ESTIMATES FOR THE GREEN FUNCTION AND SINGULAR SOLUTIONS FOR POLYHARMONIC NONLINEAR EQUATION

IMED BACHAR, HABIB MÂAGLI, SYRINE MASMOUDI, AND MALEK ZRIBI

Received 5 July 2002

We establish a new form of the $3 G$ theorem for polyharmonic Green function on the unit ball of $\mathbb{R}^{n}(n \geq 2)$ corresponding to zero Dirichlet boundary conditions. This enables us to introduce a new class of functions $K_{m, n}$ containing properly the classical Kato class K_{n}. We exploit properties of functions belonging to $K_{m, n}$ to prove an infinite existence result of singular positive solutions for nonlinear elliptic equation of order $2 m$.

1. Introduction

In [2], Boggio gave an explicit expression for the Green function $G_{m, n}$ of $(-\triangle)^{m}$ on the unit ball B of $\mathbb{R}^{n}(n \geq 2)$ with Dirichlet boundary conditions

$$
\begin{equation*}
u=\frac{\partial}{\partial \nu} u=\cdots=\frac{\partial^{m-1}}{\partial \nu^{m-1}} u=0 \quad \text { on } \partial B \tag{1.1}
\end{equation*}
$$

where $\partial / \partial \nu$ is the outward normal derivate and m is a positive integer.
In fact, he proved that for each x, y in B, we have

$$
\begin{equation*}
G_{m, n}(x, y)=k_{m, n}|x-y|^{2 m-n} \int_{1}^{[x, y] /|x-y|} \frac{\left(v^{2}-1\right)^{m-1}}{v^{n-1}} d v \tag{1.2}
\end{equation*}
$$

where $k_{m, n}$ is a positive constant and $[x, y]^{2}=|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)$, for each x, y in B.

Hence, from its expression, it is clear that $G_{m, n}$ is positive in B^{2}, which does not hold for the Green function for the biharmonic or m-polyharmonic operator for an arbitrary bounded domain (see, e.g., [5]). Only for the case $m=1$, we do not have this restriction.

In [7], using the Boggio formula (1.2), Grunau and Sweers have established some interesting estimates for the Green function $G_{m, n}$ in B. In particular, they
obtained the following inequality called $3 G$ theorem: there exists a constant $a_{m, n}>0$ such that for each $x, y, z \in B$,

$$
\frac{G_{m, n}(x, z) G_{m, n}(z, y)}{G_{m, n}(x, y)} \leq a_{m, n} \begin{cases}|x-z|^{2 m-n}+|z-y|^{2 m-n}, & \text { for } 2 m<n \tag{1.3}\\ \log \left(\frac{3}{|x-z|}\right)+\log \left(\frac{3}{|z-y|}\right), & \text { for } 2 m=n \\ 1, & \text { for } 2 m>n\end{cases}
$$

The Green function for the Laplacian $(m=1)$ satisfies the above inequality in an arbitrary bounded $C^{1,1}$ domain Ω in \mathbb{R}^{n}. In fact, for the case $n \geq 3$, Zhao proved in [19] the existence of a positive constant C_{n} such that for each x, y, z in Ω,

$$
\begin{equation*}
\frac{G_{1, n}(x, z) G_{1, n}(z, y)}{G_{1, n}(x, y)} \leq C_{n}\left(\frac{1}{|x-z|^{n-2}}+\frac{1}{|y-z|^{n-2}}\right) \tag{1.4}
\end{equation*}
$$

Moreover, for the case $n=2$, Chung and Zhao showed in [3] the existence of a positive constant C_{2} such that for each x, y, z in Ω,

$$
\begin{equation*}
\frac{G_{1,2}(x, z) G_{1,2}(z, y)}{G_{1,2}(x, y)} \leq C_{2}\left[\max \left(1, \log \left(\frac{1}{|x-z|}\right)\right)+\max \left(1, \log \left(\frac{1}{|y-z|}\right)\right)\right] \tag{1.5}
\end{equation*}
$$

The $3 G$ theorem related to $G_{1, n}$ has been exploited in the study of functions belonging to the Kato class $K_{n}(\Omega)$ (see Definition 1.1), which was widely used in the study of some nonlinear differential equations (see $[15,18]$).

More properties pertaining to this class can be found in [1,3].
Definition 1.1 (see $[1,3]$). A Borel measurable function φ in Ω belongs to the Kato class $K_{n}(\Omega)$ if φ satisfies the following conditions:

$$
\begin{align*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in \Omega} \int_{\Omega \cap B(x, \alpha)} \frac{|\varphi(y)|}{|x-y|^{n-2}} d y\right)=0, \quad \text { if } n \geq 3, \tag{1.6}\\
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in \Omega} \int_{\Omega \cap B(x, \alpha)} \log \left(\frac{1}{|x-y|}\right)|\varphi(y)| d y\right)=0, \quad \text { if } n=2 .
\end{align*}
$$

The purpose of this paper is two-folded. One is to give a new form of the $3 G$ theorem to the Green function $G_{m, n}$ in B^{2} which improves (1.3) and enables us to introduce a new Kato class $K_{m, n}:=K_{m, n}(B)$ in the sense of Definition 1.2. The
second purpose is to investigate the existence of infinitely many singular positive solutions for the following nonlinear elliptic problem:

$$
\begin{gather*}
\Delta^{m} u=(-1)^{m} f(\cdot, u) \quad \text { in } B \backslash\{0\} \text { (in the sense of distributions), } \\
u=\frac{\partial}{\partial \nu} u=\cdots=\frac{\partial^{m-1}}{\partial \nu^{m-1}} u=0 \quad \text { on } \partial B, \tag{1.7}\\
u(x) \sim c \rho(x), \quad \text { near } x=0, \text { for any sufficiently small } c>0,
\end{gather*}
$$

where

$$
\rho(x)= \begin{cases}\frac{1}{|x|^{n-2 m}}, & \text { for } 2 m<n \tag{1.8}\\ \log \left(\frac{1}{|x|}\right), & \text { for } 2 m=n \\ 1, & \text { for } 2 m>n\end{cases}
$$

and f is required to satisfy suitable assumptions related to the class $K_{m, n}$ which will be specified later.

The existence of infinitely many singular positive solutions for problem (1.7) in the case $m=1$, for an arbitrary bounded $C^{1,1}$ domain Ω in $\mathbb{R}^{n}(n \geq 3)$, has been established by Zhang and Zhao in [18] for the special nonlinearity

$$
\begin{equation*}
f(x, t)=p(x) t^{\mu}, \quad \mu>1, \tag{1.9}
\end{equation*}
$$

where the function p satisfies

$$
\begin{equation*}
x \rightarrow \frac{p(x)}{|x|^{(n-2)(\mu-1)}} \in K_{n}(\Omega) \tag{1.10}
\end{equation*}
$$

This result has been recently extended by Mâagli and Zribi in [14], where f satisfies some appropriate conditions related to the class $K_{1, n}(\Omega)$.

Here we extend these results to the high order.
The outline of the paper is as follows. In Section 2, we find again by a simpler argument some estimates on the Green function $G_{m, n}$ given by Grunau and Sweers in [7] and we give further ones, including the following:

$$
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \leq C \begin{cases}\frac{1}{|x-y|^{n-2 m}}, & \text { for } 2 m<n \tag{1.11}\\ \log \left(\frac{3}{|x-y|}\right), & \text { for } 2 m=n \\ 1, & \text { for } 2 m>n\end{cases}
$$

Next, we establish the $3 G$ theorem in this form: there exists $C_{m, n}>0$ such that for each $x, y, z \in B$,

$$
\begin{align*}
& \frac{G_{m, n}(x, z) G_{m, n}(z, y)}{G_{m, n}(x, y)} \\
& \quad \leq C_{m, n}\left[\left(\frac{\delta(z)}{\delta(x)}\right)^{m} G_{m, n}(x, z)+\left(\frac{\delta(z)}{\delta(y)}\right)^{m} G_{m, n}(y, z)\right] \tag{1.12}
\end{align*}
$$

which improves (1.3). We note that, for $m=1$, (1.12) holds for an arbitrary bounded domain Ω in \mathbb{R}^{n}. This was proved by Kalton and Verbitsky in [10] for $n \geq 3$ and by Selmi in [16] for the case $n=2$.

In Section 3, we define and study some properties of functions belonging to the class $K_{m, n}$.

Definition 1.2. A Borel measurable function φ in B belongs to the class $K_{m, n}$ if φ satisfies the following condition:

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in B} \int_{B \cap B(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y\right)=0 . \tag{1.13}
\end{equation*}
$$

In particular, we show that $K_{m, n}$ contains properly $K_{j, n}$, for $1 \leq j \leq m-1$, which contains properly $K_{n}(B)$. We close this section by giving a characterization of the radial functions belonging to the class $K_{m, n}$.

