ϕi,
i = 1, . . . ,n, be a continuous partition of unity subordinate to �zi , that is, ϕi is
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continuous, 0≤ ϕi ≤ 1, with support on �zi and
∑n

i=1ϕi = 1 on K . We consider
the function l1 =

∑n
i=1ϕilzi . Writing (3.23) for z0 = zi and adding from i = 1 to

n, we have

sup
l∈B

〈
dΦ( f ),P f (l)

〉− δ1≤ 〈dΦ( f ),P f
(
l1
)〉
. (3.24)

Composing with µ and using that 〈µ,1〉 = 1 and µ≥ 0, we get

〈
µ,sup

l∈B

〈
dΦ( f ),P f (l)

〉�− δ ≤ 〈µ,〈Φ( f ),P f
(
l1
)〉〉

. (3.25)

Now observe that l1 ∈ B and consequently the right-hand side of the above in-
equality is less than or equal to supl∈B〈µ,〈dΦ( f ),P f (l)〉〉. Letting δ ↘ 0, we ob-
tain

〈
µ,sup

l∈B

〈
dΦ( f ),P f (l)

〉�≤ sup
l∈B

〈
µ,
〈
dΦ( f ),P f (l)

〉〉
. (3.26)

The result now follows by taking the minimum over all µ ∈ ∂Θ(X) and using
Claim 3.4. �

Claim 3.6. We have

min
µ∈∂Θ(x)

〈
µ,
∥∥Φ̃′( f (·))∥∥∗〉≤ ε. (3.27)

Proof of Claim 3.6. The proof of this claim follows easily from Claim 3.5 and the
identity supl∈B〈dΦ( f ),P f (l)〉 = ‖Φ̃′( f )‖∗. �

Now let µ∈ ∂Θ(x) realize the minimum of Claim 3.6. Since µ has mass equal
to 1 and is supported in K1, there exists z ∈ K1 such that

∥∥Φ̃′( f (z)
)∥∥∗ ≤ ε. (3.28)

Then (3.11) hold for u= f (z) and the proof of the theorem is complete. �

4. Proof of Theorem 2.6

The proof of Theorem 2.6 goes along the same lines as the proof of Theorem 2.1.
We indicate the necessary modifications.

First we give the symmetric version of Lemma 3.1. We will denote byCo(Sk,R)
the subspace of odd functions ofC(Sk,R) and byCe(Sk,X) andCe(Sk,R) the sub-
spaces of even functions of C(Sk,X) and C(Sk,R), respectively.

Lemma 4.1. Assume that G is even. Let f ∈ Co(Sk,M) and let q ∈ Co(Sk,X) be
such that q(z)∈ Tf (z)M for all z ∈ Sk. Then there exist r0 > 0 and γ ∈ C1((−r0, r0),
Co(Sk,M)) such that (3.1) is satisfied.
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Proof. It is easy to see that the duality map J : X∗ → X and the map � : M →
R are odd. Consequently, t0 ∈ Ce(Sk,R), v0 ∈ Co(Sk,X), and n ∈ Co(Sk,R) as
defined in (3.3) and (3.4).

We consider the map F : Co(Sk,X)× Ce(Sk,R) → Ce(Sk,R) defined by F(v,
t)=G(v+ tn). Observe that F is well defined because

G
(
v(z) + t(z)n(z)

)=G
(− v(−z)− t(−z)n(−z)

)
=G

(
v(−z) + t(−z)n(−z)

) (4.1)

for all z ∈ K , v ∈ Co(Sk,X), and t ∈ Ce(Sk,R). By the implicit function theorem
applied to F, there exist two open sets �, � such that v0 ∈� ⊂ Co(Sk,X), t0 ∈
� ⊂ Ce(Sk,R) and there exists a C1 map φ : �→� such that (3.6) is satisfied.
It is then clear that the map γ defined by (3.7) satisfied (3.1) and also that γ ∈
C1((−r0, r0),Co(Sk,M)). �

Proof of Theorem 2.6. We consider the functional Ψ : Co(Sk,M)→ R defined by

Ψ( f )
def= Θ(Φ ◦ f ). The functional Ψ is continuous and bounded from below

with inf f∈Co(Sk,M)Ψ( f )= c. By the Ekeland variational principle, there exists f ∈
Co(Sk,M) satisfying (a), (b), and (c). We proceed now to prove four claims to
show that there exists some z ∈ Sk satisfying (3.11).

Observe that if f ∈ Co(Sk,M) and l ∈ Co(Sk,X), then Pf (l)∈ Co(Sk,X).

