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We discuss various properties of the nonlinear A-proper operators as well as
a generalized Leray-Schauder principle. Also, a method of approximating arbi-
trary continuous operators by A-proper mappings is described. We construct,
via appropriate Browder-Petryshyn approximation schemes, approximative so-
lutions for linear evolution equations in Banach spaces.

1. Introduction

The purpose of this paper is to describe some approximation structures for non-
linear operators in Banach spaces as well as a number of applications to evolu-
tion equations. In Sections 2 and 3, we prove results concerning the nonlinear
A-proper operators, such as the positive decomposition, the A-properness of
the Dirac mass operator, and a method of approximating arbitrary continuous
operators by A-proper mappings. We also prove a generalized Leray-Schauder
Principle via the A-proper mapping theory.

The third section is devoted to the existence of approximative solutions for
linear evolution equations in Banach spaces. This is done via the same approx-
imation schemes as in the case of A-proper operators. Our results complement
somehow the classical results on Cyp-semigroups and show what happens beyond
the standard hypotheses.

Given a separable Banach space E with Schauder basis, we construct (via an
approximation scheme) a linear operator A on E such that the differential equa-
tion

du

I =Au, u(0)= uo, (1.1)

admits a sequence (1), of C* solutions for each uy € E, ug # 0, such that (u,),
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686  Approximation structures and applications

converges uniformly to a C® function u and (du,/dt — Au,), converges uni-
formly to 0, but u is not a solution.

A complementary phenomenon is described in Theorem 4.2. For E = C([0, 1]
% [0,1]), one shows the existence of a wildly discontinuous linear operator A :
E — E, for which the initial value problem

d_ vt telorT),

dt (1.2)
u(0) = uy,

has a generalized solution whatever are f € C'([0, T],E), ugp € E, and T > 0.

2. A-properness via approximation schemes

Let X and Y be two separable Banach spaces and let

I'= ({Xn}>{Yn}> {Pn}){Qn}) (2.1)

be an approximation scheme, where X,, C X, Y, C Y are linear subspaces with
dimX, = dimY, < o, P, : X,, — X are the canonical isometries,and Q,,: Y — Y,
are continuous operators such that Q,y — y (y € Y).

An operator T : X — Y is named A-proper with respect to I' provided that
the operators T, = Q, TP, are continuous, and any bounded sequence {xy; xx €
X } such that Ty xx — f, where f € Y, has a subsequence {x, } so that xx, — xo
and Txy = f.

Definition 2.1. The scheme T' is called of type (C) if and only if it satisfies the
following conditions:

(a) Xy C Xu415 Yy C Yy for any n;
(b) Qn € L(Y) are projectors such that R(Q,) = Y,;
(c) m < nimplies Q,,Q, = Q.

THEOREM 2.2. Suppose that T is of type (C). Then there exists a continuous non-
compact operator S : X — Y, with bounded R(S), such that for any A-proper opera-
tor T : X — Y which is uniformly continuous on bounded subsets, the sum operator
T + S is A-proper, too.

Proof. Let § € (0,1). We may construct the sequences {x;} C X and {z;} C Y
such that

x|l =lzil| =1, xi€X, zi €Y
d(x,Xj) =06, d(z,Y;) =6 (forj<i).

We define y; € Y by

yi=zi—Qi1zi. (2.3)
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Then

sup||yill < 1+sup||Qil| < +eo,
yieY, d(y,Y;))=08 (j<i),

Qi = Vi, ifm=k,
mT0, ifm<k.

Now, choose y € (0,6/2) and the sequence {¢,} C (0, 4] such that e, — 0. We
define the functions {¢;} € C(X,R) by

@i(x) =max (0,1 —¢& '|[x—xi||) (x€X). (2.5)
Clearly,
i# j= suppg;Nsuppg; = (2.6)

and 0 < ¢;(x) < 1forallie N* andallx € X.
We introduce the operator S: X — Y defined by

S(x) = > @i(x) yis1. (2.7)
i=1
Then
sup |[S(x)|| < sup | yal| < +oo. (2.8)
xeX n

We claim that S is continuous. Indeed, let 1y € X. We have the following two
alternatives.

