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We prove, for Orlicz spaces LA(RN ) such that A satisfies the ∆2 condition, the
nonresolvability of the A-Laplacian equation ∆Au+h= 0 on RN , where

∫
h �= 0,

if RN is A-parabolic. For a large class of Orlicz spaces including Lebesgue spaces
Lp (p > 1), we also prove that the same equation, with any bounded measurable
function h with compact support, has a solution with gradient in LA(RN ) if RN

is A-hyperbolic.

1. Introduction

An important application of the nonlinear potential theory is the resolution
of some equations involving the p-Laplacian operator. In [6], Gol’dshtein and
Troyanov proved that the p-Laplace equation ∆pu + h = 0 on RN , N ≤ p, has
no solution if h has a nonzero average. This result remains true for the same
equation on any p-parabolic manifold. The proof is essentially based on a ca-
pacity argument. Later, Troyanov proved in [9] that the equation ∆pu+ h = 0,
on a p-hyperbolic manifoldM, has a solution with p-integrable gradient for any
bounded measurable function h :M→R with compact support.

Since the strongly nonlinear potential theory is sufficiently developed, we
propose in this paper the generalization of these two equations on RN to the set-
ting of Orlicz spaces. For this goal, we introduce, for a given �-function A, the
notion of A-parabolicity and A-hyperbolicity which reduces to p-parabolicity
and p-hyperbolicity when A(t) = p−1|t|p. We also consider the so-called A-
Laplacian ∆A, which is the p-Laplacian ∆p, when the Orlicz space LA is the
Lebesgue space Lp. If the �-function A satisfies the ∆2 condition and RN is A-
parabolic, then the equation ∆Au+ h= 0 has no weak solution for any function
h having a nonzero average.
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For reflexive Orlicz spaces LA, with A satisfying the condition s(A) > 0, where

s(A) := inf

{
log

∫
A◦ f dλ

log‖| f |‖A − 1, f ∈ LA, ‖| f |‖A > 1

}
, (1.1)

if the function h is in L∞ and has a compact support, then the equation ∆Au+
h = 0 has a weak solution when RN is A-hyperbolic. We give large classes of
Orlicz spaces LA, including Lebesgue spaces Lp (p > 1), which satisfies s(A) > 0.

This paper is organized as follows. In Section 2, we list the prerequisites from
the Orlicz spaces and we introduce the notion of A-hyperbolicity. Section 3 is
reserved to the resolution of the equation ∆Au + h = 0 when h has a nonzero
average or bounded with compact support.

2. Preliminaries

2.1. Orlicz spaces. We recall some definitions and results about Orlicz spaces.
For more details, one can consult [1, 7, 8].

Let A : R→R+ be an �-function, that is, A is continuous, convex, with A(t) >
0 for t > 0, limt→0A(t)/t = 0, limt→+∞A(t)/t = +∞, and A is even.

Equivalently, A admits the representation: A(t)= ∫ |t|0 a(x)dx, where a : R+ →
R+ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0, and
limt→+∞ a(t)= +∞.

The �-function A∗ conjugate to A is defined by A∗(t) = ∫ |t|0 a∗(x)dx, where
a∗ is given by a∗(s)= sup{t : a(t)≤ s}.

Let A be an �-function, let λ be the Lebesgue measure on RN , and let Ω be an
open set in RN . We denote by �A(Ω) the set, called an Orlicz class, of measurable
functions f , on Ω, such that

ρ( f ,A,Ω)=
∫
Ω
A
(
f (x)

)
dλ(x) <∞. (2.1)

Let A and A∗ be two conjugate �-functions and let f be a measurable func-
tion defined almost everywhere in Ω. The Orlicz norm of f , ‖ f ‖A,Ω, or ‖ f ‖A, if
there is no confusion, is defined by

‖ f ‖A = sup
{∫

Ω

∣∣ f (x)g(x)
∣∣dλ(x) : g ∈�A∗(Ω), ρ

(
g,A∗,Ω

)≤ 1
}
. (2.2)

The set LA(Ω) of measurable functions f such that ‖ f ‖A <∞ is called an
Orlicz space. When Ω=RN , we set LA in place of LA(RN ).

