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We discuss various properties of the nonlinear A-proper operators as well as
a generalized Leray-Schauder principle. Also, a method of approximating arbi-
trary continuous operators by A-proper mappings is described. We construct,
via appropriate Browder-Petryshyn approximation schemes, approximative so-
lutions for linear evolution equations in Banach spaces.

1. Introduction

The purpose of this paper is to describe some approximation structures for non-
linear operators in Banach spaces as well as a number of applications to evolu-
tion equations. In Sections 2 and 3, we prove results concerning the nonlinear
A-proper operators, such as the positive decomposition, the A-properness of
the Dirac mass operator, and a method of approximating arbitrary continuous
operators by A-proper mappings. We also prove a generalized Leray-Schauder
Principle via the A-proper mapping theory.

The third section is devoted to the existence of approximative solutions for
linear evolution equations in Banach spaces. This is done via the same approx-
imation schemes as in the case of A-proper operators. Our results complement
somehow the classical results on C0-semigroups and show what happens beyond
the standard hypotheses.

Given a separable Banach space E with Schauder basis, we construct (via an
approximation scheme) a linear operator A on E such that the differential equa-
tion

du

dt
= Au, u(0)= u0, (1.1)

admits a sequence (un)n of C∞ solutions for each u0 ∈ E, u0 �= 0, such that (un)n
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converges uniformly to a C∞ function u and (dun/dt −Aun)n converges uni-
formly to 0, but u is not a solution.

A complementary phenomenon is described in Theorem 4.2. For E = C([0,1]
× [0,1]), one shows the existence of a wildly discontinuous linear operator A :
E→ E, for which the initial value problem

du

dt
= Au+ f , t ∈ [0,T],

u(0)= u0,
(1.2)

has a generalized solution whatever are f ∈ C1([0,T],E), u0 ∈ E, and T > 0.

2. A-properness via approximation schemes

Let X and Y be two separable Banach spaces and let

Γ= ({Xn
}
,
{
Yn
}
,
{
Pn
}
,
{
Qn
})

(2.1)

be an approximation scheme, where Xn ⊂ X , Yn ⊂ Y are linear subspaces with
dimXn = dimYn <∞, Pn : Xn→ X are the canonical isometries, and Qn : Y → Yn

are continuous operators such that Qny→ y (y ∈ Y).
An operator T : X → Y is named A-proper with respect to Γ provided that

the operators Tn =QnTPn are continuous, and any bounded sequence {xk; xk ∈
Xnk} such that Tnkxk → f , where f ∈ Y , has a subsequence {xkj} so that xkj → x0

and Tx0 = f .

Definition 2.1. The scheme Γ is called of type (C) if and only if it satisfies the
following conditions:

(a) Xn ⊂ Xn+1; Yn ⊂ Yn+1 for any n;
(b) Qn ∈ L(Y) are projectors such that R(Qn)= Yn;
(c) m≤ n implies QmQn =Qm.

Theorem 2.2. Suppose that Γ is of type (C). Then there exists a continuous non-
compact operator S : X → Y , with bounded R(S), such that for any A-proper opera-
tor T : X → Y which is uniformly continuous on bounded subsets, the sum operator
T + S is A-proper, too.

Proof. Let δ ∈ (0,1). We may construct the sequences {xi} ⊂ X and {zi} ⊂ Y
such that

∥∥xi∥∥= ∥∥zi∥∥= 1, xi ∈ Xi, zi ∈ Yi,

d
(
xi,Xj

)≥ δ, d
(
zi,Yj

)≥ δ (for j < i).
(2.2)

We define yi ∈ Y by

yi = zi−Qi−1zi. (2.3)



A. Duma and C. Vladimirescu 687

Then

sup
∥∥yi∥∥≤ 1 + sup

∥∥Qi

∥∥ < +∞,

yi ∈ Yi, d
(
yi,Yj

)≥ δ ( j < i),

Qmyk =

yk, if m≥ k,

0, if m< k.

(2.4)

Now, choose µ∈ (0,δ/2) and the sequence {εn} ⊂ (0,µ] such that εn→ 0. We
define the functions {ϕi} ⊂ C(X,R) by

ϕi(x)=max
(
0,1− ε−1

i

∥∥x− xi
∥∥) (x ∈ X). (2.5)

Clearly,

i �= j =⇒ suppϕi∩ suppϕj =∅ (2.6)

and 0≤ ϕi(x)≤ 1 for all i∈N∗ and all x ∈ X .
We introduce the operator S : X → Y defined by

S(x)=
∞∑
i=1

ϕi(x)yi+1. (2.7)

Then

sup
x∈X

∥∥S(x)
∥∥≤ sup

n

∥∥yn∥∥ < +∞. (2.8)

We claim that S is continuous. Indeed, let u0 ∈ X . We have the following two
alternatives.