For the case $m=1$, this class has been extensively studied for an arbitrary bounded $C^{1,1}$ domain in \mathbb{R}^{n}, in [14], for $n \geq 3$, and in $[12,17]$ for $n=2$. To study problem (1.7) in Section 4, we assume that f satisfies the following hypotheses:
$\left(\mathrm{H}_{1}\right) f$ is a Borel measurable function on $B \times(0, \infty)$, continuous with respect to the second variable;
$\left(\mathrm{H}_{2}\right)|f(x, t)| \leq t q(x, t)$, where q is a nonnegative Borel measurable function in $B \times(0, \infty)$, such that the function $t \mapsto q(x, t)$ is nondecreasing on $(0, \infty)$ and $\lim _{t \rightarrow 0} q(x, t)=0$;
$\left(\mathrm{H}_{3}\right)$ the function g, defined on B by $g(x)=q\left(x, G_{m, n}(x, 0)\right)$, belongs to the class $K_{m, n}$.
We point out that in the case $m=1$ and $f(x, t)=p(x) t^{\mu}$, the assumption (1.10) implies $\left(\mathrm{H}_{3}\right)$.

In order to simplify our statements, we define some convenient notation.
Notation. (i) We denote $B=\left\{x \in \mathbb{R}^{n} ;|x|<1\right\}$ with $n \geq 2$.
(ii) We denote $s \wedge t=\min (s, t)$ and $s \vee t=\max (s, t)$ for $s, t \in \mathbb{R}$.
(iii) For $x, y \in B$,

$$
\begin{gather*}
{[x, y]^{2}=|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)} \\
\delta(x)=1-|x| \tag{1.14}\\
\theta(x, y)=[x, y]^{2}-|x-y|^{2}=\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)
\end{gather*}
$$

Note that $[x, y]^{2} \geq 1+|x|^{2}|y|^{2}-2|x||y|=(1-|x||y|)^{2}$. So we have

$$
\begin{equation*}
\delta(x) \leq[x, y], \quad \delta(y) \leq[x, y] . \tag{1.15}
\end{equation*}
$$

(iv) Let f and g be positive functions on a set S.

We call $f \sim g$ if there is $c>0$ such that

$$
\begin{equation*}
\frac{1}{c} g(x) \leq f(x) \leq c g(x) \quad \forall x \in S \tag{1.16}
\end{equation*}
$$

We call $f \preceq g$ if there is $c>0$ such that

$$
\begin{equation*}
f(x) \leq c g(x) \quad \forall x \in S \tag{1.17}
\end{equation*}
$$

The following properties will be used several times:
(i) for $s, t \geq 0$, we have

$$
\begin{align*}
& s \wedge t \sim \frac{s t}{s+t}, \tag{1.18}\\
& (s+t)^{p} \sim s^{p}+t^{p}, \quad p \in \mathbb{R}^{+} ; \tag{1.19}
\end{align*}
$$

(ii) let $\lambda, \mu>0$ and $0<\gamma \leq 1$, then we have

$$
\begin{align*}
& 1-t^{\lambda} \sim 1-t^{\mu} \quad \text { for } t \in[0,1] \tag{1.20}\\
& \log (1+t) \leq t^{\gamma} \quad \text { for } t \geq 0 \tag{1.21}\\
& \log (1+\lambda t) \sim \log (1+\mu t) \quad \text { for } t \geq 0 \tag{1.22}\\
& \log \left(1+t^{\lambda}\right) \sim t^{\lambda} \log (2+t) \quad \text { for } t \in[0,1] \tag{1.23}
\end{align*}
$$

(iii) on B^{2} (i.e., $(x, y) \in B^{2}$), we have

$$
\begin{gather*}
\theta(x, y) \sim \delta(x) \delta(y) \tag{1.24}\\
{[x, y]^{2} \sim|x-y|^{2}+\delta(x) \delta(y) .} \tag{1.25}
\end{gather*}
$$

2. Inequalities for the Green function

We first find another expression of $G_{m, n}$ given by Hayman and Korenblum in [8], which will be used later.

Proposition 2.1. The Green function $G_{m, n}$ satisfies

$$
\begin{equation*}
G_{m, n}(x, y)=\alpha_{m, n} \sum_{k=0}^{\infty} \frac{\Gamma(n / 2+k)(\theta(x, y))^{m+k}}{(k+m)![x, y]^{n+2 k}} \tag{2.1}
\end{equation*}
$$

where $\alpha_{m, n}$ is some fixed positive constant.

720 Singular solutions for polyharmonic equation
Proof. Using the transformation $v^{2}=1+\left(\theta(x, y) /|x-y|^{2}\right)(1-t)$ in $(1.2), G_{m, n}$ becomes

$$
\begin{equation*}
G_{m, n}(x, y)=\frac{k_{m, n}}{2} \frac{(\theta(x, y))^{m}}{[x, y]^{n}} \int_{0}^{1} \frac{(1-t)^{m-1}}{\left(1-t\left(\theta(x, y) /[x, y]^{2}\right)\right)^{n / 2}} d t \tag{2.2}
\end{equation*}
$$

Since $0<\theta(x, y) /[x, y]^{2} \leq 1$, and for each $t \in[0,1[$, we have

$$
\begin{equation*}
(1-t)^{-n / 2}=\sum_{k=0}^{\infty} \frac{\Gamma(n / 2+k)}{k!\Gamma(n / 2)} t^{k} ; \tag{2.3}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
G_{m, n}(x, y)=\frac{k_{m, n}}{2} \sum_{k=0}^{\infty} \frac{\Gamma(n / 2+k)}{k!\Gamma(n / 2)} \frac{(\theta(x, y))^{m+k}}{[x, y]^{n+2 k}} B(k+1, m), \tag{2.4}
\end{equation*}
$$

where $B(k+1, m):=\int_{0}^{1} t^{k}(1-t)^{m-1} d t=k!(m-1)!/(k+m)!$.
That is,

$$
\begin{equation*}
G_{m, n}(x, y)=\alpha_{m, n} \sum_{k=0}^{\infty} \frac{\Gamma((n / 2)+k)}{(k+m)!} \frac{(\theta(x, y))^{m+k}}{[x, y]^{n+2 k}} \tag{2.5}
\end{equation*}
$$

with $\alpha_{m, n}>0$.
Moreover, from formula (1.2), we may prove, by simpler argument, the following estimates on $G_{m, n}$ given in [7].

Proposition 2.2. On B^{2}, the following estimates hold:
(i) for $2 m<n$,

$$
\begin{equation*}
G_{m, n}(x, y) \sim|x-y|^{2 m-n}\left(1 \wedge \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right) \tag{2.6}
\end{equation*}
$$

(ii) for $2 m=n$,

$$
\begin{equation*}
G_{m, n}(x, y) \sim \log \left(1+\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right) \tag{2.7}
\end{equation*}
$$

(iii) for $2 m>n$,

$$
\begin{equation*}
G_{m, n}(x, y) \sim(\delta(x) \delta(y))^{m-n / 2}\left(1 \wedge \frac{(\delta(x) \delta(y))^{n / 2}}{|x-y|^{n}}\right) \tag{2.8}
\end{equation*}
$$

Proof. Using in (1.2) the transformation $t=\left(v^{2}-1\right)^{m}$, we obtain the following expression for $G_{m, n}$:

$$
\begin{equation*}
G_{m, n}(x, y)=C|x-y|^{2 m-n} \int_{0}^{\left(\theta(x, y) /|x-y|^{2}\right)^{m}} \frac{d t}{\left(t^{1 / m}+1\right)^{n / 2}} \tag{2.9}
\end{equation*}
$$

Now, from (1.19) we have

$$
\begin{equation*}
G_{m, n}(x, y) \sim|x-y|^{2 m-n} \int_{0}^{(\theta(x, y))^{m} /|x-y|^{2 m}} \frac{d t}{\left(t^{n / 2 m}+1\right)} \tag{2.10}
\end{equation*}
$$

Next, we distinguish the following cases.
Case $1(2 m=n)$. It follows from (2.10), (1.22), and (1.24) that

$$
\begin{align*}
G_{m, n}(x, y) & \sim \log \left(1+\frac{(\theta(x, y))^{m}}{|x-y|^{2 m}}\right) \\
& \sim \log \left(1+\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right) \tag{2.11}
\end{align*}
$$

Case $2(2 m<n)$. Using the fact that for each $a>0$ and $\lambda>1$, we have

$$
\begin{equation*}
\int_{0}^{a} \frac{1}{t^{\lambda}+1} d t \sim 1 \wedge a \tag{2.12}
\end{equation*}
$$

hence, we deduce from (2.10) and (1.24) that

$$
\begin{align*}
G_{m, n}(x, y) & \sim|x-y|^{2 m-n}\left(1 \wedge \frac{(\theta(x, y))^{m}}{|x-y|^{2 m}}\right) \\
& \sim|x-y|^{2 m-n}\left(1 \wedge \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right) \tag{2.13}
\end{align*}
$$

Case $3(2 m>n)$. We recall that $0<\theta(x, y) /[x, y]^{2} \leq 1$, which yields

$$
\begin{equation*}
\int_{0}^{1} \frac{(1-t)^{m-1}}{\left(1-t\left(\theta(x, y) /[x, y]^{2}\right)\right)^{n / 2}} d t \sim 1 \tag{2.14}
\end{equation*}
$$

This implies, with (2.2), that

$$
\begin{equation*}
G_{m, n}(x, y) \sim \frac{(\theta(x, y))^{m}}{[x, y]^{n}} \tag{2.15}
\end{equation*}
$$

which, together with (1.24), (1.18), and (1.19), gives that

$$
\begin{equation*}
G_{m, n}(x, y) \sim(\delta(x) \delta(y))^{m-n / 2}\left(1 \wedge \frac{(\delta(x) \delta(y))^{n / 2}}{|x-y|^{n}}\right) \tag{2.16}
\end{equation*}
$$