If f ∈ LA(Ω), then

‖ f ‖A = inf
{
k−1

[
1 +

∫
Ω
A
(
k| f |(x)

)
dλ(x)

]
: k > 0

}
. (2.3)
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The Luxemburg norm ‖| f |‖A,Ω or ‖| f |‖A, if there is no confusion, is defined
in LA(Ω) by

‖| f |‖A = inf

{
r > 0 :

∫
Ω
A

(
f (x)
r

)
dλ(x)≤ 1

}
. (2.4)

Orlicz and Luxemburg norms are equivalent. More precisely, if f ∈ LA(Ω),
then

‖| f |‖A ≤ ‖ f ‖A ≤ 2‖| f |‖A. (2.5)

It is well known that we can suppose that a and a∗ are continuous and strictly
increasing. Hence the �-functions A and A∗ are strictly convex and a∗ = a−1.

Let A be an �-function. We say that A verifies the ∆2 condition if there exists
a constant C > 0 such that A(2t)≤ CA(t) for all t ≥ 0.

Recall that A verifies the ∆2 condition if and only if �A = LA. Moreover, LA is
reflexive if and only if A and A∗ satisfy the ∆2 condition.

Hölder inequality in Orlicz spaces is expressed in the following way:

∫
| f · g|dλ≤ ‖| f |‖A · ‖g‖A∗ , f ∈ LA, g ∈ LA∗ . (2.6)

We recall the following results. Let A be an �-function and a its derivative.
Then the following occurs.

(1) The �-function A verifies the ∆2 condition if and only if one of the fol-
lowing holds:

(i) for all r > 1, there exists k = k(r) (for all t ≥ 0, A(rt)≤ kA(t)) ;
(ii) there exists α > 1 (for all t ≥ 0, ta(t)≤ αA(t)) ;

(iii) there exists β > 1 (for all t ≥ 0, ta∗(t)≥ βA∗(t)) ;
(iv) there exists d > 0 (for all t ≥ 0, (A∗(t)/t)′ ≥ d(a∗(t)/t)).
Moreover, α in (ii) and β in (iii) can be chosen such that α−1 +β−1 = 1.
We note that α(A) is the smallest α such that (ii) holds.

(2) If A verifies the ∆2 condition, then

A(t)≤A(1)tα, ∀t ≥ 1, A(t)≥A(1)tα, ∀t ≤ 1,

A∗(t)≥A∗(1)tβ, ∀t ≥ 1, A∗(t)≤A∗(1)tβ, ∀t ≤ 1.
(2.7)

We set α∗ = α(A∗).
Recall also that if A verifies the ∆2 condition, then

∫
A

(
f

‖| f |‖A

)
(x)dλ(x)= 1. (2.8)
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2.2. A-hyperbolicity

Definition 2.1. Let A be an �-function and K a compact set in RN . The A-
capacity of K is defined by

ΓA(K)= inf
{‖|∇u|‖A : u∈ C∞0

(
R
N
)
, u= 1 in a neighborhood of K

}
. (2.9)

The space RN is said to be A-parabolic if ΓA(K) = 0 for all compact subsets
K ⊂RN and A-hyperbolic otherwise.

Remark 2.2. In the definition of ΓA, a simple truncation argument shows that
we may restrict ourselves to functions u∈ C∞0 (RN ) such that 0≤ u≤ 1.

For m<N , the Riesz kernel is defined on RN by Rm(x)= |x|m−N .
For X ⊂RN , we define Rm,A(X) by

Rm,A(X)= inf
{‖| f |‖A : f ∈ LA, f ≥ 0, Rm∗ f ≥ 1 on X

}
. (2.10)

The following lemma is proved in [3, Lemma 3.6].