(a) We have ||ug — xi|| > & for any i € N*. We claim that there exists A > 0 such
that u € B(up,A) implies

llu—xi||>e (i€ N¥). (2.9)

Indeed, if this is not true, then we can find n € N* and u; € B(ug, «) such
that [|u; — x,ll < &,, where a € (0,6/2 — u). We now choose a >0 with f <
min{e, [|[ug — x|l — €,}. Then there exist u, € B(up, §) and m € N* such that
luz — xmll < €.

We obtain

[luo — x4|| < a+ ey l|uo — Xml| < B+ €ms (2.10)
hence

[|xm — xn|| < @+ B+em+en <2u+2a<4, (2.11)
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and thus m = n. Then we have
Iluo — x|l < B+ en < ||tio — x|, (2.12)
a contradiction. Consequently, there exists A > 0 such that
¢i(u) =0 VieN* ue B(upl), (2.13)

so that S|p(,,1) = 0 and S is continuous at .
(b) There exists a (unique) j € N* such that [lug — x;|| <¢;.
Let y € (0,8 —2u). Then

S(u) =@j(u)yjs forue B(upy), (2.14)

so that S is continuous at .

Now, let T: X — Y be an A-proper operator which is uniformly continu-
ous on bounded subsets. We claim that the operator T +§ is A-proper too. Let
{nr} € N* be such that ny — co and let {w,,; w,, € X, } be abounded sequence
such that

Ty Wiy + Sy Way, — f (2.15)
for some f €Y.
Notice that
Pl X =0 (m>ng), (2.16)
so that
1y,
S(x) = > ¢i(x)yi1  on X, (2.17)
i=1
which yields
k-1
Sue(x) = > @i(x)yina (2.18)
i=1

because Qu ¥n+1 = 0.
Then, for each k € N*, we may choose an iy € N*, 1 < i, < n — 1, such that

Sue (Wne) = @i (W) i1 (2.19)

The following two cases are possible:
(1) there exist {k;} C N*, kj — o0 as | — o0, and N* such that i, <m (I > 1).
Then we obtain

S”lk(l) (W”lk(l)) € B(O’ SuP||)’i||) N SP{)’]‘; ] = 2,—7}1} (2'20)
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Now, since T is A-proper, it follows that {w,,, }; has no convergent subse-
quence and, since T + S is continuous, it will be A-proper too;
(2) ik — oo (k — o0). Now, if there exists a sequence {k;} C N* such that
kj — +oo (j — +00) and ¢;, ; (Wn,;)) >0 (j = 1), then we obtain

||W”k<;) 7xik(j)” <&y — 0 (j— o0). (2.21)
We also have
Sy (W”k(j)) = @iy (Wnk(j) )yik(j)+1> (2.22)
hence
Sitgj (Wnku)) = Qi) (Wnk(j))Qik(j>yik(j)+1 =0. (2.23)

Now, since T is uniformly continuous on bounded subsets, we have
| TWn;, — Txiy || — 0. (2.24)
We also have

Qi [T"k(j>W”k(j) + S W"k(j)] — 5 (2.25)

and, from (2.23), Ty Waijy) — f and, from (2.24), Tiy ) Xigj) — f, which is impos-
sible because T is A-proper and {x,} has no convergent subsequence.

Then there exists kg € N* such that k > k; implies ¢;, (wy,, ) = 0. Consequently,
Sni (Wn, ) = 0, so that

Ty (Wn) — f. (2.26)

Thus, {wn,} has convergent subsequences and, since T + S is continuous, it
will be A-proper too.

Finally, we remark that Sx; = y;11 (i € N*), whence S(B(0, 1)) is not relatively
compact. ]

THEOREM 2.3. Let E be a separable Banach space such that E* is endowed with a
sequence of finite-dimensional subspaces {X,},>1, with the following properties:

(a) for every n, there is a projection I1,, € L(E*) with R(I1,) = Xy,;

(b) ITyx — x for all x € E*;

(c) there exists an (algebraic-topological) isomorphism into U : E* — C(Sg«)*,
where Sg+ denotes the closed unit ball of E*, endowed with the weak-star
topology.

