ON THE A-LAPLACIAN

NOUREDDINE AÏSSAOUI

Received 25 January 2003

We prove, for Orlicz spaces $\mathbf{L}_A(\mathbb{R}^N)$ such that A satisfies the Δ_2 condition, the nonresolvability of the A-Laplacian equation $\Delta_A u + h = 0$ on \mathbb{R}^N , where $\int h \neq 0$, if \mathbb{R}^N is A-parabolic. For a large class of Orlicz spaces including Lebesgue spaces \mathbf{L}^p (p > 1), we also prove that the same equation, with any bounded measurable function h with compact support, has a solution with gradient in $\mathbf{L}_A(\mathbb{R}^N)$ if \mathbb{R}^N is A-hyperbolic.

1. Introduction

An important application of the nonlinear potential theory is the resolution of some equations involving the *p*-Laplacian operator. In [6], Gol'dshtein and Troyanov proved that the *p*-Laplace equation $\Delta_p u + h = 0$ on \mathbb{R}^N , $N \le p$, has no solution if *h* has a nonzero average. This result remains true for the same equation on any *p*-parabolic manifold. The proof is essentially based on a capacity argument. Later, Troyanov proved in [9] that the equation $\Delta_p u + h = 0$, on a *p*-hyperbolic manifold *M*, has a solution with *p*-integrable gradient for any bounded measurable function $h: M \to \mathbb{R}$ with compact support.

Since the strongly nonlinear potential theory is sufficiently developed, we propose in this paper the generalization of these two equations on \mathbb{R}^N to the setting of Orlicz spaces. For this goal, we introduce, for a given \mathcal{N} -function A, the notion of A-parabolicity and A-hyperbolicity which reduces to p-parabolicity and p-hyperbolicity when $A(t) = p^{-1}|t|^p$. We also consider the so-called A-Laplacian Δ_A , which is the p-Laplacian Δ_p , when the Orlicz space \mathbf{L}_A is the Lebesgue space \mathbf{L}^p . If the \mathcal{N} -function A satisfies the Δ_2 condition and \mathbb{R}^N is A-parabolic, then the equation $\Delta_A u + h = 0$ has no weak solution for any function h having a nonzero average.

Copyright © 2003 Hindawi Publishing Corporation Abstract and Applied Analysis 2003:13 (2003) 743–755 2000 Mathematics Subject Classification: 46E35, 31B15 URL: http://dx.doi.org/10.1155/S1085337503303069

744 On the A-Laplacian

For reflexive Orlicz spaces L_A , with A satisfying the condition s(A) > 0, where

$$s(A) := \inf \left\{ \frac{\log \int A \circ f \, d\lambda}{\log \||f|\|_A} - 1, \ f \in \mathbf{L}_A, \ \||f|\|_A > 1 \right\}, \tag{1.1}$$

if the function h is in L^{∞} and has a compact support, then the equation $\Delta_A u + h = 0$ has a weak solution when \mathbb{R}^N is *A*-hyperbolic. We give large classes of Orlicz spaces L_A , including Lebesgue spaces L^p (p > 1), which satisfies s(A) > 0.

This paper is organized as follows. In Section 2, we list the prerequisites from the Orlicz spaces and we introduce the notion of *A*-hyperbolicity. Section 3 is reserved to the resolution of the equation $\Delta_A u + h = 0$ when *h* has a nonzero average or bounded with compact support.

2. Preliminaries

2.1. Orlicz spaces. We recall some definitions and results about Orlicz spaces. For more details, one can consult [1, 7, 8].

Let $A : \mathbb{R} \to \mathbb{R}^+$ be an \mathcal{N} -function, that is, A is continuous, convex, with A(t) > 0 for t > 0, $\lim_{t\to 0} A(t)/t = 0$, $\lim_{t\to +\infty} A(t)/t = +\infty$, and A is even.

Equivalently, *A* admits the representation: $A(t) = \int_0^{|t|} a(x) dx$, where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0, and $\lim_{t\to+\infty} a(t) = +\infty$.

The \mathcal{N} -function A^* conjugate to A is defined by $A^*(t) = \int_0^{|t|} a^*(x) dx$, where a^* is given by $a^*(s) = \sup\{t : a(t) \le s\}$.