Lemma 2.3. Let LA be a reflexive Orlicz space. Then there is a positive constant C
such that

C−1R1,A(K)≤ ΓA(K)≤ CR1,A(K), (2.11)

for all compact K , C independent of K .

We recall the following result proved in [4, Theorem 3.1].

Lemma 2.4. Let A be an �-function such that ‖|Rm|‖A∗,{|x|>1} = ∞. Then for all
X , Rm,A(X)= 0.

We will need the following lemma in the sequel.

Lemma 2.5. Let A be any �-function such that A∗ verifies the ∆2 condition and let
m be a positive integer such that m < N and α∗ ≤N/(N −m). Then Rm,A(X)= 0
for all X .

Proof. From Lemma 2.4, it suffices to prove that ‖|Rm|‖A∗,{|x|>1} =∞. Since A∗

verifies the ∆2 condition, we must establish that

∫
{|x|>1}

A∗
(|x|m−N)dλ(x)=∞. (2.12)

By a change of variable, there is a positive constant C such that

∫
{|x|>1}

A∗
(|x|m−N)dλ(x)= C

∫∞
1
A∗
(
tm−N

) · tN−1dt. (2.13)
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From the inequality A∗(tm−N )≥A∗(1) · tα∗(m−N), we get

∫
{|x|>1}

A∗
(|x|m−N)dλ(x)≥ CA∗(1) ·

∫∞
1
tα
∗(m−N)+N−1dt. (2.14)

Now, the inequality

α∗(m−N) +N − 1≥ N

N −m (m−N) +N − 1=−1 (2.15)

gives the desired result. �

3. On the A-Laplacian

The Orlicz-Sobolev space W1LA(RN ) is defined as the space of functions u such
that u and its derivatives, in a distributional sense, of order less or equal to one
are in LA. The spaceW1LA(RN ) is a Banach space when equipped with the norm

‖|u|‖1,A =
∑
|γ|≤1

∥∥∣∣Dγu
∣∣∥∥

A. (3.1)

Recall that W1LA(RN ) is reflexive if and only if A and A∗ satisfy the ∆2 con-
dition.

The A-Dirichlet space L1
A(RN ) is the space of functions u∈W1

A,loc(RN ) (i.e.,
u is locally in W1LA(RN )) admitting a weak gradient such that ‖|∇u|‖A <∞.

Let A be any �-function and let a be its derivative. For x ∈RN , we define

MA(x)= a(|x|)
|x| · x if x �= 0, MA(0)= 0. (3.2)

The A-Laplacian of a function f on RN is defined by ∆A f = divMA(∇ f ).
A function u∈W1

A,loc(RN ) is said to be a weak solution to the equation

∆Au+h= 0 (3.3)

if, for all ϕ∈ C1
0(RN ), we have

∫ 〈
MA(∇u),∇ϕ〉dλ=

∫
hϕdλ. (3.4)

Let D ⊂RN be a nonempty bounded domain. The Banach space �A(D) is the
space of functions u∈W1

A,loc(RN ) such that

‖|u|‖DA := ‖|u|‖A,D +‖|∇u|‖A <∞. (3.5)

We denote by �0
A(D) the closure of C1

0(RN ) in �A(D).
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3.1. A nonresolvability result

Theorem 3.1. Let A be an �-function satisfying the ∆2 condition. Suppose that
RN is A-parabolic and let h∈ L1(RN ) be such that

∫
hdλ �= 0. Then the equation

∆Au+h= 0 (3.6)

has no weak solution on L1
A(RN ).

Proof. We may suppose that
∫
hdλ > 0. Hence there is a bounded set D ⊂ RN

such that λ(D) > 0, s := infD h > 0, and
∫
D hdλ > |

∫
h−dλ|.

Let 0 < c < 1 be such that 0≤−∫ h−dλ < c ∫D hdλ.
By the definition of Γ1,A(D), for ε > 0, we can find a function v ∈ C∞0 (RN )

such that 0≤ v ≤ 1, v = 1, on D and

‖|∇v|‖A ≤ ΓA(D) + ε. (3.7)

On the other hand, we have −c ∫D vhdλ < ∫ vh−dλ≤ 0. Hence

(1− c)
∫
D
vhdλ <

∫
D
vhdλ+

∫
vh−dλ

<
∫
D
vhdλ+

∫
vh−dλ+

∫
cD
vh+dλ

≤
∫
vhdλ.