Then the operator Sg= — C(Sg+)*, x — 8y (the Dirac mass), is A-proper from

SE* C E*to C(SE*)*
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Proof. For every n € N*, we choose y, € U(X,,) with [lu,|l = n. We define the
finite-dimensional subspace Y, € C(Sg+)* by Y, = U(X,,). Then, clearly, dimY,
= dimX,, < +oco. We also introduce the sequence of continuous operators Q, :
C(Sg+)* — Y, given by

Quv = UIL,j*v+dist (v, {ex; x € Sg+}) pins (2.27)

where j : E — C(Sg+) is the canonical isometrical embedding.
We claim that the operator T : Sg» C E* — C(Sg+)*, Tx = &, is A-proper with
respect to the approximation scheme

I'= ({Xn}» {Pn}’{Yn}’{Qn})» (2-28)

where P, : X,, — E* are the canonical isometries.

Clearly, if x € Sg+ N X,,, then we have Q,Tx = Ux, hence the operator
QuTls,. nx, is continuous.

Now, let {x,; xn € S+ N X, } be a sequence such that

|QumTxm — Quupl| — 0 (2.29)
for some p € C(Sg+)*. Then we obtain

| Uy — UTLy j* u + dist (i, {ex; x € Sg+ ) || — 0,

dist (4, {ex; x € Sp+}) -m < || U] (1 +sup ||| - IIyII). (2:30)
Therefore, there is an x € Sg+ such that y = §,. It follows that
||Uxp — UTL,x|| — 0, (2.31)
thus
X — X (2.32)
and clearly Tx = y, which completes the proof. O

3. The generalized Leray-Schauder principle

Let X be a Banach space and let D be an open bounded subset of X with 0 € D.
We say that ' C D is a pseudoboundary of D if there exist a Banach space Y, an
open bounded subset D, C Y, and a continuous A-proper operator A : Dy — D
with Deg(A, Dy, 0) # {0} such that T' = A(dDy).

THEOREM 3.1. Let K : D — X be a compact operator. Suppose that there exists a
pseudoboundary T of D such that

Kx#Ax (A>1;xel). (3.1)

Then K has at least one fixed point.
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Proof. We consider the A-proper homotopy H : [0,1] X D, — X given by
H(t,z) = Az —tKAz. (3.2)

Then H(t,z) = 0 with t € (0,1) and z € 9D, implies Kx = Ax with A = ¢!
and x = Az € T, a contradiction. Clearly, 0 ¢ H({0} X dDy). If H(1,z) = 0 with
z € 0Dy, we obtain that Az is a fixed point of K. Finally, if 0 € H([0,1] X dD..),
then

Deg (A — KA, D,,0) = Deg (H(1, +),Dy,0) = Deg (H(O, -), D, 0)

(3.3)

= Deg (A, Dy, 0) # {0},
which assures the existence of a z € D, such that (A — KA)(z) = 0. Consequently,
Az € D is a fixed point of K and the theorem is proved. O

In what follows, X will be a Banach space and A C X will be an open bounded
subset satisfying the following property:

(P) there are a finite-dimensional subspace V C X,apointp € Ay =ANV,
and a sequence of linear subspaces X,, C V such that
(a) the sequence A, = A N X, converges to {p} in the hyperspace 28v of
Ay (see, e.g., [3]),
(®) Apn Ay =D (m# n),
(c) p& A, (neN*).

We have the following approximation result.