Let *A* be an \mathcal{N} -function, let λ be the Lebesgue measure on \mathbb{R}^N , and let Ω be an open set in \mathbb{R}^N . We denote by $\mathscr{L}_A(\Omega)$ the set, called an *Orlicz class*, of measurable functions *f*, on Ω , such that

$$\rho(f, A, \Omega) = \int_{\Omega} A(f(x)) d\lambda(x) < \infty.$$
(2.1)

Let *A* and *A*^{*} be two conjugate \mathcal{N} -functions and let *f* be a measurable function defined almost everywhere in Ω . The *Orlicz norm of f*, $||f||_{A,\Omega}$, or $||f||_A$, if there is no confusion, is defined by

$$\|f\|_{A} = \sup\left\{\int_{\Omega} |f(x)g(x)| d\lambda(x) : g \in \mathcal{L}_{A^{*}}(\Omega), \, \rho(g, A^{*}, \Omega) \leq 1\right\}.$$
(2.2)

The set $\mathbf{L}_A(\Omega)$ of measurable functions f such that $||f||_A < \infty$ is called an *Orlicz space*. When $\Omega = \mathbb{R}^N$, we set \mathbf{L}_A in place of $\mathbf{L}_A(\mathbb{R}^N)$.

If $f \in \mathbf{L}_{A}(\Omega)$, then

$$\|f\|_{A} = \inf \left\{ k^{-1} \left[1 + \int_{\Omega} A(k|f|(x)) d\lambda(x) \right] : k > 0 \right\}.$$
 (2.3)

The *Luxemburg norm* $|||f|||_{A,\Omega}$ or $|||f|||_A$, if there is no confusion, is defined in $\mathbf{L}_A(\Omega)$ by

$$\||f|\|_{A} = \inf\left\{r > 0: \int_{\Omega} A\left(\frac{f(x)}{r}\right) d\lambda(x) \le 1\right\}.$$
(2.4)

Orlicz and Luxemburg norms are equivalent. More precisely, if $f \in L_A(\Omega)$, then

$$|||f|||_{A} \le ||f||_{A} \le 2|||f|||_{A}.$$
(2.5)

It is well known that we can suppose that *a* and a^* are continuous and strictly increasing. Hence the N-functions *A* and A^* are strictly convex and $a^* = a^{-1}$.

Let *A* be an \mathcal{N} -function. We say that *A* verifies the Δ_2 condition if there exists a constant *C* > 0 such that $A(2t) \leq CA(t)$ for all $t \geq 0$.

Recall that A verifies the Δ_2 condition if and only if $\mathcal{L}_A = \mathbf{L}_A$. Moreover, \mathbf{L}_A is reflexive if and only if A and A* satisfy the Δ_2 condition.

Hölder inequality in Orlicz spaces is expressed in the following way:

$$\int |f \cdot g| d\lambda \le |||f|||_A \cdot ||g||_{A^*}, \quad f \in \mathbf{L}_A, \ g \in \mathbf{L}_{A^*}.$$
(2.6)

We recall the following results. Let *A* be an \mathcal{N} -function and *a* its derivative. Then the following occurs.

- (1) The \mathcal{N} -function A verifies the Δ_2 condition if and only if one of the following holds:
 - (i) for all r > 1, there exists k = k(r) (for all $t \ge 0$, $A(rt) \le kA(t)$);
 - (ii) there exists $\alpha > 1$ (for all $t \ge 0$, $ta(t) \le \alpha A(t)$);

(iii) there exists $\beta > 1$ (for all $t \ge 0$, $ta^*(t) \ge \beta A^*(t)$);

- (iv) there exists d > 0 (for all $t \ge 0$, $(A^*(t)/t)' \ge d(a^*(t)/t)$).
- Moreover, α in (ii) and β in (iii) can be chosen such that $\alpha^{-1} + \beta^{-1} = 1$. We note that $\alpha(A)$ is the smallest α such that (ii) holds.

(2) If *A* verifies the Δ_2 condition, then

$$A(t) \le A(1)t^{\alpha}, \quad \forall t \ge 1, \qquad A(t) \ge A(1)t^{\alpha}, \quad \forall t \le 1,$$

$$A^*(t) \ge A^*(1)t^{\beta}, \quad \forall t \ge 1, \qquad A^*(t) \le A^*(1)t^{\beta}, \quad \forall t \le 1.$$
(2.7)

We set $\alpha^* = \alpha(A^*)$.

Recall also that if *A* verifies the Δ_2 condition, then

$$\int A\left(\frac{f}{\|\|f\|\|_A}\right)(x)d\lambda(x) = 1.$$
(2.8)

2.2. A-hyperbolicity

Definition 2.1. Let A be an \mathcal{N} -function and K a compact set in \mathbb{R}^N . The A-capacity of K is defined by

$$\Gamma_A(K) = \inf \{ \| |\nabla u| \|_A : u \in C_0^{\infty}(\mathbb{R}^N), u = 1 \text{ in a neighborhood of } K \}.$$
(2.9)

The space \mathbb{R}^N is said to be *A*-parabolic if $\Gamma_A(K) = 0$ for all compact subsets $K \subset \mathbb{R}^N$ and *A*-hyperbolic otherwise.

Remark 2.2. In the definition of Γ_A , a simple truncation argument shows that we may restrict ourselves to functions $u \in C_0^{\infty}(\mathbb{R}^N)$ such that $0 \le u \le 1$.