Corollary 2.3. On B^{2}, the following estimates hold:

722 Singular solutions for polyharmonic equation
(i) if $2 m<n$,

$$
\begin{align*}
G_{m, n}(x, y) & \sim \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{n-2 m}\left(|x-y|^{2}+\delta(x) \delta(y)\right)^{m}} \\
& \sim \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{n-2 m}[x, y]^{2 m}} \tag{2.17}\\
& \sim \frac{1}{|x-y|^{n-2 m}}-\frac{1}{\left(|x-y|^{2 m}+(\delta(x) \delta(y))^{m}\right)^{(n-2 m) / 2 m}}
\end{align*}
$$

(ii) if $2 m=n$,

$$
\begin{align*}
G_{m, n}(x, y) & \sim\left(1 \wedge \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right) \log \left(2+\frac{\delta(x) \delta(y)}{|x-y|^{2}}\right) \\
& \sim \frac{(\delta(x) \delta(y))^{m}}{\left(|x-y|^{2}+\delta(x) \delta(y)\right)^{m}} \log \left(2+\frac{\delta(x) \delta(y)}{|x-y|^{2}}\right) \tag{2.18}\\
& \sim \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{2 m}} \log \left(1+\frac{[x, y]^{2}}{|x-y|^{2}}\right) ;
\end{align*}
$$

(iii) if $2 m>n$,

$$
\begin{align*}
G_{m, n}(x, y) & \sim \frac{(\delta(x) \delta(y))^{m}}{\left(|x-y|^{2}+(\delta(x) \delta(y))\right)^{n / 2}} \tag{2.19}\\
& \sim \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{n}} .
\end{align*}
$$

Proof. The proof follows immediately from Proposition 2.2 and the statements (1.18), (1.19), (1.20), (1.22), (1.23), (1.24), and (1.25).

From the above estimates, we derive some inequalities for the Green function $G_{m, n}$ including (1.11), which will be done in the following corollaries.
Corollary 2.4. On B^{2}, the following estimates hold:

$$
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \preceq \begin{cases}\frac{1}{|x-y|^{n-2 m}}, & \text { for } 2 m<n \tag{2.20}\\ \log \left(\frac{3}{|x-y|}\right), & \text { for } 2 m=n \\ 1, & \text { for } 2 m>n\end{cases}
$$

Proof. Using Corollary 2.3 and inequalities (1.15), we deduce that
(i) if $2 m<n$,

$$
\begin{equation*}
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \leq \frac{1}{|x-y|^{n-2 m}} \frac{(\delta(y))^{2 m}}{[x, y]^{2 m}} \leq \frac{1}{|x-y|^{n-2 m}} ; \tag{2.21}
\end{equation*}
$$

(ii) if $2 m=n$,

$$
\begin{equation*}
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \leq \log \left(1+\frac{[x, y]^{2}}{|x-y|^{2}}\right) \frac{(\delta(y))^{2 m}}{[x, y]^{2 m}} \leq \log \left(\frac{3}{|x-y|}\right) ; \tag{2.22}
\end{equation*}
$$

(iii) if $2 m>n$,

$$
\begin{equation*}
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \leq \frac{(\delta(y))^{2 m}}{[x, y]^{n}} \leq 1 \tag{2.23}
\end{equation*}
$$

Corollary 2.5. For each $x, y \in B$ such that $|x-y| \geq r$,

$$
\begin{equation*}
G_{m, n}(x, y) \preceq \frac{(\delta(x) \delta(y))^{m}}{r^{n}} \tag{2.24}
\end{equation*}
$$

Moreover, on B^{2}, the following estimates hold:

$$
\begin{align*}
(\delta(x) \delta(y))^{m} & \leq G_{m, n}(x, y) \tag{2.25}\\
G_{m, n}(x, y) & \leq(\delta(x))^{m} \wedge(\delta(y))^{m} \quad \text { if } m \geq n \tag{2.26}\\
G_{m, n}(x, y) & \leq \frac{(\delta(x))^{m} \wedge(\delta(y))^{m}}{|x-y|^{n-m}} \quad \text { if } 1 \leq m<n \tag{2.27}
\end{align*}
$$

Proof. Assertions (2.24) and (2.25) are obviously obtained using the estimates in Corollary 2.3 and the fact that $|x-y| \leq[x, y] \leq 1$.

Now, if $m \geq n$, then we deduce from Corollary 2.3 and (1.15) that

$$
\begin{equation*}
G_{m, n}(x, y) \sim \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{n}} \preceq(\delta(x))^{m} \wedge(\delta(y))^{m} \tag{2.28}
\end{equation*}
$$

Then (2.26) holds.
To prove (2.27), we suppose that $1 \leq m<n$. So we obtain, from Corollary 2.3, inequalities (1.15), and $|x-y| \leq[x, y]$ that
(i) if $2 m<n$, then we have

$$
\begin{align*}
G_{m, n}(x, y) & \sim \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{n-2 m}[x, y]^{2 m}} \\
& \leq \frac{(\delta(x))^{m}}{|x-y|^{n-m}} \frac{(\delta(y))^{m}}{[x, y]^{m}} \tag{2.29}\\
& \leq \frac{(\delta(x))^{m}}{|x-y|^{n-m}}
\end{align*}
$$

724 Singular solutions for polyharmonic equation
(ii) if $2 m=n$, then using further inequality (1.21), we deduce that

$$
\begin{align*}
G_{m, n}(x, y) & \sim \log \left(1+\frac{[x, y]^{2}}{|x-y|^{2}}\right) \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{2 m}} \\
& \leq \frac{[x, y]}{|x-y|} \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{2 m}} \tag{2.30}\\
& \leq \frac{(\delta(x))^{m}}{|x-y|^{m}} \frac{(\delta(y))^{m}}{[x, y]^{m}} \\
& \leq \frac{(\delta(x))^{m}}{|x-y|^{m}}
\end{align*}
$$

(iii) if $2 m>n$, then we have

$$
\begin{equation*}
G_{m, n}(x, y) \sim \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{n}} \leq \frac{(\delta(x))^{m}}{|x-y|^{n-m}} \frac{(\delta(y))^{m}}{[x, y]^{m}} \leq \frac{(\delta(x))^{m}}{|x-y|^{n-m}} . \tag{2.31}
\end{equation*}
$$

Hence interchanging the roles of x and $y,(2.27)$ is proved.
In the sequel, for a nonnegative measurable function f on B, we put

$$
\begin{equation*}
V_{m, n} f(x)=\int_{B} G_{m, n}(x, y) f(y) d y \quad \text { for } x \in B \tag{2.32}
\end{equation*}
$$

Remark 2.6. Let $m \geq n$. Then there exists a positive constant C_{1} such that, for each $f \in L_{+}^{1}(B)$ and $x \in B$, we have

$$
\begin{equation*}
\frac{1}{C_{1}}\left(\int_{B}(\delta(y))^{m} f(y) d y\right)(\delta(x))^{m} \leq V_{m, n} f(x) \leq C_{1}\|f\|_{1}(\delta(x))^{m} \tag{2.33}
\end{equation*}
$$

In particular, we have $V_{m, n} 1(x) \sim(\delta(x))^{m}$.
Moreover, let $1 \leq m<n$. Then there exists a positive constant C_{2} such that for each $f \in L_{+}^{p}(B)$ with $p>n / m$ and $x \in B$, we have

$$
\begin{equation*}
\frac{1}{C_{2}}\left(\int_{B}(\delta(y))^{m} f(y) d y\right)(\delta(x))^{m} \leq V_{m, n} f(x) \leq C_{2}\|f\|_{p}(\delta(x))^{m} . \tag{2.34}
\end{equation*}
$$

Indeed, (2.33) holds by (2.25) and (2.26). To prove (2.34), we use (2.25) and (2.27) and we apply the Hölder inequality, so we obtain that, for $x \in B$,

$$
\begin{align*}
\left(\int_{B}(\delta(y))^{m} f(y) d y\right)(\delta(x))^{m} & \leq V_{m, n} f(x) \\
& \preceq(\delta(x))^{m}\|f\|_{p}\left(\int_{B} \frac{d y}{|x-y|^{(n-m) p /(p-1)}}\right)^{(p-1) / p} \tag{2.35}
\end{align*}
$$

Now, for each $x \in B$, we have

$$
\begin{equation*}
\int_{B} \frac{d y}{|x-y|^{(n-m) p /(p-1)}} \leq \int_{B(0,2)} \frac{d \xi}{|\xi|^{(n-m) p /(p-1)}}, \tag{2.36}
\end{equation*}
$$

and this last integral is finite if and only if $p>n / m$, which gives (2.34).
Next, we aim to prove inequality (1.12). So, we need the following key lemma.
Lemma 2.7 (see [11, 13]). Let $x, y \in B$. Then the following properties are satisfied:
(1) if $\delta(x) \delta(y) \leq|x-y|^{2}$, then $(\delta(x) \vee \delta(y)) \leq((\sqrt{5}+1) / 2)|x-y|$;
(2) if $|x-y|^{2} \leq \delta(x) \delta(y)$, then $((3-\sqrt{5}) / 2) \delta(x) \leq \delta(y) \leq((3+\sqrt{5}) / 2) \delta(x)$.