THEOREM 3.2. For each continuous operator T : A C X — &, there exists a se-
quence of operators {Ty; Ty : A — €3} that are A-proper with respect to various
approximation schemes for the pair (X, €) such that

sup{||T,x — Tx||; x €A} — 0 asn— oo, (3.4)

Proof. Let Q:= T(Ay). Since T is continuous and Ay is compact, so is Q. We
take £ > 0. We denote by {e,},>1 the standard orthonormal basis of ¢, and by
{IT,} =1 the associated sequence of orthoprojectors. Then there exists k € N*
such that

sup | [Txx — x| < % (3.5)
x€Q

Now, we define the operator T : A — £, given by the formula

~ Tx, ifxe A\ < A_ﬂ>
Tx = r,LZJl (3.6)

I Tx + %ek+m, ifxe A, (meN*),
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Then it is clear that

sup ITx — Tx|| <e. (3.7)
xeEA
We observe that, if x € A,, and y € A, (m # n), then
£
NGk
We now choose f € ¢,\{0} and a sequence of subspaces {Y,},>1, Y, C &3,
such that

I1Tx—Tyll = (3.8)

dimY, = dimX, (3.9)

and f € Y, (n € N*). We then define a sequence of continuous nonlinear oper-
ators

{Qu Qu:ts— Yul oy, (3.10)

where
Qux = dist (x, T(&,)) - llx— Tpll - f. (3.11)

We claim that the operator T is A-proper with respect to the approximation
scheme

I'= ({Xn}» {Pn}’{Yn}’{Qn})» (3-12)

where P, : X,, — X are the canonical isometries. Indeed, we observe that if x €
A, then Q,Tx = 0. On the other hand, let {x,,;; x € A,,;} be a sequence such that

[1QunTxm — Quyl| — 0 (3.13)

for some y € £,. It follows that necessarily y = Tp (= Tp). Moreover, the prop-
erty (?) implies that x,,, — p. The proof is complete. O

Remark 3.3. The above argument can be easily modified in order to conclude
that all the operators T, are A-proper with respect to the same approximation
scheme.

In what follows, BCA denotes the class of all bounded continuous A-proper
operators with respect to a given approximation scheme.

ProposiTiON 3.4. Let X and Y be two Banach spaces, Y being ordered by the cone
Y™ such that intY" + &. Let D C X be an open bounded nonempty subset. Then,
for each operator A € BCA(D, Y), there exist two operators A~ € BCA(D, Y*) such
that

A=A, —-A,  AJ'({0}) =A7'({0}). (3.14)
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Proof. Since intY* # @, there exist yo € Y and r > 0 such that
B(yo,r) C Y™ (3.15)

Let #* = min{r, (1/2)|lyoll}. Since clearly yo # 0, it follows that r* > 0. Then
we define the operators A. by

1

Aix= 3 ( +Ax+ 1Ax]

r*

yo) (x € D). (3.16)

It is easy to see that A. € BCA(D, Y) because AA + K € BCA(D, Y) for each
A€ R\ {0} and K € K(D,Y) (= the space of all compact maps). Moreover,
A.x>0 (x € D) because B(yp,r*) C Y*. Clearly, A = A; — A_. Because

1

(”yOH—1>|Ax||s||A+x||s1<||yo||+l>||Ax|| (xeD)  (3.17)
2\ r* 2\ r*

we conclude that A='({0}) = AZ!({0}). The proof is done. O

4. Approximative solutions for evolution equations

Our first goal is to show that for every separable Banach space E with Schauder

basis there exists a linear operator A : E — E with the following two properties:
(A1) the problem

% =Au (t=0), (4.1)
has a solution u of class C® for each choice of the initial datum u(0) = uq
in E;

(A2) for each uy € E, ug # 0, there exist u and {u,} ¢ C*°(R*, E) such that

stugllun(t) —u(®)|[ — 0, u(0) = uo,

du,
dt

sup (t)—A(un(t))H —0, (4.2)

t=0

du
5 W FAW®) (20

In order to prove this result, we will need the following construction. Let {e,}
be a Schauder basis for E, let Ey = span{e,}, and let {e,} U {by; x € Ey} be a
Hamel basis for E. We define the linear operator A : E — E by Ae, = 0 (n € N*)
and Ab, = x (x € Ey). It is easy to see that A? = 0.