For m < N, the Riesz kernel is defined on \mathbb{R}^N by $R_m(x) = |x|^{m-N}$. For $X \subset \mathbb{R}^N$, we define $R_{m,A}(X)$ by

$$R_{m,A}(X) = \inf \{ \| |f| \|_A : f \in \mathbf{L}_A, \ f \ge 0, \ R_m * f \ge 1 \text{ on } X \}.$$
(2.10)

The following lemma is proved in [3, Lemma 3.6].

LEMMA 2.3. Let L_A be a reflexive Orlicz space. Then there is a positive constant C such that

$$C^{-1}R_{1,A}(K) \le \Gamma_A(K) \le CR_{1,A}(K),$$
 (2.11)

for all compact K, C independent of K.

We recall the following result proved in [4, Theorem 3.1].

LEMMA 2.4. Let A be an \mathcal{N} -function such that $||R_m||_{A^*,\{|x|>1\}} = \infty$. Then for all X, $R_{m,A}(X) = 0$.

We will need the following lemma in the sequel.

LEMMA 2.5. Let A be any \mathcal{N} -function such that A^* verifies the Δ_2 condition and let m be a positive integer such that m < N and $\alpha^* \leq N/(N-m)$. Then $R_{m,A}(X) = 0$ for all X.

Proof. From Lemma 2.4, it suffices to prove that $||R_m||_{A^*,\{|x|>1\}} = \infty$. Since A^* verifies the Δ_2 condition, we must establish that

$$\int_{\{|x|>1\}} A^* (|x|^{m-N}) d\lambda(x) = \infty.$$
 (2.12)

By a change of variable, there is a positive constant C such that

$$\int_{\{|x|>1\}} A^*(|x|^{m-N}) d\lambda(x) = C \int_1^\infty A^*(t^{m-N}) \cdot t^{N-1} dt.$$
(2.13)

From the inequality $A^*(t^{m-N}) \ge A^*(1) \cdot t^{\alpha^*(m-N)}$, we get

$$\int_{\{|x|>1\}} A^* (|x|^{m-N}) d\lambda(x) \ge C A^*(1) \cdot \int_1^\infty t^{\alpha^*(m-N)+N-1} dt.$$
(2.14)

Now, the inequality

$$\alpha^*(m-N) + N - 1 \ge \frac{N}{N-m}(m-N) + N - 1 = -1$$
(2.15)

gives the desired result.

3. On the A-Laplacian

The Orlicz-Sobolev space $W^1 \mathbf{L}_A(\mathbb{R}^N)$ is defined as the space of functions *u* such that *u* and its derivatives, in a distributional sense, of order less or equal to one are in \mathbf{L}_A . The space $W^1 \mathbf{L}_A(\mathbb{R}^N)$ is a Banach space when equipped with the norm

$$||u||_{1,A} = \sum_{|\gamma| \le 1} ||D^{\gamma}u||_{A}.$$
(3.1)

Recall that $W^1 \mathbf{L}_A(\mathbb{R}^N)$ is reflexive if and only if A and A^* satisfy the Δ_2 condition.

The *A*-Dirichlet space $\mathbf{L}_{A}^{1}(\mathbb{R}^{N})$ is the space of functions $u \in W_{A,\text{loc}}^{1}(\mathbb{R}^{N})$ (i.e., u is locally in $W^{1}\mathbf{L}_{A}(\mathbb{R}^{N})$) admitting a weak gradient such that $\||\nabla u\|\|_{A} < \infty$.

Let *A* be any \mathcal{N} -function and let *a* be its derivative. For $x \in \mathbb{R}^N$, we define

$$M_A(x) = \frac{a(|x|)}{|x|} \cdot x \quad \text{if } x \neq 0, \ M_A(0) = 0.$$
(3.2)

The *A*-Laplacian of a function f on \mathbb{R}^N is defined by $\Delta_A f = \operatorname{div} M_A(\nabla f)$.

A function $u \in W^1_{A, loc}(\mathbb{R}^N)$ is said to be a weak solution to the equation

$$\Delta_A u + h = 0 \tag{3.3}$$

if, for all $\varphi \in C_0^1(\mathbb{R}^N)$, we have

$$\int \langle M_A(\nabla u), \nabla \varphi \rangle d\lambda = \int h\varphi d\lambda.$$
(3.4)

Let $D \subset \mathbb{R}^N$ be a nonempty bounded domain. The Banach space $\mathscr{C}_A(D)$ is the space of functions $u \in W^1_{A,\text{loc}}(\mathbb{R}^N)$ such that

$$|||u||_{A}^{D} := |||u||_{A,D} + |||\nabla u||_{A} < \infty.$$
(3.5)

We denote by $\mathscr{C}^0_A(D)$ the closure of $C^1_0(\mathbb{R}^N)$ in $\mathscr{C}_A(D)$.