Proof. (1) We may assume that $(\delta(x) \vee \delta(y))=\delta(y)$. Then the inequalities $\delta(y) \leq$ $\delta(x)+|x-y|$ and $\delta(x) \delta(y) \leq|x-y|^{2}$ imply that

$$
\begin{equation*}
(\delta(y))^{2}-\delta(y)|x-y|-|x-y|^{2} \leq 0 \tag{2.37}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left(\delta(y)+\frac{(\sqrt{5}-1)}{2}|x-y|\right)\left(\delta(y)-\frac{(\sqrt{5}+1)}{2}|x-y|\right) \leq 0 . \tag{2.38}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
(\delta(x) \vee \delta(y)) \leq \frac{(\sqrt{5}+1)}{2}|x-y| \tag{2.39}
\end{equation*}
$$

(2) For each $z \in \partial B$, we have $|y-z| \leq|x-y|+|x-z|$ and since $|x-y|^{2} \leq$ $\delta(x) \delta(y)$, we obtain

$$
\begin{equation*}
|y-z| \leq \sqrt{\delta(x) \delta(y)}+|x-z| \leq \sqrt{|x-z||y-z|}+|x-z| \tag{2.40}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left(\sqrt{|y-z|}+\frac{(\sqrt{5}-1)}{2} \sqrt{|x-z|}\right)\left(\sqrt{|y-z|}-\frac{(\sqrt{5}+1)}{2} \sqrt{|x-z|}\right) \leq 0 \tag{2.41}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
|y-z| \leq \frac{(3+\sqrt{5})}{2}|x-z| \tag{2.42}
\end{equation*}
$$

Thus, interchanging the roles of x and y, we have

$$
\begin{equation*}
\left(\frac{3-\sqrt{5}}{2}\right)|x-z| \leq|y-z| \leq\left(\frac{3+\sqrt{5}}{2}\right)|x-z| \tag{2.43}
\end{equation*}
$$

726 Singular solutions for polyharmonic equation
which gives

$$
\begin{equation*}
\left(\frac{3-\sqrt{5}}{2}\right) \delta(x) \leq \delta(y) \leq\left(\frac{3+\sqrt{5}}{2}\right) \delta(x) \tag{2.44}
\end{equation*}
$$

Theorem 2.8 (3G theorem). There exists a constant $C_{m, n}>0$ such that, for each $x, y, z \in B$,

$$
\begin{align*}
& \frac{G_{m, n}(x, z) G_{m, n}(z, y)}{G_{m, n}(x, y)} \\
& \quad \leq C_{m, n}\left[\left(\frac{\delta(z)}{\delta(x)}\right)^{m} G_{m, n}(x, z)+\left(\frac{\delta(z)}{\delta(y)}\right)^{m} G_{m, n}(y, z)\right] . \tag{2.45}
\end{align*}
$$

Proof. To prove the inequality, we denote $A(x, y):=(\delta(x) \delta(y))^{m} / G_{m, n}(x, y)$ and we claim that A is a quasimetric, that is, for each $x, y, z \in B$,

$$
\begin{equation*}
A(x, y) \leq A(x, z)+A(y, z) . \tag{2.46}
\end{equation*}
$$

To show the claim, we separate the proof into three cases.
Case 1. For $2 m<n$, using Proposition 2.2, we have

$$
\begin{equation*}
A(x, y) \sim|x-y|^{n-2 m}\left(|x-y|^{2} \vee(\delta(x) \delta(y))\right)^{m} \tag{2.47}
\end{equation*}
$$

We distinguish the following subcases:
(i) if $\delta(x) \delta(y) \leq|x-y|^{2}$, then we have

$$
\begin{equation*}
A(x, y) \sim|x-y|^{n} \preceq|x-z|^{n}+|y-z|^{n} \preceq A(x, z)+A(y, z) ; \tag{2.48}
\end{equation*}
$$

(ii) the inequality $|x-y|^{2} \leq \delta(x) \delta(y)$ implies, from Lemma 2.7, that $\delta(x) \sim$ $\delta(y)$. So we deduce the following:
(a) if $|x-z|^{2} \leq \delta(x) \delta(z)$ or $|y-z|^{2} \leq \delta(y) \delta(z)$, then it follows from Lemma 2.7 that $\delta(x) \sim \delta(y) \sim \delta(z)$. Hence,

$$
\begin{align*}
A(x, y) & \sim|x-y|^{n-2 m}(\delta(x) \delta(y))^{m} \\
& \preceq(\delta(x) \delta(y))^{m}\left(|x-z|^{n-2 m}+|y-z|^{n-2 m}\right) \\
& \preceq|x-z|^{n-2 m}(\delta(x) \delta(z))^{m}+|y-z|^{n-2 m}(\delta(y) \delta(z))^{m} \tag{2.49}\\
& \preceq A(x, z)+A(y, z) ;
\end{align*}
$$

(b) if $|x-z|^{2} \geq \delta(x) \delta(z)$ and $|y-z|^{2} \geq \delta(y) \delta(z)$, then using Lemma 2.7, we have

$$
\begin{equation*}
(\delta(x) \vee \delta(z)) \leq|x-z|, \quad(\delta(y) \vee \delta(z)) \leq|y-z| \tag{2.50}
\end{equation*}
$$

So, we have

$$
\begin{align*}
A(x, y) & \sim|x-y|^{n-2 m}(\delta(x) \delta(y))^{m} \\
& \leq\left(|x-z|^{n-2 m}+|y-z|^{n-2 m}\right)(\delta(x) \delta(y))^{m} \\
& \leq|x-z|^{n-2 m}(\delta(x))^{2 m}+|y-z|^{n-2 m}(\delta(y))^{2 m} \tag{2.51}\\
& \leq|x-z|^{n}+|y-z|^{n} \\
& \leq A(x, z)+A(y, z) .
\end{align*}
$$

Case 2. For $2 m=n$, using Proposition 2.2, we have

$$
\begin{equation*}
A(x, y) \sim \frac{(\delta(x) \delta(y))^{m}}{\log \left(1+(\delta(x) \delta(y))^{m} /|x-y|^{2 m}\right)} \tag{2.52}
\end{equation*}
$$

Then, since for each $t \geq 0$,

$$
\begin{equation*}
\frac{t}{1+t} \leq \log (1+t) \leq t \tag{2.53}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
|x-y|^{2 m} \preceq A(x, y) \leq|x-y|^{2 m}+(\delta(x) \delta(y))^{m} . \tag{2.54}
\end{equation*}
$$

So we distinguish the following subcases:
(i) if $\delta(x) \delta(y) \leq|x-y|^{2}$, then by (1.19), we have

$$
\begin{equation*}
A(x, y) \leq|x-y|^{2 m} \leq|x-z|^{2 m}+|y-z|^{2 m} \leq A(x, z)+A(y, z) ; \tag{2.55}
\end{equation*}
$$

(ii) if $|x-y|^{2} \leq \delta(x) \delta(y)$, it follows by Lemma 2.7 that $\delta(x) \sim \delta(y)$.

So, we distinguish the following two subcases:
(a) if $|x-z|^{2} \leq \delta(x) \delta(z)$ or $|y-z|^{2} \leq \delta(y) \delta(z)$, so from Lemma 2.7, we deduce that $\delta(x) \sim \delta(y) \sim \delta(z)$.
Now, since

$$
\begin{equation*}
|x-y|^{2 m} \leq|x-z|^{2 m}+|y-z|^{2 m} \leq\left(|x-z|^{2 m} \vee|y-z|^{2 m}\right), \tag{2.56}
\end{equation*}
$$

then we obtain that

$$
\begin{gather*}
\left(\log \left(1+\frac{(\delta(x) \delta(z))^{m}}{|x-z|^{2 m}}\right) \wedge \log \left(1+\frac{(\delta(y) \delta(z))^{m}}{|y-z|^{2 m}}\right)\right) \tag{2.57}\\
\preceq \log \left(1+\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right)
\end{gather*}
$$

which, together with (2.52), implies that

$$
\begin{equation*}
A(x, y) \leq A(x, z)+A(y, z) \tag{2.58}
\end{equation*}
$$

(b) if $|x-z|^{2} \geq \delta(x) \delta(z)$ and $|y-z|^{2} \geq \delta(y) \delta(z)$, then by Lemma 2.7, it follows that

$$
\begin{equation*}
(\delta(x) \vee \delta(z)) \leq|x-z|, \quad(\delta(y) \vee \delta(z)) \leq|y-z| \tag{2.59}
\end{equation*}
$$

Hence, by (2.54), we have

$$
\begin{align*}
A(x, y) & \preceq(\delta(x) \delta(y))^{m} \\
& \preceq(\delta(x))^{2 m}+(\delta(y))^{2 m} \\
& \preceq|x-z|^{2 m}+|y-z|^{2 m} \tag{2.60}\\
& \preceq A(x, z)+A(y, z) .
\end{align*}
$$

Case 3. For $2 m>n$, from Proposition 2.2, we have

$$
\begin{equation*}
A(x, y) \sim\left(|x-y|^{2} \vee(\delta(x) \delta(y))\right)^{n / 2} \tag{2.61}
\end{equation*}
$$

Then the result holds by arguments similar to that of Case 2(i).