(3.8)

But s · λ(D)≤ ∫D vhdλ. Thus

(1− c) · s · λ(D)≤
∫
vhdλ. (3.9)

Now suppose that u ∈ L1
A(RN ) is a weak solution of (3.6) and let ξ :=

−(a(|∇u|)/|∇u|) · ∇u. Then div(ξ) = −∆Au = h, and since A satisfies the ∆2

condition, |ξ| ∈ LA∗(RN ).
An integration by part and Hölder inequality in Orlicz spaces applied to in-

equality (3.9) imply that

(1− c) · s · λ(D)≤
∫
v ·div(ξ)dλ

=−
∫
〈∇v,ξ〉dλ≤ ‖ξ‖A∗‖|∇v|‖A.

(3.10)

From (3.7), and since ε is arbitrary, we get

0 < λ(D)≤ ‖ξ‖A∗
(1− c) · s ·ΓA(D). (3.11)

This is impossible, and the theorem is proved. �
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Corollary 3.2. Let LA be a reflexive Orlicz space such that α∗ ≤N/(N − 1). Let
h∈ L1(RN ) be such that

∫
hdλ �= 0. Then (3.6) has no weak solution on L1

A(RN ).

Proof. By Lemmas 2.5 and 2.3, RN is then A-parabolic. We apply Theorem 3.1
to get the result. �

Remark 3.3. WhenA(t)= p−1|t|p, LA = Lp is the usual Lebesgue space and α∗ =
p/(p− 1). Hence the condition α∗ ≤N/(N − 1) is exactly the condition N ≤ p.
Thus our result recovers the one in [6, Théorème 1].

3.2. A resolvability result. In this section, we resolve the equation ∆Au+ h= 0
under some assumptions on the �-function A and on the function h.

We begin by recalling the following Poincaré inequality for Orlicz-Sobolev
functions, which is a combination of [5, Theorem 3.3] and [5, Proposition 3.9].

Lemma 3.4. Let A be an �-function such that A and A∗ satisfy the ∆2 condition.
Let E be any measurable set in RN such that 0 < λ(E) <∞. Then there exists a
positive constant C such that

∥∥∣∣u−uE∣∣∥∥A,E ≤ C‖|∇u|‖A,E, (3.12)

for all u∈W1
A,loc(RN ), where uE = (1/λ(E))

∫
E udλ is the mean value of u on E.

An application of Hölder inequality in Orlicz spaces gives

∫
E

∣∣u−uE∣∣dλ≤ ∥∥χE∥∥A∗∥∥∣∣u−uE∣∣∥∥A,E, (3.13)

where χE is the characteristic function of E.
Recall that

∥∥χE∥∥A∗ = λ(E) ·A−1
(

1
λ(E)

)
,

‖|1|‖A,E =
∥∥∣∣χE∣∣∥∥A = 1

A−1
(
1/λ(E)

) . (3.14)

Hence we obtain the following proposition.

Proposition 3.5. Let A be an �-function such that A and A∗ satisfy the ∆2 con-
dition. Let E be any measurable set in RN such that 0 < λ(E) <∞. Then there exists
a positive constant C such that

∫
E

∣∣u−uE∣∣dλ≤ C‖|∇u|‖A,E, (3.15)

for all u∈W1
A,loc(RN ).