3.1. A nonresolvability result

THEOREM 3.1. Let A be an \mathcal{N} -function satisfying the Δ_2 condition. Suppose that \mathbb{R}^N is A-parabolic and let $h \in \mathbf{L}_1(\mathbb{R}^N)$ be such that $\int h d\lambda \neq 0$. Then the equation

$$\Delta_A u + h = 0 \tag{3.6}$$

has no weak solution on $L^1_A(\mathbb{R}^N)$.

Proof. We may suppose that $\int h d\lambda > 0$. Hence there is a bounded set $D \subset \mathbb{R}^N$ such that $\lambda(D) > 0$, $s := \inf_D h > 0$, and $\int_D h d\lambda > |\int h^- d\lambda|$.

Let 0 < c < 1 be such that $0 \le -\int h^- d\lambda < c \int_D h d\lambda$.

By the definition of $\Gamma_{1,A}(D)$, for $\varepsilon > 0$, we can find a function $\nu \in C_0^{\infty}(\mathbb{R}^N)$ such that $0 \le \nu \le 1$, $\nu = 1$, on *D* and

$$\||\nabla \nu|\|_A \le \Gamma_A(D) + \varepsilon. \tag{3.7}$$

On the other hand, we have $-c \int_D vh d\lambda < \int vh^- d\lambda \le 0$. Hence

$$(1-c)\int_{D} vh d\lambda < \int_{D} vh d\lambda + \int vh^{-} d\lambda$$
$$< \int_{D} vh d\lambda + \int vh^{-} d\lambda + \int_{cD} vh^{+} d\lambda$$
$$\leq \int vh d\lambda.$$
(3.8)

But $s \cdot \lambda(D) \leq \int_D vh d\lambda$. Thus

$$(1-c)\cdot s\cdot\lambda(D)\leq\int vh\,d\lambda.$$
(3.9)

Now suppose that $u \in \mathbf{L}_{A}^{1}(\mathbb{R}^{N})$ is a weak solution of (3.6) and let $\xi := -(a(|\nabla u|)/|\nabla u|) \cdot \nabla u$. Then $\operatorname{div}(\xi) = -\Delta_{A}u = h$, and since A satisfies the Δ_{2} condition, $|\xi| \in \mathbf{L}_{A^{*}}(\mathbb{R}^{N})$.

An integration by part and Hölder inequality in Orlicz spaces applied to inequality (3.9) imply that

$$(1-c) \cdot s \cdot \lambda(D) \leq \int v \cdot \operatorname{div}(\xi) d\lambda$$

= $-\int \langle \nabla v, \xi \rangle d\lambda \leq ||\xi||_{A^*} || |\nabla v| ||_A.$ (3.10)

From (3.7), and since ε is arbitrary, we get

$$0 < \lambda(D) \le \frac{\|\xi\|_{A^*}}{(1-c) \cdot s} \cdot \Gamma_A(D).$$

$$(3.11)$$

This is impossible, and the theorem is proved.

COROLLARY 3.2. Let \mathbf{L}_A be a reflexive Orlicz space such that $\alpha^* \leq N/(N-1)$. Let $h \in \mathbf{L}_1(\mathbb{R}^N)$ be such that $\int h d\lambda \neq 0$. Then (3.6) has no weak solution on $\mathbf{L}_A^1(\mathbb{R}^N)$.

Proof. By Lemmas 2.5 and 2.3, \mathbb{R}^N is then *A*-parabolic. We apply Theorem 3.1 to get the result.

Remark 3.3. When $A(t) = p^{-1}|t|^p$, $\mathbf{L}_A = \mathbf{L}^p$ is the usual Lebesgue space and $\alpha^* = p/(p-1)$. Hence the condition $\alpha^* \le N/(N-1)$ is exactly the condition $N \le p$. Thus our result recovers the one in [6, Théorème 1].

3.2. A resolvability result. In this section, we resolve the equation $\Delta_A u + h = 0$ under some assumptions on the \mathcal{N} -function A and on the function h.

We begin by recalling the following Poincaré inequality for Orlicz-Sobolev functions, which is a combination of [5, Theorem 3.3] and [5, Proposition 3.9].

LEMMA 3.4. Let A be an N-function such that A and A^* satisfy the Δ_2 condition. Let E be any measurable set in \mathbb{R}^N such that $0 < \lambda(E) < \infty$. Then there exists a positive constant C such that

$$|||u - u_E|||_{A,E} \le C|||\nabla u||_{A,E},$$
(3.12)

for all $u \in W^1_{A, \text{loc}}(\mathbb{R}^N)$, where $u_E = (1/\lambda(E)) \int_E u d\lambda$ is the mean value of u on E.