(a) We have ‖u0− xi‖ > εi for any i∈N∗. We claim that there exists λ > 0 such
that u∈ B(u0,λ) implies

∥∥u− xi
∥∥ > εi

(
i∈N

∗). (2.9)

Indeed, if this is not true, then we can find n ∈ N∗ and u1 ∈ B(u0,α) such
that ‖u1 − xn‖ ≤ εn, where α ∈ (0,δ/2− µ). We now choose a β > 0 with β <
min{α,‖u0 − xn‖ − εn}. Then there exist u2 ∈ B(u0,β) and m ∈ N∗ such that
‖u2− xm‖ ≤ εm.

We obtain

∥∥u0− xn
∥∥≤ α+ εn,

∥∥u0− xm
∥∥≤ β+ εm, (2.10)

hence

∥∥xm− xn
∥∥≤ α+β+ εm + εn ≤ 2µ+ 2α < δ, (2.11)
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and thus m= n. Then we have

∥∥u0− xn
∥∥≤ β+ εn <

∥∥u0− xn
∥∥, (2.12)

a contradiction. Consequently, there exists λ > 0 such that

ϕi(u)= 0 ∀i∈N
∗, u∈ B

(
u0,λ

)
, (2.13)

so that S|B(u0,λ) = 0 and S is continuous at u0.
(b) There exists a (unique) j ∈N∗ such that ‖u0− xj‖ ≤ εj .
Let γ ∈ (0,δ− 2µ). Then

S(u)= ϕj(u)yj+1 for u∈ B
(
u0,γ

)
, (2.14)

so that S is continuous at u0.
Now, let T : X → Y be an A-proper operator which is uniformly continu-

ous on bounded subsets. We claim that the operator T + S is A-proper too. Let
{nk} ⊂N∗ be such that nk →∞ and let {wnk ; wnk ∈ Xnk} be a bounded sequence
such that

Tnkwnk + Snkwnk −→ f (2.15)

for some f ∈ Y .
Notice that

ϕm|Xnk = 0
(
m> nk

)
, (2.16)

so that

S(x)=
nk∑
i=1

ϕi(x)yi+1 on Xnk , (2.17)

which yields

Snk (x)=
k−1∑
i=1

ϕi(x)yi+1 (2.18)

because Qnk ynk+1 = 0.
Then, for each k ∈N∗, we may choose an ik ∈N∗, 1≤ ik ≤ nk − 1, such that

Snk
(
wnk

)= ϕik

(
wnk

)
yik+1. (2.19)

The following two cases are possible:

(1) there exist {kl} ⊂N∗, kl →∞ as l→∞, and N∗ such that ikl < m (l ≥ 1).
Then we obtain

Snk(l)

(
wnk(l)

)∈ B̄
(
0,sup

∥∥yi∥∥)∩ sp
{
yj ; j = 2,m

}
. (2.20)



A. Duma and C. Vladimirescu 689

Now, since T is A-proper, it follows that {wnk(l)}l has no convergent subse-
quence and, since T + S is continuous, it will be A-proper too;

(2) ik →∞ (k →∞). Now, if there exists a sequence {kj} ⊂ N∗ such that
kj → +∞ ( j → +∞) and ϕik( j) (wnk( j) ) > 0 ( j ≥ 1), then we obtain

∥∥wnk( j) − xik( j)

∥∥ < εik( j) −→ 0 ( j −→∞). (2.21)

We also have

Snk( j)

(
wnk( j)

)= ϕik( j)

(
wnk( j)

)
yik( j)+1, (2.22)

hence

Sik( j)

(
wnk( j)

)= ϕik( j)

(
wnk( j)

)
Qik( j) yik( j)+1 = 0. (2.23)

Now, since T is uniformly continuous on bounded subsets, we have

∥∥Twnk( j) −Txik( j)

∥∥−→ 0. (2.24)

We also have

Qik( j)

[
Tnk( j)wnk( j) + Snk( j)wnk( j)

]−→ f , (2.25)

and, from (2.23), Tik( j)wnk( j) → f and, from (2.24), Tik( j)xik( j) → f , which is impos-
sible because T is A-proper and {xn} has no convergent subsequence.

Then there exists k0 ∈N∗ such that k≥k0 implies ϕik (wnk )= 0. Consequently,
Snk (wnk )= 0, so that

Tnk

(
wnk

)−→ f . (2.26)

Thus, {wnk} has convergent subsequences and, since T + S is continuous, it
will be A-proper too.