3. The Kato class $K_{m, n}$

In this section, we will study properties of functions belonging to the class $K_{m, n}$. We first compare the classes $K_{j, n}$ for $j \geq 1$.

Proposition 3.1. For each $m \geq 1$, the following estimate is satisfied on B^{2} :

$$
\begin{equation*}
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \preceq(\delta(y))^{2(m-1)}\left(\frac{\delta(y)}{\delta(x)}\right) G_{1, n}(x, y) . \tag{3.1}
\end{equation*}
$$

In particular, $K_{1, n} \subset(\delta(\cdot))^{2(m-1)} K_{m, n}$.
Proof. Using (1.2), we have

$$
\begin{equation*}
G_{m, n}(x, y) \leq|x-y|^{2 m-n}\left(\frac{[x, y]^{2}}{|x-y|^{2}}-1\right)^{m-1} \int_{1}^{[x, y]| | x-y \mid} \frac{d v}{v^{n-1}} . \tag{3.2}
\end{equation*}
$$

Now, we remark by (1.25) that

$$
\begin{equation*}
\frac{[x, y]^{2}}{|x-y|^{2}}-1 \sim \frac{\delta(x) \delta(y)}{|x-y|^{2}} \tag{3.3}
\end{equation*}
$$

So we deduce that

$$
\begin{equation*}
G_{m, n}(x, y) \leq(\delta(x) \delta(y))^{m-1} G_{1, n}(x, y), \tag{3.4}
\end{equation*}
$$

which implies (3.1). The proof is complete by (1.13).

Remark 3.2. Let $j, m \in \mathbb{N}$ such that $1 \leq j<m$, then we have

$$
\begin{equation*}
K_{n}(B) \subset K_{j, n} \subset K_{m, n} . \tag{3.5}
\end{equation*}
$$

Indeed, by a similar argument as above, we prove that, on B^{2},

$$
\begin{equation*}
\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y) \leq(\delta(y))^{2(m-j)}\left(\frac{\delta(y)}{\delta(x)}\right)^{j} G_{j, n}(x, y), \tag{3.6}
\end{equation*}
$$

which implies that $K_{j, n} \subset K_{m, n}$. The first inclusion in (3.5) holds by putting $m=$ 1 in Corollary 2.4.

Lemma 3.3. Let φ be a function in $K_{m, n}$. Then the function

$$
\begin{equation*}
x \longrightarrow(\delta(x))^{2 m} \varphi(x) \tag{3.7}
\end{equation*}
$$

is in $L^{1}(B)$.
Proof. Let $\varphi \in K_{m, n}$, then by (1.13), there exists $\alpha>0$ such that for each $x \in B$,

$$
\begin{equation*}
\int_{B(x, \alpha) \cap B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \leq 1 \tag{3.8}
\end{equation*}
$$

Let x_{1}, \ldots, x_{p} be in B such that $B \subset \cup_{1 \leq i \leq p} B\left(x_{i}, \alpha\right)$. Then by (2.25), there exists $C>0$ such that for all $i \in\{1, \ldots, p\}$ and $y \in B\left(x_{i}, \alpha\right) \cap B$, we have

$$
\begin{equation*}
(\delta(y))^{2 m} \leq C\left(\frac{\delta(y)}{\delta\left(x_{i}\right)}\right)^{m} G_{m, n}\left(x_{i}, y\right) \tag{3.9}
\end{equation*}
$$

Hence, we have

$$
\begin{align*}
\int_{B}(\delta(y))^{2 m}|\varphi(y)| d y & \leq C \sum_{1 \leq i \leq p} \int_{B\left(x_{i}, \alpha\right) \cap B}\left(\frac{\delta(y)}{\delta\left(x_{i}\right)}\right)^{m} G_{m, n}\left(x_{i}, y\right)|\varphi(y)| d y \\
& \leq C p<\infty \tag{3.10}
\end{align*}
$$

This completes the proof.
In the sequel, we use the notation

$$
\begin{equation*}
\|\varphi\|_{B}:=\sup _{x \in B} \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y . \tag{3.11}
\end{equation*}
$$

Proposition 3.4. Let φ be a function in $K_{m, n}$, then $\|\varphi\|_{B}<\infty$.

Proof. Let $\varphi \in K_{m, n}$ and $\alpha>0$. Then we have

$$
\begin{align*}
& \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
& \quad \leq \int_{B \cap|x-y| \leq \alpha}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \tag{3.12}\\
&+\int_{B \cap|x-y| \geq \alpha}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y .
\end{align*}
$$

Now, since by (2.24), we have

$$
\begin{equation*}
\int_{B \cap|x-y| \geq \alpha}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \preceq \frac{1}{\alpha^{n}} \int_{B}(\delta(y))^{2 m}|\varphi(y)| d y \tag{3.13}
\end{equation*}
$$

then the result follows from (1.13) and Lemma 3.3.
Proposition 3.5. There exists a constant $C>0$ such that, for all $\varphi \in K_{m, n}$ and h a nonnegative harmonic function in B,

$$
\begin{equation*}
\int_{B} G_{m, n}(x, y)(\delta(y))^{m-1} h(y)|\varphi(y)| d y \leq C\|\varphi\|_{B}(\delta(x))^{m-1} h(x) \tag{3.14}
\end{equation*}
$$

for all x in B.
Proof. Let h be a nonnegative harmonic function in B. So by Herglotz representation theorem (see [9, page 29]), there exists a nonnegative measure μ on ∂B such that

$$
\begin{equation*}
h(y)=\int_{\partial B} P(y, \xi) \mu(d \xi), \tag{3.15}
\end{equation*}
$$

where $P(y, \xi)=\left(1-|y|^{2}\right) /|y-\xi|^{n}$, for $y \in B$ and $\xi \in \partial B$. So we need only to verify (3.14) for $h(y)=P(y, \xi)$ uniformly in $\xi \in \partial B$.

By (2.1) we have for each $x, y \in B$,

$$
\begin{equation*}
G_{m, n}(x, y)=\alpha_{m, n} \frac{(\theta(x, y))^{m}}{[x, y]^{n}}\left(1+o\left(1-|y|^{2}\right)\right) \tag{3.16}
\end{equation*}
$$

Hence, for x, y, z in B,

$$
\begin{equation*}
\frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}=\frac{\left(1-|y|^{2}\right)^{m}[x, z]^{n}}{\left(1-|x|^{2}\right)^{m}[y, z]^{n}}\left(1+o\left(1-|z|^{2}\right)\right), \tag{3.17}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\lim _{z \rightarrow \xi} \frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}=\frac{\left(1-|y|^{2}\right)^{m}}{\left(1-|x|^{2}\right)^{m}} \frac{|x-\xi|^{n}}{|y-\xi|^{n}} \sim\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} \frac{P(y, \xi)}{P(x, \xi)} . \tag{3.18}
\end{equation*}
$$

Thus by Fatou's lemma and (1.12), we deduce that

$$
\begin{align*}
& \int_{B} G_{m, n}(x, y)\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} \frac{P(y, \xi)}{P(x, \xi)}|\varphi(y)| d y \\
& \leq \liminf _{z \rightarrow \xi} \int_{B} G_{m, n}(x, y) \frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}|\varphi(y)| d y \\
& \leq \liminf _{z \rightarrow \xi} {\left[\int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y\right.} \tag{3.19}\\
&\left.\quad+\int_{B}\left(\frac{\delta(y)}{\delta(z)}\right)^{m} G_{m, n}(z, y)|\varphi(y)| d y\right] \\
& \leq\|\varphi\|_{B},
\end{align*}
$$

which completes the proof.
Corollary 3.6. Let φ be in $K_{m, n}$. Then

$$
\begin{equation*}
\sup _{x \in B} \int_{B} G_{m, n}(x, y)(\delta(y))^{m-1}|\varphi(y)| d y<\infty . \tag{3.20}
\end{equation*}
$$

Moreover, the function $x \mapsto(\delta(x))^{2 m-1} \varphi(x)$ is in $L^{1}(B)$.
Proof. Put $h \equiv 1$ in (3.14) and using Proposition 3.4, we get (3.20).
Moreover, by (2.25), it follows that

$$
\begin{equation*}
\int_{B}(\delta(y))^{2 m-1}|\varphi(y)| d y \leq \int_{B} G_{m, n}(0, y)(\delta(y))^{m-1}|\varphi(y)| d y . \tag{3.21}
\end{equation*}
$$

Hence the result follows from (3.20).
Remark 3.7. We recall (see [1]) that for $m=1$ and $n \geq 3$, a radial function φ is in the classical Kato class $K_{n}(B)$ if and only if

$$
\begin{equation*}
\int_{0}^{1} r|\varphi(r)| d r<\infty \tag{3.22}
\end{equation*}
$$

Similarly, we will give in the sequel a characterization of the radial functions belonging to $K_{m, n}$, which asserts, in particular, that inclusions (3.5) are proper. More precisely, we will prove in the next proposition that a radial function φ is in $K_{m, n}$ if and only if (3.20) is satisfied.