Claim 4.2. We have

sup
l∈Co(Sk,X)

min
µ∈∂Θ(Φ◦ f )

〈
µ,
〈
dΦ( f ),P f (l)

〉〉≤ ε∥∥Pf (l)
∥∥
X,∞. (4.2)

Proof of Claim 4.2. The same proof as in Theorem 2.1 applies since we can
choose the path γ of Lemma 4.1 with γ(0) = f and γ′(0) = Pf (l). Then γ ∈
C1((−r0, r0),Co(Sk,M)). �

Claim 4.3. Let B = {l ∈ C(Sk,X) : ‖Pf (l)‖X,∞ ≤ 1}. Then

min
µ∈∂Θ(x)

sup
l∈B∩Co(Sk,X)

〈
µ,
〈
dΦ( f ),P f (l)

〉〉≤ ε. (4.3)

Proof of Claim 4.3. The proof is the same as its analogue in Theorem 2.1. Notice
that in this case, B∩Co(Sk,X) is convex as well. �

Claim 4.4. It holds that

min
µ∈∂Θ(x)

〈
µ, sup

l∈B∩Co(Sk,X)

〈
dΦ( f ),P f (l)

〉〉≤ ε. (4.4)

Proof of Claim 4.4. We proceed as in Claim 3.5. The only problem is to find a
function l1 in B∩Co(Sk,X) satisfying (3.21). For any δ > 0 and any z0 ∈ Sk, let
lz0 ∈ B∩Co(Sk,X) and let �z0 be an open neighborhood in Sk such that (3.23)
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is satisfied for all z ∈�z0 . We can assume that �z0 =−�−z0 and �z0 ∩�−z0 =∅
by taking, for instance, �z0 = {z ∈ Sk : ‖z − z0‖ < ρ} with ρ small. Let �z0 =
�z0 ∪�−z0 . Hence �z0 = −�z0 . For any z ∈ �z0 , we have that either z ∈ �z0

from which we deduce that

sup
l∈B∩Co(Sk,X)

〈
dΦ
(
f
(
z0
))
,P f (z)

(
l(z)

)〉− δ ≤ 〈dΦ( f (z)
)
,P f (z)

(
lz0 (z)

)〉
(4.5)

or z ∈�−z0 in which case we have

sup
l∈B∩Co(Sk,X)

〈
dΦ
(
f
(− z0

))
,P f (z)

(
l(z)

)〉− δ ≤ 〈dΦ( f (z)
)
,P f (z)

(
l−z0 (z)

)〉
.

(4.6)

Writing 〈dΦ( f (−z0)),P f (z)(l(z))〉 = 〈dΦ( f (z0)),P f (z)(−l(z))〉, we see that (4.6)
is equivalent to

sup
l∈B∩Co(Sk,X)

〈
dΦ
(
f
(
z0
))
,P f (z)

(
l(z)

)〉− δ ≤ 〈dΦ( f (z)
)
,P f (z)

(
l−z0 (z)

)〉
. (4.7)

From (4.5) and (4.7), we find that for all z ∈�z0 ,

sup
l∈B∩Co(Sk,X)

〈
dΦ
(
f
(
z0
))
,P f (z)

(
l(z)

)〉− δ ≤ 〈dΦ( f (z)
)
,P f (z)

(
lz0

)〉
, (4.8)

where lz0 (z) := (lz0 (z) + l−z0 (z))/2 belongs to B∩Co(Sk,X).
We now cover Sk with a finite subcovering �z1 ···�zn . Let ϕi, i = 1, . . . ,n,

be a continuous partition of unity subordinate to �zi and consider the even
part of ϕi, ϕe

i (z)= 1/2(ϕi(z) +ϕi(−z)). Clearly, 0 ≤ ϕe
i ≤ 1, suppϕe

i ⊂�zi , and∑n
i=1ϕ

e
i = 1. We finally consider the odd function l1 =

∑n
i=1ϕ

e
i lzi and observe

that l1 ∈ B. The remaining part of the proof is similar to that of Claim 3.5. �

Claim 4.5. It follows that

min
µ∈∂Θ(x)

〈
µ,
∥∥Φ̃′( f (·))∥∥∗〉≤ ε. (4.9)

Proof of Claim 4.5. We show that

sup
l∈B∩Co(Sk,X)

〈
dΦ( f ),P f (l)

〉= ∥∥Φ̃′( f )
∥∥∗. (4.10)

The inequality ≤ is clear because Pf (l(·)) ∈ Tf (·)M and ‖Pf (l)‖X,∞ ≤ 1. The in-
equality ≥ comes from the following. Fix z ∈ Sk and let δ > 0. Then there exists
v ∈ Tf (z)M, ‖v‖X ≤ 1, such that

〈
dΦ
(
f (z)

)
,v
〉≥ ∥∥Φ̃′( f (z)

)∥∥∗ − δ. (4.11)
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Take l ∈ Co(Sk,X) such that l(z)= v and ‖l‖∞ ≤ 1 (for instance, if z = (1,0, . . . ,0),
one can take l(x1,x2, . . . ,xk+1)= x1v). Hence

∥∥Φ̃′( f (z)
)∥∥∗ − δ ≤ sup

l∈B∩Co(Sk,X)

〈
dΦ( f ),P f (l)

〉
. (4.12)

Letting δ go to 0, we obtain the desired inequality. Claim 4.5 is proved. �

The remaining part of the proof of the theorem is identical to its correspond-
ing part in Theorem 2.1. �
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