Finally, we remark that Sxi = yi+1 (i∈N∗), whence S(B̄(0,1)) is not relatively
compact. �

Theorem 2.3. Let E be a separable Banach space such that E∗ is endowed with a
sequence of finite-dimensional subspaces {Xn}n≥1, with the following properties:

(a) for every n, there is a projection Πn ∈ L(E∗) with R(Πn)= Xn;
(b) Πnx→ x for all x ∈ E∗;
(c) there exists an (algebraic-topological) isomorphism into U : E∗ → C(SE∗)∗,

where SE∗ denotes the closed unit ball of E∗, endowed with the weak-star
topology.

Then the operator SE∗ → C(SE∗)∗, x→ δx (the Dirac mass), is A-proper from
SE∗ ⊂ E∗ to C(SE∗)∗.
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Proof. For every n ∈ N∗, we choose µn ∈ U(Xn) with ‖µn‖ = n. We define the
finite-dimensional subspace Yn ⊂ C(SE∗)∗ by Yn =U(Xn). Then, clearly, dimYn

= dimXn < +∞. We also introduce the sequence of continuous operators Qn :
C(SE∗)∗ → Yn given by

Qnν=UΠn j
∗ν + dist

(
ν,
{
εx; x ∈ SE∗

})
µn, (2.27)

where j : E→ C(SE∗) is the canonical isometrical embedding.
We claim that the operator T : SE∗ ⊂ E∗ → C(SE∗)∗, Tx = εx, is A-proper with

respect to the approximation scheme

Γ= ({Xn
}
,
{
Pn
}
,
{
Yn
}
,
{
Qn
})
, (2.28)

where Pn : Xn→ E∗ are the canonical isometries.
Clearly, if x ∈ SE∗ ∩ Xn, then we have QnTx = Ux, hence the operator

QnT|SE∗∩Xn is continuous.
Now, let {xm; xm ∈ SE∗ ∩Xm} be a sequence such that

∥∥QmTxm−Qmµ
∥∥−→ 0 (2.29)

for some µ∈ C(SE∗)∗. Then we obtain∥∥Uxm−UΠm j∗µ+ dist
(
µ,
{
εx; x ∈ SE∗

})
µm
∥∥−→ 0,

dist
(
µ,
{
εx; x ∈ SE∗

}) ·m≤ ‖U‖(1 + sup
m

∥∥Πm

∥∥ · ‖µ‖). (2.30)

Therefore, there is an x ∈ SE∗ such that µ= δx. It follows that
∥∥Uxm−UΠmx

∥∥−→ 0, (2.31)

thus

xm −→ x (2.32)

and clearly Tx = µ, which completes the proof. �

3. The generalized Leray-Schauder principle

Let X be a Banach space and let D be an open bounded subset of X with 0∈D.
We say that Γ ⊂ D is a pseudoboundary of D if there exist a Banach space Y , an
open bounded subset D∗ ⊂ Y , and a continuous A-proper operator A : D∗ →D
with Deg(A,D∗,0) �= {0} such that Γ=A(∂D∗).

Theorem 3.1. Let K : D→ X be a compact operator. Suppose that there exists a
pseudoboundary Γ of D such that

Kx �= λx (λ > 1; x ∈ Γ). (3.1)

Then K has at least one fixed point.
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Proof. We consider the A-proper homotopy H : [0,1]×D∗ → X given by

H(t,z)=Az− tKAz. (3.2)

Then H(t,z) = 0 with t ∈ (0,1) and z ∈ ∂D∗ implies Kx = λx with λ = t−1

and x = Az ∈ Γ, a contradiction. Clearly, 0 /∈H({0}× ∂D∗). If H(1, z)= 0 with
z ∈ ∂D∗, we obtain that Az is a fixed point of K . Finally, if 0 /∈H([0,1]× ∂D∗),
then

Deg
(
A−KA,D∗,0

)=Deg
(
H(1,·),D∗,0

)=Deg
(
H(0,·),D∗,0

)
=Deg

(
A,D∗,0

) �= {0}, (3.3)

which assures the existence of a z∈D∗ such that (A−KA)(z)= 0. Consequently,
Az ∈D is a fixed point of K and the theorem is proved. �

In what follows, X will be a Banach space and ∆⊂ X will be an open bounded
subset satisfying the following property:

(�) there are a finite-dimensional subspace V ⊂ X , a point p ∈ ∆V = ∆∩V ,
and a sequence of linear subspaces Xn ⊂V such that

(a) the sequence ∆n = ∆∩Xn converges to {p} in the hyperspace 2∆V of
∆V (see, e.g., [3]),

(b) ∆m∩∆n =∅ (m �= n),
(c) p /∈ ∆n (n∈N∗).