We will need the following proposition in what follows.
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Proposition 3.6. Let A be an �-function such that A and A∗ satisfy the ∆2 con-
dition. Suppose that RN is A-hyperbolic. Let E be any nonempty bounded domain
in RN . Then there exists a positive constant C such that, for all u∈�0

A(E),
∫
E
|u|dλ≤ C‖|∇u|‖A. (3.16)

Proof. Suppose that such constant does not exist. Then for all ε > 0, we can find
a function u∈�0

A(E) such that
∫
E
|u|dλ= λ(E), ‖|∇u|‖A ≤ ε. (3.17)

We may assume that u≥ 0. Proposition 3.5 implies that
∫
E
|u|dλ≤ Cε. (3.18)

We now choose a ball B � E and a function ϕ ∈ C1
0 such that 0 ≤ ϕ ≤ 2−1,

supp(ϕ) ⊂ E, and ϕ = 2−1 on B. Define the function v ∈ �0
A(E) by v =

2max(u,ϕ). Then v ≥ 1 on B. Now, define the sets

S= {x ∈ E : ϕ(x)≥ u(x)
}
, S′ = {x ∈ E :

∣∣u(x)− 1
∣∣≥ 2−1}. (3.19)

We have S⊂ S′ and, by (3.18), 2−1λ(S′)≤ Cε. Thus

λ(S)≤ 2Cε. (3.20)

On the other hand, we have almost everywhere

∇v =

2∇u on cS,

2∇ϕ on S.
(3.21)

This implies that

|∇v| ≤ 2|∇u|+ 2χS|∇ϕ| a.e. (3.22)

Since v ≥ 1 on B and ε is arbitrary, we deduce that ΓA(B)= 0. This contradicts
the fact that RN is A-hyperbolic. The proof is complete. �

Lemma 3.7. Let A be an �-function. If RN is A-parabolic, then 1∈�0
A(D) for any

nonempty bounded domain D.

Proof. Since RN is A-parabolic, ΓA(D) = 0. Hence for all ε > 0, there exists a
function u∈ C1

0 such that u= 1 on D and ‖|∇u|‖A ≤ ε. Thus

‖|1−u|‖A = ‖|1−u|‖A,D +‖|∇u|‖A = ‖|∇u|‖A ≤ ε. (3.23)

This means that 1∈�0
A(D). �
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Theorem 3.8. Let A be an �-function such that A and A∗ satisfy the ∆2 condi-
tion. Let D be nonempty bounded domain in RN . Then the following assertions are
equivalent

(i) RN is A-hyperbolic;
(ii) there exists a constant C such that, for all u∈�0

A(D),

‖|u|‖A,D ≤ C‖|∇u|‖A; (3.24)

(iii) 1 /∈�0
A(D).

Proof. It is easy to verify that (ii) implies (iii). The implication (iii)⇒(i) is Lemma
3.7. It remains to prove that (i) implies (ii).

Write u= (u−uD) +uD. Proposition 3.6 and Lemma 3.4 give

‖|u|‖A,D ≤
∥∥∣∣u−uD∣∣∥∥A,D +

∥∥∣∣uD∣∣∥∥A,D
≤ C‖|∇u|‖A,D +

∣∣uD∣∣ · ‖|1|‖A,D
≤ C‖|∇u|‖A,D +

1
A−1

(
1/λ(D)

) · λ(D)−1
∫
D
|u|dλ

≤ C‖|∇u|‖A,D +
1

A−1
(
1/λ(D)

) · λ(D)−1C′‖|∇u|‖A
≤ C′′‖|∇u|‖A.

(3.25)

The proof is complete. �

Recall that for all f ∈ LA such that ‖| f |‖A > 1, we have
∫
A◦ f dλ > ‖| f |‖A.

We set

s(A)= inf

{
log

∫
A◦ f dλ

log‖| f |‖A − 1, f ∈ LA, ‖| f |‖A > 1

}
. (3.26)

Hence s(A)≥ 0.
Now we are ready to solve the A-Laplace equation.

Theorem 3.9. Let LA be a reflexive Orlicz space such that s(A) > 0. Let h ∈
L∞(RN ) have compact support. Then the equation ∆Au+h= 0 has a weak solution
u∈ L1

A(RN ) if RN is A-hyperbolic.