Proposition 3.8. Let φ be a radial function in B, then the following assertions are equivalent:
(1) $\varphi \in K_{m, n}$;
(2) $\sup _{x \in B} \int_{B} G_{m, n}(x, y)(\delta(y))^{m-1}|\varphi(y)| d y<\infty$;
(3) for $2 m<n$,

$$
\begin{equation*}
\int_{0}^{1} r^{2 m-1}(1-r)^{2 m-1}|\varphi(r)| d r<\infty \tag{3.23}
\end{equation*}
$$

For $2 m=n$,

$$
\begin{equation*}
\int_{0}^{1} r^{n-1}(1-r)^{n-2} \log \left(\frac{1}{r}\right)|\varphi(r)| d r<\infty . \tag{3.24}
\end{equation*}
$$

For $2 m>n$,

$$
\begin{equation*}
\int_{0}^{1} r^{n-1}(1-r)^{2 m-1}|\varphi(r)| d r<\infty \tag{3.25}
\end{equation*}
$$

Proof. Since the function $x \rightarrow \int_{S^{n-1}} G_{m, n}(x, r \omega) d \sigma(\omega)$ is radial in B, then we denote that $t=|x|$ and

$$
\begin{equation*}
\psi_{m, n}(t, r)=\int_{S^{n-1}} G_{m, n}(x, r \omega) d \sigma(\omega) \tag{3.26}
\end{equation*}
$$

where σ is the normalized measure on the unit sphere S^{n-1} of \mathbb{R}^{n}.
Now, using Corollary 2.3 and the fact that for each $y \in B,[0, y]=1$, we deduce that

$$
\psi_{m, n}(0, r) \sim \begin{cases}r^{2 m-n}(1-r)^{m}, & \text { for } 2 m<n \tag{3.27}\\ (1-r)^{m} \log \left(1+\frac{1}{r^{2}}\right) \sim(1-r)^{m-1} \log \left(\frac{1}{r}\right), & \text { for } 2 m=n \\ (1-r)^{m}, & \text { for } 2 m>n\end{cases}
$$

So, assertion (3) is equivalent to
(3') $\int_{0}^{1} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r<\infty$.
We now prove the equivalences.
$(1) \Rightarrow(2)$ follows from Corollary 3.6.
$(2) \Leftrightarrow\left(3^{\prime}\right)$. By virtue of [4, Theorem 2.4], we have that $t \rightarrow \psi_{m, n}(t, r)$ is a nonincreasing map on $[0,1]$, so that

$$
\begin{align*}
\sup _{x \in B} & \int_{B} G_{m, n}(x, y)(\delta(y))^{m-1}|\varphi(y)| d y \\
& =\sup _{t \in[0,1]} \int_{0}^{1} r^{n-1}(1-r)^{m-1} \psi_{m, n}(t, r)|\varphi(r)| d r \tag{3.28}\\
& =\int_{0}^{1} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r .
\end{align*}
$$

$\left(3^{\prime}\right) \Rightarrow(1)$. Let $0<\alpha<1 / 4$, then we have

$$
\begin{align*}
& \sup _{x \in B} \int_{B \cap B(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
& \quad \leq \sup _{0 \leq t \leq 1} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1} \frac{(1-r)^{m}}{(1-t)^{m}} \psi_{m, n}(t, r)|\varphi(r)| d r \\
& \quad \leq \sup _{0 \leq t \leq 1 / 2} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1} \frac{(1-r)^{m}}{(1-t)^{m}} \psi_{m, n}(t, r)|\varphi(r)| d r \tag{3.29}\\
& \quad+\sup _{1 / 2 \leq t \leq 1} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1} \frac{(1-r)^{m}}{(1-t)^{m}} \psi_{m, n}(t, r)|\varphi(r)| d r \\
& \quad=I_{1}+I_{2} .
\end{align*}
$$

Using [4, Theorem 2.4], we have

$$
\begin{align*}
I_{1} & \leq \sup _{0 \leq t \leq 1 / 2} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1} \frac{(1-r)^{m}}{(1-t)^{m}} \psi_{m, n}(0, r)|\varphi(r)| d r \\
& \leq \sup _{0 \leq t \leq 1 / 2} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r . \tag{3.30}
\end{align*}
$$

On the other hand, by (3.1), we have

$$
\begin{equation*}
I_{2} \leq \sup _{1 / 2 \leq t \leq 1} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1} \frac{(1-r)^{2 m-1}}{(1-t)} \psi_{1, n}(t, r)|\varphi(r)| d r . \tag{3.31}
\end{equation*}
$$

Now, by elementary calculus, we obtain that

$$
\psi_{1, n}(t, r)= \begin{cases}\frac{1}{n-2}(t \vee r)^{2-n}\left(1-(t \vee r)^{n-2}\right), & \text { for } n \geq 3 \tag{3.32}\\ \log \left(\frac{1}{t \vee r}\right), & \text { for } n=2\end{cases}
$$

So, using (1.20) and the fact that $\log (1 / s) \preceq(1-s)$ for $s \geq 1 / 2$, we have for each $n \geq 2$ and $t \geq 1 / 2$,

$$
\begin{equation*}
\psi_{1, n}(t, r) \leq(1-t \vee r) . \tag{3.33}
\end{equation*}
$$

Hence, from (3.27), we have

$$
\begin{align*}
I_{2} & \preceq \sup _{1 / 2 \leq t \leq 1} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1}(1-r)^{2 m-1} \frac{(1-t \vee r)}{1-t}|\varphi(r)| d r \\
& \preceq \sup _{1 / 2 \leq t \leq 1} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r . \tag{3.34}
\end{align*}
$$

Thus, $I_{1}+I_{2} \preceq \sup _{0 \leq t \leq 1} \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r$.

Let $\phi(s)=\int_{0}^{s} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r$ for $s \in[0,1]$.
Then using (3^{\prime}), we deduce that ϕ is a continuous function on $[0,1]$, which implies that

$$
\begin{align*}
& \int_{(t-\alpha) \vee 0}^{(t+\alpha) \wedge 1} r^{n-1}(1-r)^{m-1} \psi_{m, n}(0, r)|\varphi(r)| d r \tag{3.35}\\
&=\phi((t+\alpha) \wedge 1)-\phi((t-\alpha) \vee 0)
\end{align*}
$$

converges to zero as $\alpha \rightarrow 0$ uniformly for $t \in[0,1]$. So, $\lim _{\alpha \rightarrow 0}\left(I_{1}+I_{2}\right)=0$, that is, $\varphi \in K_{m, n}$.

Example 3.9. let q be the function defined in B by

$$
\begin{equation*}
q(x)=\frac{1}{(\delta(x))^{\lambda}} \tag{3.36}
\end{equation*}
$$

By Proposition 3.8, $q \in K_{m, n}$ if and only if $\lambda<2 m$ and $V_{m, n} q$ is bounded if and only if $\lambda<m+1$. In fact, we give in the next proposition more precise estimates on the m-potential $V_{m, n} q$.

Proposition 3.10. On B, the following estimates hold:
(i) $(\delta(x))^{m} \leq V_{m, n} q(x) \preceq(\delta(x))^{2 m-\lambda}$ if $m<\lambda<m+1$;
(ii) $(\delta(x))^{m} \preceq V_{m, n} q(x) \preceq(\delta(x))^{m} \log (2 / \delta(x))$ if $\lambda=m$;
(iii) $V_{m, n} q(x) \sim(\delta(x))^{m}$ if $\lambda<m$.

Proof. Let $\lambda<m+1$. Then from (2.25), we have

$$
\begin{equation*}
(\delta(x))^{m} \int_{B} \frac{d y}{(\delta(y))^{\lambda-m}} \preceq V_{m, n} q(x) \tag{3.37}
\end{equation*}
$$

which implies the lower estimates.
For the upper estimates, we have, from (3.1),

$$
\begin{align*}
V_{m, n} q(x) & \leq \int_{B}(\delta(x))^{m-1}(\delta(y))^{m-1} G_{1, n}(x, y) q(y) d y \\
& \leq(\delta(x))^{m-1} \int_{0}^{1} \frac{r^{n-1}}{(1-r)^{\lambda+1-m}} \psi_{1, n}(|x|, r) d r \tag{3.38}
\end{align*}
$$

On the other hand, using (1.20) and the inequality $t \log (1 / t) \leq(1-t)$, for $t \in$ $[0,1]$, we deduce from (3.32) that $r^{n-1} \psi_{1, n}(|x|, r) \preceq(1-|x| \vee r)$ for each $n \geq 2$.

This implies that

$$
\begin{align*}
V_{m, n} q(x) & \leq(\delta(x))^{m-1} \int_{0}^{1} \frac{1-(|x| \vee r)}{(1-r)^{\lambda+1-m}} d r \\
& \preceq(\delta(x))^{m} \int_{0}^{|x|} \frac{d r}{(1-r)^{\lambda+1-m}}+(\delta(x))^{m-1} \int_{|x|}^{1} \frac{d r}{(1-r)^{\lambda-m}} \tag{3.39}\\
& =I_{1}+I_{2} .
\end{align*}
$$

So, by elementary calculus, we obtain that

$$
\begin{align*}
& I_{1} \preceq(\delta(x))^{m} \begin{cases}(\delta(x))^{m-\lambda}, & \text { if } m<\lambda<m+1, \\
\log \frac{2}{\delta(x)}, & \text { if } \lambda=m, \\
1, & \text { if } \lambda<m,\end{cases} \tag{3.40}\\
& I_{2} \preceq(\delta(x))^{2 m-\lambda} .
\end{align*}
$$

This completes the proof.
Remark 3.11. By Proposition 3.10, we find again the result of Gilbarg and Trudinger in [6, Theorem 4.9] for the case $m=1$ and $1<\lambda<2$.