An application of Hölder inequality in Orlicz spaces gives

$$\int_{E} |u - u_{E}| d\lambda \le ||\chi_{E}||_{A^{*}} || |u - u_{E}| ||_{A,E}, \qquad (3.13)$$

where χ_E is the characteristic function of *E*.

Recall that

$$||\chi_E||_{A^*} = \lambda(E) \cdot A^{-1} \left(\frac{1}{\lambda(E)}\right),$$

|||1|||_{A,E} = |||\chi_E|||_A = \frac{1}{A^{-1}(1/\lambda(E))}. (3.14)

Hence we obtain the following proposition.

PROPOSITION 3.5. Let A be an \mathcal{N} -function such that A and A^* satisfy the Δ_2 condition. Let E be any measurable set in \mathbb{R}^N such that $0 < \lambda(E) < \infty$. Then there exists a positive constant C such that

$$\int_{E} |u - u_E| d\lambda \le C |||\nabla u|||_{A,E}, \qquad (3.15)$$

for all $u \in W^1_{A, \text{loc}}(\mathbb{R}^N)$.

We will need the following proposition in what follows.

PROPOSITION 3.6. Let A be an \mathcal{N} -function such that A and A^* satisfy the Δ_2 condition. Suppose that \mathbb{R}^N is A-hyperbolic. Let E be any nonempty bounded domain in \mathbb{R}^N . Then there exists a positive constant C such that, for all $u \in \mathscr{C}^0_A(E)$,

$$\int_{E} |u| d\lambda \le C \||\nabla u|\|_{A}.$$
(3.16)

Proof. Suppose that such constant does not exist. Then for all $\varepsilon > 0$, we can find a function $u \in \mathscr{C}^0_A(E)$ such that

$$\int_{E} |u| d\lambda = \lambda(E), \qquad \||\nabla u|\|_{A} \le \varepsilon.$$
(3.17)

We may assume that $u \ge 0$. Proposition 3.5 implies that

$$\int_{E} |u| d\lambda \le C\varepsilon. \tag{3.18}$$

We now choose a ball $B \subseteq E$ and a function $\varphi \in C_0^1$ such that $0 \le \varphi \le 2^{-1}$, supp $(\varphi) \subset E$, and $\varphi = 2^{-1}$ on *B*. Define the function $\nu \in \mathscr{C}_A^0(E)$ by $\nu = 2 \max(u, \varphi)$. Then $\nu \ge 1$ on *B*. Now, define the sets

$$S = \{ x \in E : \varphi(x) \ge u(x) \}, \qquad S' = \{ x \in E : |u(x) - 1| \ge 2^{-1} \}.$$
(3.19)

We have $S \subset S'$ and, by (3.18), $2^{-1}\lambda(S') \leq C\varepsilon$. Thus

$$\lambda(S) \le 2C\varepsilon. \tag{3.20}$$

On the other hand, we have almost everywhere

$$\nabla v = \begin{cases} 2\nabla u & \text{on } {}^c S, \\ 2\nabla \varphi & \text{on } S. \end{cases}$$
(3.21)

This implies that

$$|\nabla v| \le 2|\nabla u| + 2\chi_S |\nabla \varphi| \quad \text{a.e.} \tag{3.22}$$

Since $v \ge 1$ on *B* and ε is arbitrary, we deduce that $\Gamma_A(B) = 0$. This contradicts the fact that \mathbb{R}^N is *A*-hyperbolic. The proof is complete.

LEMMA 3.7. Let A be an \mathcal{N} -function. If \mathbb{R}^N is A-parabolic, then $1 \in \mathscr{C}^0_A(D)$ for any nonempty bounded domain D.

Proof. Since \mathbb{R}^N is *A*-parabolic, $\Gamma_A(\overline{D}) = 0$. Hence for all $\varepsilon > 0$, there exists a function $u \in C_0^1$ such that u = 1 on *D* and $|| |\nabla u| ||_A \le \varepsilon$. Thus

$$|||1 - u|||_{A} = ||1 - u|||_{A,D} + ||\nabla u|||_{A} = ||\nabla u|||_{A} \le \varepsilon.$$
(3.23)

This means that $1 \in \mathscr{C}^0_A(D)$.

THEOREM 3.8. Let A be an \mathcal{N} -function such that A and A^* satisfy the Δ_2 condition. Let D be nonempty bounded domain in \mathbb{R}^N . Then the following assertions are equivalent

(i) \mathbb{R}^N is A-hyperbolic;

(ii) there exists a constant C such that, for all $u \in \mathscr{C}^0_A(D)$,

$$|||u|||_{A,D} \le C |||\nabla u|||_A; \tag{3.24}$$

(iii) $1 \notin \mathscr{C}^0_A(D)$.