Proof. LetD be a bounded domain such that supp(h)⊂D. Define the functional
� : �0

A(D)→R by

�(u)=
∫
A
(|∇u|)dλ−

∫
hudλ. (3.27)



752 On the A-Laplacian

Hence

�(u)≥
∫
A
(|∇u|)dλ−

∣∣∣∣
∫
hudλ

∣∣∣∣
≥
∫
A
(|∇u|)dλ−‖h‖∞ ·‖u‖L1(D).

(3.28)

Since RN is A-hyperbolic, by Proposition 3.6, we get

�(u)≥
∫
A
(|∇u|)dλ−C‖h‖∞ ·‖|∇u|‖A. (3.29)

Hence there is a constant C1 such that

�(u)≥
∫
A
(|∇u|)dλ−C1 · ‖∇u|‖A. (3.30)

By (2.3) and (2.5), there is a constant C2 such that, for all k > 0,

�(u)≥
∫
A
(|∇u|)dλ− C2

k

∫
A
(
k|∇u|)dλ− C2

k
. (3.31)

Now, let t > 0 and consider the continuous function ψt defined on R+ by
ψt(k)= (C2/k)A(kt)−A(t). Since

xa(x)≥ A(x), ∀x ≥ 0,

lim
t→0

A(t)
t
= 0, lim

t→+∞
A(t)
t
= +∞, (3.32)

the function ψt increases from −A(t) to +∞. Hence there is a k0 such that ψt(k0)
= 0. Thus

�(u)≥−C2

k0
. (3.33)

We conclude that the functional � is bounded below on the space �0
A(D).

Now �A(D) is a reflexive Banach space and �0
A(D) is a closed convex subspace

of �A(D). We first prove that � is lower semicontinuous. Let t ∈R, and consider
the set �t = {u ∈ �0

A(D) : �(u) ≤ t}. Let (ui)i ⊂ �0
A(D) be such that �(ui) ≤ t,

for all i, and (ui)i converges to u in �0
A(D). By the compactness of the imbedding

�0
A(D)⊂ L1(D), we may assume that (ui)i converges strongly in L1(D). Hence

∫
D
hui dλ−→

∫
D
hudλ. (3.34)

Theorem 3.8 implies that u→‖|∇u|‖A is an equivalent norm on �0
A(D).

Hence ‖|∇u −∇ui|‖A → 0. Since A verifies the ∆2 condition,
∫
A(|∇u −

∇ui|)dλ→ 0. Hence there is a subsequence of the sequence (A(|∇u−∇ui|))i,
still denoted by (A(|∇u−∇ui|))i, which converges λ-almost everywhere to 0.
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Thus (|∇ui|)i converges λ-almost everywhere to |∇u|. By the continuity of A,
Fatou’s lemma, and (3.34), we get

�(u)=
∫

lim
i→∞

A
(∣∣∇ui∣∣)dλ− lim

i→∞

∫
hui dλ

≤ liminf
i→∞

∫
A
(∣∣∇ui∣∣)dλ− lim

i→∞

∫
hui dλ≤ t.

(3.35)

Hence � is lower semicontinuous.
Now, s(A) > 0 implies that

∫
A(|∇u|)dλ ≥ ‖|∇u|‖s(A)+1

A for ‖|∇u|‖A > 1.
Hence

�(u)≥ ‖|∇u|‖s(A)+1
A −C1 · ‖|∇u|‖A for ‖|∇u|‖A > 1. (3.36)

This proves that � is coercive.
Thus � attains its minimum on �0

A(D); that is, there is u∗ ∈ �0
A(D) such

that �(u∗)=min{�(u) : u∈ �0
A(D)}. By the usual arguments from variational

calculus, we deduce that u∗ is a weak solution to the equation ∆Au+ h= 0. The
proof is complete. �

Remark 3.10. We have in fact solved the equation in the space �0
A(D)⊂ L1

A(RN ).

Remark 3.11. When A(t) = p−1|t|p, p > 1, and LA = Lp is the usual Lebesgue
space, we have s(A) = p− 1 > 0. Thus we recover the result in [9, Theorem 2]
when the manifold M is RN .