4. Positive singular solutions of the equation $\Delta^{m} u=(-1)^{m} f(\cdot, u)$

In this section, we are interested in the existence of positive singular solutions for problem (1.7). We present in the next theorem the main result of this section.

Theorem 4.1. Assume $\left(H_{1}\right),\left(H_{2}\right)$, and $\left(H_{3}\right)$. Then problem (1.7) has infinitely many solutions. More precisely, there exists $b_{0}>0$ such that for each $b \in\left(0, b_{0}\right]$, there exists a solution u of (1.7) continuous on $B \backslash\{0\}$ and satisfying for all $x \in B$,

$$
\begin{equation*}
\frac{b}{2} G_{m, n}(x, 0) \leq u(x) \leq \frac{3 b}{2} G_{m, n}(x, 0) \tag{4.1}
\end{equation*}
$$

and, for $2 m \leq n$,

$$
\begin{equation*}
\lim _{|x| \rightarrow 0} \frac{u(x)}{G_{m, n}(x, 0)}=b . \tag{4.2}
\end{equation*}
$$

For the proof, we need the following lemmas.
Lemma 4.2. Let $\varphi \in K_{m, n}$ and $x_{0} \in \bar{B}$. Then

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x, z \in B} \frac{1}{G_{m, n}(x, z)} \int_{B \cap B\left(x_{0}, \alpha\right)} G_{m, n}(x, y) G_{m, n}(y, z)|\varphi(y)| d y\right)=0 . \tag{4.3}
\end{equation*}
$$

Proof. Let $\varepsilon>0$. Then by (1.13), there exists $r>0$ such that

$$
\begin{equation*}
\sup _{\xi \in B} \int_{B \cap B(\xi, r)}\left(\frac{\delta(y)}{\delta(\xi)}\right)^{m} G_{m, n}(\xi, y)|\varphi(y)| d y \leq \varepsilon . \tag{4.4}
\end{equation*}
$$

Let $\alpha>0$. Then it follows, from Theorem 2.8, that for each $x, z \in B$,

$$
\begin{align*}
& \frac{1}{G_{m, n}(x, z)} \int_{B \cap B\left(x_{0}, \alpha\right)} G_{m, n}(x, y) G_{m, n}(y, z)|\varphi(y)| d y \\
& \quad \leq C_{m, n} \int_{B \cap B\left(x_{0}, \alpha\right)}\left[\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)+\left(\frac{\delta(y)}{\delta(z)}\right)^{m} G_{m, n}(y, z)\right]|\varphi(y)| d y \\
& \quad \leq 2 C_{m, n} \sup _{\xi \in B} \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(\xi)}\right)^{m} G_{m, n}(\xi, y)|\varphi(y)| d y . \tag{4.5}
\end{align*}
$$

On the other hand, by (2.24), we have

$$
\begin{align*}
& \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
& \leq \int_{B \cap(|x-y| \leq r)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
&+\int_{B \cap B\left(x_{0}, \alpha\right) \cap(|x-y| \geq r)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \tag{4.6}\\
& \leq \sup _{\xi \in B} \int_{B \cap B(\xi, r)}\left(\frac{\delta(y)}{\delta(\xi)}\right)^{m} G_{m, n}(\xi, y)|\varphi(y)| d y \\
&+\int_{B \cap B\left(x_{0}, \alpha\right)}(\delta(y))^{2 m}|\varphi(y)| d y .
\end{align*}
$$

Now, using Lemma 3.3 and (4.4), the result holds by letting $\alpha \rightarrow 0$.
Put $F:=\left\{\omega \in C^{+}(\bar{B}):\|\omega\|_{\infty} \leq 1\right\}$, where $\|\cdot\|_{\infty}$ is the uniform norm. So we have the following result.

Lemma 4.3. Assume $\left(H_{1}\right),\left(H_{2}\right)$, and $\left(H_{3}\right)$. Define the operator T on F by

$$
\begin{equation*}
T \omega(x)=\frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) f\left(y, \omega(y) G_{m, n}(y, 0)\right) d y, \quad x \in B . \tag{4.7}
\end{equation*}
$$

Then the family of functions $T(F)$ is relatively compact in $C(\bar{B})$.
Proof. By $\left(\mathrm{H}_{2}\right)$, we have for all $\omega \in F$,

$$
\begin{equation*}
|T \omega(x)| \leq \frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) G_{m, n}(y, 0) g(y) d y . \tag{4.8}
\end{equation*}
$$

Since $g(x)=q\left(x, G_{m, n}(x, 0)\right) \in K_{m, n}$, then, by Theorem 2.8, we deduce that

$$
\begin{align*}
\|T \omega\|_{\infty} & \leq 2 C_{m, n} \sup _{\xi \in B} \int_{B}\left(\frac{\delta(y)}{\delta(\xi)}\right)^{m} G_{m, n}(\xi, y) g(y) d y \tag{4.9}\\
& \leq\|g\|_{B} .
\end{align*}
$$

Hence, the family $T(F)$ is uniformly bounded. Now, we will prove the equicontinuity of $T(F)$ in \bar{B}. Let $x_{0} \in \bar{B}$ and $\alpha>0$. Let $x, x^{\prime} \in B\left(x_{0}, \alpha\right) \cap B$ and $\omega \in F$, then

$$
\begin{align*}
&\left|T \omega(x)-T \omega\left(x^{\prime}\right)\right| \\
& \leq \int_{B}\left|\frac{G_{m, n}(x, y)}{G_{m, n}(x, 0)}-\frac{G_{m, n}\left(x^{\prime}, y\right)}{G_{m, n}\left(x^{\prime}, 0\right)}\right| G_{m, n}(y, 0) g(y) d y \\
& \leq 2 \sup _{\xi \in B} \frac{1}{G_{m, n}(\xi, 0)} \int_{B \cap B(0,2 \alpha)} G_{m, n}(\xi, y) G_{m, n}(y, 0) g(y) d y \tag{4.10}\\
&+2 \sup _{\xi \in B} \frac{1}{G_{m, n}(\xi, 0)} \int_{B \cap B\left(x_{0}, 2 \alpha\right)} G_{m, n}(\xi, y) G_{m, n}(y, 0) g(y) d y \\
& \quad+\int_{B \cap B^{c}(0,2 \alpha) \cap B^{c}\left(x_{0}, 2 \alpha\right)}\left|\frac{G_{m, n}(x, y)}{G_{m, n}(x, 0)}-\frac{G_{m, n}\left(x^{\prime}, y\right)}{G_{m, n}\left(x^{\prime}, 0\right)}\right| G_{m, n}(y, 0) g(y) d y .
\end{align*}
$$

If $\left|x_{0}-y\right| \geq 2 \alpha$, then $|x-y| \geq \alpha$ and $\left|x^{\prime}-y\right| \geq \alpha$. So (1.12) and (2.24) imply that, for all $x \in B\left(x_{0}, \alpha\right) \cap B$ and $y \in \Omega:=B^{c}(0,2 \alpha) \cap B^{c}\left(x_{0}, 2 \alpha\right) \cap B$,

$$
\begin{equation*}
\frac{G_{m, n}(x, y)}{G_{m, n}(x, 0)} G_{m, n}(y, 0) \preceq(\delta(y))^{2 m} . \tag{4.11}
\end{equation*}
$$

Moreover, using (3.18), we deduce, when $y \in \Omega$, that the function $x \rightarrow G_{m, n}(x, y) /$ $G_{m, n}(x, 0)$ is continuous in $B\left(x_{0}, \alpha\right) \cap B$. Then, by Lemma 3.3 and the dominated convergence theorem, we obtain that

$$
\begin{equation*}
\int_{\Omega}\left|\frac{G_{m, n}(x, y)}{G_{m, n}(x, 0)}-\frac{G_{m, n}\left(x^{\prime}, y\right)}{G_{m, n}\left(x^{\prime}, 0\right)}\right| G_{m, n}(y, 0) g(y) d y \longrightarrow 0 \tag{4.12}
\end{equation*}
$$

as $\left|x-x^{\prime}\right| \rightarrow 0$.
By Lemma 4.2, we deduce that

$$
\begin{equation*}
\left|T \omega(x)-T \omega\left(x^{\prime}\right)\right| \longrightarrow 0, \quad \text { as }\left|x-x^{\prime}\right| \longrightarrow 0 \tag{4.13}
\end{equation*}
$$

uniformly for all $\omega \in F$. The result follows by Ascoli's theorem.