Proof. It is easy to verify that (ii) implies (iii). The implication (iii) \Rightarrow (i) is Lemma 3.7. It remains to prove that (i) implies (ii).

Write $u = (u - u_D) + u_D$. Proposition 3.6 and Lemma 3.4 give

$$\begin{split} \| \| u \|_{A,D} &\leq \| \| u - u_D \| \|_{A,D} + \| \| u_D \| \|_{A,D} \\ &\leq C \| |\nabla u| \|_{A,D} + |u_D| \cdot \| |1| \|_{A,D} \\ &\leq C \| |\nabla u| \|_{A,D} + \frac{1}{A^{-1}(1/\lambda(D))} \cdot \lambda(D)^{-1} \int_D |u| d\lambda \\ &\leq C \| |\nabla u| \|_{A,D} + \frac{1}{A^{-1}(1/\lambda(D))} \cdot \lambda(D)^{-1} C' \| |\nabla u| \|_A \\ &\leq C'' \| |\nabla u| \|_{A.}. \end{split}$$
(3.25)

The proof is complete.

Recall that for all $f \in \mathbf{L}_A$ such that $|||f|||_A > 1$, we have $\int A \circ f \, d\lambda > |||f|||_A$. We set

$$s(A) = \inf \left\{ \frac{\log \int A \circ f \, d\lambda}{\log \||f|\|_A} - 1, \ f \in \mathbf{L}_A, \ \||f|\|_A > 1 \right\}.$$
(3.26)

Hence $s(A) \ge 0$.

Now we are ready to solve the *A*-Laplace equation.

THEOREM 3.9. Let \mathbf{L}_A be a reflexive Orlicz space such that s(A) > 0. Let $h \in \mathbf{L}^{\infty}(\mathbb{R}^N)$ have compact support. Then the equation $\Delta_A u + h = 0$ has a weak solution $u \in \mathbf{L}_A^1(\mathbb{R}^N)$ if \mathbb{R}^N is A-hyperbolic.

Proof. Let D be a bounded domain such that $\operatorname{supp}(h) \subset D$. Define the functional $\mathcal{F}: \mathscr{C}^0_A(D) \to \overline{\mathbb{R}}$ by

$$\mathcal{F}(u) = \int A(|\nabla u|) d\lambda - \int hu \, d\lambda. \tag{3.27}$$

752 On the A-Laplacian

Hence

$$\mathcal{F}(u) \ge \int A(|\nabla u|) d\lambda - \left| \int h u d\lambda \right|$$

$$\ge \int A(|\nabla u|) d\lambda - ||h||_{\infty} \cdot ||u||_{L^{1}(D)}.$$
(3.28)

Since \mathbb{R}^N is *A*-hyperbolic, by Proposition 3.6, we get

$$\mathcal{F}(u) \ge \int A(|\nabla u|) d\lambda - C ||h||_{\infty} \cdot ||\nabla u||_{A}.$$
(3.29)

Hence there is a constant C_1 such that

$$\mathcal{F}(u) \ge \int A(|\nabla u|) d\lambda - C_1 \cdot \|\nabla u\|_A.$$
(3.30)

By (2.3) and (2.5), there is a constant C_2 such that, for all k > 0,

$$\mathcal{F}(u) \ge \int A(|\nabla u|) d\lambda - \frac{C_2}{k} \int A(k|\nabla u|) d\lambda - \frac{C_2}{k}.$$
(3.31)

Now, let t > 0 and consider the continuous function ψ_t defined on \mathbb{R}^+ by $\psi_t(k) = (C_2/k)A(kt) - A(t)$. Since

$$xa(x) \ge A(x), \quad \forall x \ge 0,$$

$$\lim_{t \to 0} \frac{A(t)}{t} = 0, \qquad \lim_{t \to +\infty} \frac{A(t)}{t} = +\infty,$$
(3.32)

the function ψ_t increases from -A(t) to $+\infty$. Hence there is a k_0 such that $\psi_t(k_0) = 0$. Thus

$$\mathcal{F}(u) \ge -\frac{C_2}{k_0}.$$
(3.33)

We conclude that the functional \mathcal{F} is bounded below on the space $\mathscr{E}^0_A(D)$.

Now $\mathscr{C}_A(D)$ is a reflexive Banach space and $\mathscr{C}_A^0(D)$ is a closed convex subspace of $\mathscr{C}_A(D)$. We first prove that \mathscr{F} is lower semicontinuous. Let $t \in \mathbb{R}$, and consider the set $\mathscr{F}_t = \{u \in \mathscr{C}_A^0(D) : \mathscr{F}(u) \le t\}$. Let $(u_i)_i \subset \mathscr{C}_A^0(D)$ be such that $\mathscr{F}(u_i) \le t$, for all *i*, and $(u_i)_i$ converges to u in $\mathscr{C}_A^0(D)$. By the compactness of the imbedding $\mathscr{C}_A^0(D) \subset \mathbf{L}^1(D)$, we may assume that $(u_i)_i$ converges strongly in $\mathbf{L}^1(D)$. Hence

$$\int_{D} hu_i d\lambda \longrightarrow \int_{D} hu d\lambda.$$
(3.34)

Theorem 3.8 implies that $u \to ||\nabla u||_A$ is an equivalent norm on $\mathscr{C}^0_A(D)$.