Recall the following result in [2, Lemma 3].

Lemma 3.12. Let A be an �-function satisfying the ∆2 condition. If α < N , then
R1,A(B(x,r)) > 0, where B(x,r) is the open ball of radius r > 0, with center at x.

Corollary 3.13. Let LA be a reflexive Orlicz space such that s(A) > 0 and α < N .
Suppose that h ∈ L∞(RN ) has compact support. Then the equation ∆Au + h = 0
has a weak solution u∈ L1

A(RN ).

Proof. By Lemmas 3.12 and 2.3, we deduce that RN is A-hyperbolic, and we
apply Theorem 3.9 to get the result. �

3.3. Some examples. In addition to the Lp Lebesgue case corresponding to A(t)
= p−1|t|p, p > 1, we consider the following �-functions:

(1)

A1(t)=

t

p for 0≤ |t| ≤ 1,

tq for 1 < |t|, 1 < p ≤ q <∞, (3.37)

(2) A2(t)= |t|p log(1 + |t|), p > 1,
(3) A3(t)= |t|p log(1 + |t|p), p > 1,
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(4) A4(t)= |t|p logp(1 + |t|), p > 1,
(5) Ap,q,r(t)= |t|p logq(1 + |t|r), p > 1, q > 0, and r > 0.

All these �-functions and their conjugates satisfy the ∆2 condition. We show
that s(Ai) > 0, i= 1,2,3,4, and s(Ap,q,r) > 0.

First remark that A2 = Ap,1,1 and A3 = Ap,1,p. Thus it suffices to show that
s(Ap,q,r) > 0 and for all p > 1, q > 0, r > 0.

(1) Let f ∈ LA1 be such that ‖| f |‖A1 > 1. Then, by (2.8),

1=
∫
A1

(
f

‖| f |‖A1

)
(x)dλ(x)

≤ 1

‖| f |‖pA1

∫
{| f |≤‖| f |‖A1}

| f |p dλ

+
1

‖| f |‖qA1

∫
{| f |>‖| f |‖A1}

| f |q dλ

≤ 1

‖| f |‖pA1

[∫
{| f |≤‖| f |‖A1}

| f |p dλ+
∫
{| f |>‖| f |‖A1}

| f |q dλ
]

≤ 1

‖| f |‖pA1

[∫
{| f |≤1}

| f |p dλ+
∫
{1<| f |≤‖| f |‖A1}

| f |p dλ

+
∫
{| f |>‖| f |‖A1}

| f |q dλ
]

≤ 1

‖| f |‖pA1

[∫
{| f |≤1}

| f |p dλ+
∫
{1<| f |≤‖| f |‖A1}

| f |q dλ

+
∫
{| f |>‖| f |‖A1}

| f |q dλ
]

≤ 1

‖| f |‖pA1

∫
A1( f )(x)dλ(x).

(3.38)

Hence ‖| f |‖pA1
≤ ∫ A1( f )(x)dλ(x). This implies that s(A1) > 0.

(2) Let p > 1, q > 0, and r > 0 and set A = Ap,q,r . Let f ∈ LA be such that
‖| f |‖A > 1. Then by (2.8),

1=
∫
A

(
f

‖| f |‖A

)
(x)dλ(x)

≤ 1

‖| f |‖pA

∫
| f |p logq

(
1 +

| f |r
‖| f |‖rA

)
dλ

≤ 1

‖| f |‖pA

∫
| f |p logq

(
1 + | f |r)dλ

≤ 1

‖| f |‖pA

∫
A( f )(x)dλ(x).

(3.39)

Thus ‖| f |‖pA ≤
∫
A( f )(x)dλ(x) and hence s(A) > 0.
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Remark 3.14. Although Theorem 3.9 gives a solution for large classes of Orlicz
spaces LA, including Lp Lebesgue spaces, p > 1, it would be sharp if we can drop
the condition s(A) > 0. This question is open.
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