738 Singular solutions for polyharmonic equation
Remark 4.4. Let $\alpha>0$. Then for $2 m \leq n$ and $y \in B^{c}(0,2 \alpha) \cap B$, we have

$$
\begin{equation*}
\lim _{|x| \rightarrow 0} \frac{G_{m, n}(x, y)}{G_{m, n}(x, 0)}=0 . \tag{4.14}
\end{equation*}
$$

So, using the same argument as in the proof of Lemma 4.3, we deduce that for $2 m \leq n$,

$$
\begin{equation*}
|T \omega(x)| \longrightarrow 0, \quad \text { as }|x| \longrightarrow 0 \tag{4.15}
\end{equation*}
$$

uniformly for all $\omega \in F$.
Proof of Theorem 4.1. We aim to show that there exists $b_{0}>0$ such that for each $b \in\left(0, b_{0}\right]$, there exists a continuous function u in $B \backslash\{0\}$ satisfying the following integral equation:

$$
\begin{equation*}
u(x)=b G_{m, n}(x, 0)+\int_{B} G_{m, n}(x, y) f(y, u(y)) d y, \quad x \in B \backslash\{0\} . \tag{4.16}
\end{equation*}
$$

Let $\beta \in(0,1)$. Then by Lemma 4.3, the function

$$
\begin{equation*}
T_{\beta}(x)=\frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) G_{m, n}(y, 0) q\left(y, \beta G_{m, n}(y, 0)\right) d y \tag{4.17}
\end{equation*}
$$

is continuous in \bar{B}. Moreover, using (1.12), $\left(\mathrm{H}_{2}\right)$, and $\left(\mathrm{H}_{3}\right)$, we have

$$
\begin{equation*}
\sup _{\zeta \in B} \int_{B}\left(\frac{\delta(y)}{\delta(\zeta)}\right)^{m} G_{m, n}(\zeta, y) g(y) d y \leq\|g\|_{B} \tag{4.18}
\end{equation*}
$$

So, we deduce by the dominated convergence theorem and $\left(\mathrm{H}_{2}\right)$ that

$$
\begin{equation*}
\lim _{\beta \rightarrow 0} T_{\beta}(x)=0 \quad \forall x \in \bar{B} . \tag{4.19}
\end{equation*}
$$

Since the function $\beta \rightarrow T_{\beta}(x)$ is nondecreasing in (0,1), it follows by Dini's lemma that

$$
\begin{equation*}
\lim _{\beta \rightarrow 0}\left(\sup _{x \in B} \frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) G_{m, n}(y, 0) q\left(y, \beta G_{m, n}(y, 0)\right) d y\right)=0 . \tag{4.20}
\end{equation*}
$$

Thus, there exists $\beta \in(0,1)$ such that for each $x \in \bar{B}$,

$$
\begin{equation*}
\frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) G_{m, n}(y, 0) q\left(y, \beta G_{m, n}(y, 0)\right) d y \leq \frac{1}{3} \tag{4.21}
\end{equation*}
$$

Let $b_{0}=(2 / 3) \beta$ and $b \in\left(0, b_{0}\right]$. We will use a fixed-point argument. Let

$$
\begin{equation*}
S=\left\{\omega \in C(\bar{B}): \frac{b}{2} \leq \omega(x) \leq \frac{3 b}{2}\right\} . \tag{4.22}
\end{equation*}
$$

Then, S is a nonempty, closed, bounded, and convex set in $C(\bar{B})$. We define the operator Γ on S by

$$
\begin{equation*}
\Gamma \omega(x)=b+\frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) f\left(y, \omega(y) G_{m, n}(y, 0)\right) d y, \quad x \in B \tag{4.23}
\end{equation*}
$$

By Lemma 4.3, $\Gamma S \subset C(\bar{B})$. Moreover, let $\omega \in S$, then for any $x \in B$, we have

$$
\begin{align*}
|\Gamma \omega(x)-b| & \leq \frac{3 b}{2} \frac{1}{G_{m, n}(x, 0)} \int_{B} G_{m, n}(x, y) G_{m, n}(y, 0) q\left(y, \beta G_{m, n}(y, 0)\right) d y \tag{4.24}\\
& \leq \frac{b}{2}
\end{align*}
$$

It follows that $b / 2 \leq \Gamma \omega(x) \leq 3 b / 2$ and so $\Gamma S \subset S$.
Next, we will prove the continuity of Γ in the uniform norm. Let $\left(\omega_{k}\right)_{k}$ be a sequence in S which converges uniformly to $\omega \in S$. Then since f is continuous with respect to the second variable, we deduce by the dominated convergence theorem that

$$
\begin{equation*}
\Gamma \omega_{k}(x) \longrightarrow \Gamma \omega(x) \quad \text { as } k \longrightarrow \infty, \forall x \in B \tag{4.25}
\end{equation*}
$$

Now, since ΓS is a relatively compact family in $C(\bar{B})$, then

$$
\begin{equation*}
\left\|\Gamma \omega_{k}-\Gamma \omega\right\|_{\infty} \longrightarrow 0 \quad \text { as } k \longrightarrow \infty . \tag{4.26}
\end{equation*}
$$

So the Schauder fixed-point theorem implies the existence of $\omega \in S$ such that $\Gamma \omega=\omega$.

For all $x \in B$, put $u(x)=\omega(x) G_{m, n}(x, 0)$. Then, u is a continuous function in $B \backslash\{0\}$ satisfying (4.16).

Furthermore, if $2 m \leq n$, then by Remark 4.4, we obtain that $\lim _{|x| \rightarrow 0} \omega(x)=b$, that is, $\lim _{|x| \rightarrow 0} u(x) / G_{m, n}(x, 0)=b$. This ends the proof.

Example 4.5. Let $p>0, \lambda<2 m$, and $\mu<n \wedge 2 m$. Let V be a measurable function in B such that for each $x \in B$,

$$
\begin{equation*}
|V(x)| \leq \frac{1}{(\delta(x))^{\lambda}|x|^{\mu}\left(G_{m, n}(x, 0)\right)^{p}} \tag{4.27}
\end{equation*}
$$

Then there exists $b_{0}>0$ such that for each $b \in\left(0, b_{0}\right]$, the nonlinear problem

$$
\begin{gather*}
\Delta^{m} u=(-1)^{m} V(x) u^{p+1}(x) \quad \text { in } B \backslash\{0\} \text { (in the sense of distributions), } \\
u=\frac{\partial}{\partial \nu} u=\cdots=\frac{\partial^{m-1}}{\partial \nu^{m-1}} u=0 \quad \text { on } \partial B \tag{4.28}
\end{gather*}
$$

has a positive solution u, continuous on $B \backslash\{0\}$ and satisfying for all $x \in B$,

$$
\begin{equation*}
\frac{b}{2} G_{m, n}(x, 0) \leq u(x) \leq \frac{3 b}{2} G_{m, n}(x, 0) \tag{4.29}
\end{equation*}
$$

and for $2 m \leq n$, we have

$$
\begin{equation*}
\lim _{|x| \rightarrow 0} \frac{u(x)}{G_{m, n}(x, 0)}=b . \tag{4.30}
\end{equation*}
$$

References

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209-273.
[2] T. Boggio, Sulle funzioni di Green d'ordine m, Rend. Circ. Mat. Palermo 20 (1905), 97-135 (Italian).
[3] K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger's Equation, Grundlehren der Mathematischen Wissenschaften, vol. 312, Springer-Verlag, Berlin, 1995.
[4] R. Dalmasso, A priori estimates for some semilinear elliptic equations of order $2 m$, Nonlinear Anal. 29 (1997), no. 12, 1433-1452.
[5] P. R. Garabedian, A partial differential equation arising in conformal mapping, Pacific J. Math. 1 (1951), 485-524.
[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1977.
[7] H.-C. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), no. 4, 589-626.
[8] W. K. Hayman and B. Korenblum, Representation and uniqueness theorems for polyharmonic functions, J. Anal. Math. 60 (1993), 113-133.
[9] L. L. Helms, Introduction to Potential Theory, Pure and Applied Mathematics, vol. 22, Wiley-Interscience, New York, 1969.
[10] N. J. Kalton and I. E. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3441-3497.
[11] H. Mâagli, Inequalities for the Riesz potentials, to appear in Archives of Inequalities and Applications.
[12] H. Mâagli and L. Mâatoug, Singular solutions of a nonlinear equation in bounded domains of \mathbb{R}^{2}, J. Math. Anal. Appl. 270 (2002), no. 1, 230-246.
[13] H. Mâagli and M. Selmi, Inequalities for the Green function of the fractional Laplacian, preprint, 2002.
[14] H. Mâagli and M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of \mathbb{R}^{n}, to appear in Positivity.
[15] , Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. 263 (2001), no. 2, 522-542.
[16] M. Selmi, Inequalities for Green functions in a Dini-Jordan domain in \mathbb{R}^{2}, Potential Anal. 13 (2000), no. 1, 81-102.
[17] N. Zeddini, Positive solutions for a singular nonlinear problem on a bounded domain in \mathbb{R}^{2}, Potential Anal. 18 (2003), no. 2, 97-118.
[18] Q. S. Zhang and Z. Zhao, Singular solutions of semilinear elliptic and parabolic equations, Math. Ann. 310 (1998), no. 4, 777-794.
[19] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl. 116 (1986), no. 2, 309-334.

Imed Bachar: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

E-mail address: Imed.Bachar@ipeit.rnu.tn
Habib Mâagli: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

E-mail address: habib.maagli@fst.rnu.tn
Syrine Masmoudi: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

E-mail address: Syrine.Sassi@fst.rnu.tn
Malek Zribi: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

E-mail address: Malek.Zribi@insat.rnu.tn