Hence $|||\nabla u - \nabla u_i|||_A \to 0$. Since *A* verifies the Δ_2 condition, $\int A(|\nabla u - \nabla u_i|)d\lambda \to 0$. Hence there is a subsequence of the sequence $(A(|\nabla u - \nabla u_i|))_i$, still denoted by $(A(|\nabla u - \nabla u_i|))_i$, which converges λ -almost everywhere to 0.

Thus $(|\nabla u_i|)_i$ converges λ -almost everywhere to $|\nabla u|$. By the continuity of *A*, Fatou's lemma, and (3.34), we get

$$\mathcal{F}(u) = \int \lim_{i \to \infty} A(|\nabla u_i|) d\lambda - \lim_{i \to \infty} \int h u_i d\lambda$$

$$\leq \liminf_{i \to \infty} \int A(|\nabla u_i|) d\lambda - \lim_{i \to \infty} \int h u_i d\lambda \leq t.$$
(3.35)

Hence \mathcal{F} is lower semicontinuous.

Now, s(A) > 0 implies that $\int A(|\nabla u|) d\lambda \ge ||\nabla u||_A^{s(A)+1}$ for $||\nabla u||_A > 1$. Hence

 $\mathcal{F}(u) \ge \||\nabla u|\|_{A}^{s(A)+1} - C_{1} \cdot \||\nabla u|\|_{A} \quad \text{for } \||\nabla u|\|_{A} > 1.$ (3.36)

This proves that \mathcal{F} is coercive.

Thus \mathcal{F} attains its minimum on $\mathscr{C}^0_A(D)$; that is, there is $u^* \in \mathscr{C}^0_A(D)$ such that $\mathcal{F}(u^*) = \min{\{\mathcal{F}(u) : u \in \mathscr{C}^0_A(D)\}}$. By the usual arguments from variational calculus, we deduce that u^* is a weak solution to the equation $\Delta_A u + h = 0$. The proof is complete.

Remark 3.10. We have in fact solved the equation in the space $\mathscr{C}^0_A(D) \subset \mathbf{L}^1_A(\mathbb{R}^N)$.

Remark 3.11. When $A(t) = p^{-1}|t|^p$, p > 1, and $L_A = L^p$ is the usual Lebesgue space, we have s(A) = p - 1 > 0. Thus we recover the result in [9, Theorem 2] when the manifold M is \mathbb{R}^N .

Recall the following result in [2, Lemma 3].

LEMMA 3.12. Let A be an \mathcal{N} -function satisfying the Δ_2 condition. If $\alpha < N$, then $R_{1,A}(B(x,r)) > 0$, where B(x,r) is the open ball of radius r > 0, with center at x.

COROLLARY 3.13. Let \mathbf{L}_A be a reflexive Orlicz space such that s(A) > 0 and $\alpha < N$. Suppose that $h \in \mathbf{L}^{\infty}(\mathbb{R}^N)$ has compact support. Then the equation $\Delta_A u + h = 0$ has a weak solution $u \in \mathbf{L}_A^1(\mathbb{R}^N)$.

Proof. By Lemmas 3.12 and 2.3, we deduce that \mathbb{R}^N is A-hyperbolic, and we apply Theorem 3.9 to get the result.

3.3. Some examples. In addition to the **L**^{*p*} Lebesgue case corresponding to $A(t) = p^{-1}|t|^p$, p > 1, we consider the following \mathcal{N} -functions:

(1)

$$A_{1}(t) = \begin{cases} t^{p} & \text{for } 0 \le |t| \le 1, \\ t^{q} & \text{for } 1 < |t|, \end{cases} \quad 1 < p \le q < \infty, \tag{3.37}$$

(2)
$$A_2(t) = |t|^p \log(1+|t|), p > 1,$$

(3) $A_3(t) = |t|^p \log(1+|t|^p), p > 1,$

(4) $A_4(t) = |t|^p \log^p(1+|t|), p > 1,$

(5) $A_{p,q,r}(t) = |t|^p \log^q (1 + |t|^r), p > 1, q > 0$, and r > 0.

All these \mathcal{N} -functions and their conjugates satisfy the Δ_2 condition. We show that $s(A_i) > 0$, i = 1, 2, 3, 4, and $s(A_{p,q,r}) > 0$.