Proof of (Al). For each ug € E, the function u(t) = ug + tAug (t = 0) is a C®
solution of (4.1) with u(0) = ug.
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Proof of (A2). We consider the sequence of linear continuous projections
P,x = Z ef(x)ex (x€E neN*), (4.3)
k=1

where {e}} C E* is the associated sequence of coefficient functionals to {e,}.
We choose a sequence of integers {k,} C N*, k,, — oo, such that

||Pknb*Pnun - b*Pnuo” <n’! (11 € N*) (44)

and consider the functions

u”(t) = eit[b*Pnuo - Pkn (b*Pnuo - Ll())] (t = 0):

4.5
u(t)=e'uy (t=0). (4-5)
Then, letting ¢, = |1b_p,u, — Pk, b—p,u, + Pk, to — toll — 0, we have
_ du
sup ||un (t) —u(t)[| < e”cp, y " () = —un(t),
>0 t
A(u,(t)) = —e 'Puuy,
d ( n( )) nho (4.6)
Up _
‘ o g —A(un(t))H — e[ = bopy + P, (b_pug — tho) + Prti|
= || - b*PnMn +Pknb*Pnun|| + ||P1’lu0 _Pkn”OH — 0,
for each t > 0.
Finally, we suppose that
du
E(tO) = A(u(to)) (4.7)
for some ty € R*. Then
—e hyy=eMAu, —uy = Au,
(4.8)

—Au() = O, Uy = 0,

a contradiction.

In the remainder of this section, we put I = [0,1], E = C(I?), and keep fixed a
number T > 0. It is known that E ~ C(I)®.C(I) (the completion of the injective
tensor product, see [1]).

We will need the following classical result.

THEOREM 4.1 (Miljutin [3]; see also [2]). Let Q be an uncountable compact metric
space. Then C(Q) is linearly isomorphic to C(I).
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We consider the initial value problem

u(t) =Au(t)+ f(t), te[0,T],

1(0) = 1o, (4.9)

where A : D(A) = E — E is a linear operator and f : [0, T] — E, u, € E are given.

THEOREM 4.2. There exists a discontinuous linear operator A : D(A) = E — E,
with dense kernel, such that for each f € C'([0, T],E) and each uy € E there exist
U, Uy, Ua,... € CH([0, T),E) such that A o u, € C([0,T),E) and

ur — u  uniformly,

% —Au — f uniformly, (4.10)

ur(0) — up inE.

Proof. Using Miljutin’s theorem, we obtain an isomorphism U : C(I) — E. Let
{b,} be a normalized Schauder base of C(I). Then there is an uncountable sub-
set I of C(I) such that B = {b,,} UT is a Hamel basis of C(I). Let {c,} CT be
such that ¢, # ¢, (m # n). We put e(t) = 1 (t € I). Then we consider the linear
operator T': C(I) — C(I), defined by

Tcy =ke (k=1),

Th=0 (beB\|a)). (4.11)

We also consider the following linear operators:

S:C(I)eC(I)— C()e C(I), S=T®idcy,

B:C(I)® C(I) — C(I), B<Zﬁ ®g,»)(t) = Zﬁ(t)gf(t), (4.12)

A:E—E, A=UBSP,

where P: E — C(I) ® C(I) is an algebraic projection.

Now, let ug € Eand f € C'([0, T], E). Since the linear subspace F = span{b, }
®, C(I) is dense in E (see [1, page 280]), there is a sequence {g,} C F such that
qn — up. We remark that F C KerS.

We define {u;} ¢ C'([0,T],E) by

u(t) = qx —k ' @ U (f(1)). (4.13)
Then, defining u(t) = uy (¢t € [0, T]), we have ux — u uniformly because
Ik e e U (fO)I < k[T [ flleo — O (4.14)

We also have

% =k laeU'(f(1), (4.15)
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so that duy/dt — 0 uniformly. On the other hand,

A(u(t)) = UBSP (uk(t)) = UBS(uk(t))
k' UBS(ae® U (f(1)))
=-UB(e® U ' (f(1)) (4.16)
=-UU ' (f(1)
=—f(®.
Finally, we remark that A has a dense kernel (since F C KerA), and A # 0,
because

A(ci®c;) = UBSP(c1®c1) = UB(e®c;) = Ucy #0. (4.17)
Hence A is discontinuous and the proof of our theorem is done. O
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