First remark that $A_2 = A_{p,1,1}$ and $A_3 = A_{p,1,p}$. Thus it suffices to show that $s(A_{p,q,r}) > 0$ and for all p > 1, q > 0, r > 0.

(1) Let $f \in \mathbf{L}_{A_1}$ be such that $|||f|||_{A_1} > 1$. Then, by (2.8),

$$\begin{split} &1 = \int A_{1} \left(\frac{f}{\||f|\|_{A_{1}}} \right)(x) d\lambda(x) \\ &\leq \frac{1}{\||f|\|_{A_{1}}^{p}} \int_{\{|f| \leq \||f|\|_{A_{1}}\}} |f|^{p} d\lambda \\ &+ \frac{1}{\||f|\|_{A_{1}}^{q}} \int_{\{|f| > \||f|\|_{A_{1}}\}} |f|^{q} d\lambda \\ &\leq \frac{1}{\||f|\|_{A_{1}}^{p}} \left[\int_{\{|f| \leq \||f|\|_{A_{1}}\}} |f|^{p} d\lambda + \int_{\{|f| > \||f|\|_{A_{1}}\}} |f|^{q} d\lambda \right] \\ &\leq \frac{1}{\||f|\|_{A_{1}}^{p}} \left[\int_{\{|f| \leq 1\}} |f|^{p} d\lambda + \int_{\{1 < |f| \leq \||f|\|_{A_{1}}\}} |f|^{p} d\lambda \\ &+ \int_{\{|f| > \||f|\|_{A_{1}}} |f|^{q} d\lambda \right] \\ &\leq \frac{1}{\||f|\|_{A_{1}}^{p}} \left[\int_{\{|f| \leq 1\}} |f|^{p} d\lambda + \int_{\{1 < |f| \leq \||f|\|_{A_{1}}\}} |f|^{q} d\lambda \\ &+ \int_{\{|f| > \||f|\|_{A_{1}}} |f|^{q} d\lambda \right] \\ &\leq \frac{1}{\||f|\|_{A_{1}}^{p}} \int A_{1}(f)(x) d\lambda(x). \end{split}$$

Hence $||f||_{A_1}^p \leq \int A_1(f)(x) d\lambda(x)$. This implies that $s(A_1) > 0$.

(2) Let p > 1, q > 0, and r > 0 and set $A = A_{p,q,r}$. Let $f \in L_A$ be such that $|||f|||_A > 1$. Then by (2.8),

$$1 = \int A\left(\frac{f}{\||f|\|_{A}}\right)(x)d\lambda(x)$$

$$\leq \frac{1}{\||f|\|_{A}^{p}} \int |f|^{p}\log^{q}\left(1 + \frac{|f|^{r}}{\||f|\|_{A}^{r}}\right)d\lambda$$

$$\leq \frac{1}{\||f|\|_{A}^{p}} \int |f|^{p}\log^{q}\left(1 + |f|^{r}\right)d\lambda$$

$$\leq \frac{1}{\||f|\|_{A}^{p}} \int A(f)(x)d\lambda(x).$$
(3.39)

Thus $\|\|f\|\|_A^p \leq \int A(f)(x) d\lambda(x)$ and hence s(A) > 0.

Remark 3.14. Although Theorem 3.9 gives a solution for large classes of Orlicz spaces L_A , including L^p Lebesgue spaces, p > 1, it would be sharp if we can drop the condition s(A) > 0. This question is open.

References

- R. A. Adams, *Sobolev Spaces*, Pure and Applied Mathematics, vol. 65, Academic Press, New York, 1975.
- [2] N. Aïssaoui, Instability of capacity in Orlicz spaces, Potential Anal. 6 (1997), no. 4, 327–346.
- [3] _____, Capacitary type estimates in strongly nonlinear potential theory and applications, Rev. Mat. Complut. 14 (2001), no. 2, 347–370.
- [4] _____, On the continuity of strongly nonlinear potential, Math. Slovaca 51 (2001), no. 2, 215–228.
- [5] _____, Strongly nonlinear potential theory on metric spaces, Abstr. Appl. Anal. 7 (2002), no. 7, 357–374.
- [6] V. Gol'dshtein and M. Troyanov, Sur la non-résolubilité du p-laplacien sur Rⁿ [On the nonsolvability of the p-Laplacian on Rⁿ], C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 10, 1185–1187 (French).
- [7] M. A. Krasnosel'skiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces, P. Noordhoff, Groningen, 1961.
- [8] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, New York, 1991.
- [9] M. Troyanov, Solving the p-Laplacian on manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 2, 541–545.

Noureddine Aïssaoui: Département de Mathématiques École Normale Supérieure, BP 5206, Ben Souda, Fès, Morocco

E-mail address: n.aissaoui@caramail.com