We have the following approximation result.

Theorem 3.2. For each continuous operator T : ∆ ⊂ X → 	2, there exists a se-
quence of operators {Tn; Tn : ∆→ 	2} that are A-proper with respect to various
approximation schemes for the pair (X,	2) such that

sup
{∥∥Tnx−Tx

∥∥; x ∈ ∆
}−→ 0 as n−→∞. (3.4)

Proof. Let Q := T(∆V ). Since T is continuous and ∆V is compact, so is Q. We
take ε > 0. We denote by {en}n≥1 the standard orthonormal basis of 	2 and by
{Πn}n≥1 the associated sequence of orthoprojectors. Then there exists k ∈ N∗

such that

sup
x∈Q

∥∥Πkx− x
∥∥ < ε

2
. (3.5)

Now, we define the operator T̃ : ∆→ 	2 given by the formula

T̃x =



Tx, if x ∈ ∆ \

(⋃
n≥1

∆n

)

ΠkTx+
ε

2
ek+m, if x ∈ ∆m

(
m∈N∗).

(3.6)
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Then it is clear that

sup
x∈∆

‖T̃x−Tx‖ < ε. (3.7)

We observe that, if x ∈ ∆m and y ∈ ∆n (m �= n), then

‖T̃x− T̃ y‖ ≥ ε√
2
. (3.8)

We now choose f ∈ 	2\{0} and a sequence of subspaces {Yn}n≥1, Yn ⊂ 	2,
such that

dimYn = dimXn (3.9)

and f ∈ Yn (n∈N∗). We then define a sequence of continuous nonlinear oper-
ators

{
Qn; Qn : 	2 −→ Yn

}
n≥1, (3.10)

where

Qnx = dist
(
x, T̃

(
∆n
)) · ‖x−Tp‖ · f . (3.11)

We claim that the operator T̃ is A-proper with respect to the approximation
scheme

Γ= ({Xn
}
,
{
Pn
}
,
{
Yn
}
,
{
Qn
})
, (3.12)

where Pn : Xn → X are the canonical isometries. Indeed, we observe that if x ∈
∆n, then QnT̃x = 0. On the other hand, let {xm; x ∈ ∆m} be a sequence such that

∥∥QmT̃xm−Qmy
∥∥−→ 0 (3.13)

for some y ∈ 	2. It follows that necessarily y = Tp (= T̃ p). Moreover, the prop-
erty (�) implies that xm→ p. The proof is complete. �

Remark 3.3. The above argument can be easily modified in order to conclude
that all the operators Tn are A-proper with respect to the same approximation
scheme.

In what follows, BCA denotes the class of all bounded continuous A-proper
operators with respect to a given approximation scheme.

Proposition 3.4. Let X and Y be two Banach spaces, Y being ordered by the cone
Y+ such that intY+ �= ∅. Let D ⊂ X be an open bounded nonempty subset. Then,
for each operator A∈ BCA(D,Y), there exist two operators A± ∈ BCA(D,Y+) such
that

A=A+−A−, A−1
±
({0})= A−1({0}). (3.14)
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Proof. Since intY+ �= ∅, there exist y0 ∈ Y and r > 0 such that

B
(
y0, r

)⊂ Y+. (3.15)

Let r∗ =min{r,(1/2)‖y0‖}. Since clearly y0 �= 0, it follows that r∗ > 0. Then
we define the operators A± by

A±x = 1
2

(
±Ax+

‖Ax‖
r∗

y0

)
(x ∈D). (3.16)

It is easy to see that A± ∈ BCA(D,Y) because λA+K ∈ BCA(D,Y) for each
λ ∈ R \ {0} and K ∈ K(D,Y) (= the space of all compact maps). Moreover,
A±x ≥ 0 (x ∈D) because B(y0, r∗)⊂ Y+. Clearly, A= A+−A−. Because

1
2

(∥∥y0
∥∥

r∗
− 1

)
‖Ax‖ ≤ ∥∥A±x∥∥≤ 1

2

(∥∥y0
∥∥

r∗
+ 1

)
‖Ax‖ (x ∈D), (3.17)

we conclude that A−1({0})= A−1± ({0}). The proof is done. �

4. Approximative solutions for evolution equations

Our first goal is to show that for every separable Banach space E with Schauder
basis there exists a linear operator A : E→ E with the following two properties:

(A1) the problem

du

dt
= Au (t ≥ 0), (4.1)

has a solution u of class C∞ for each choice of the initial datum u(0)= u0

in E;
(A2) for each u0 ∈ E, u0 �= 0, there exist u and {un} ⊂ C∞(R+,E) such that

sup
t≥0

∥∥un(t)−u(t)
∥∥−→ 0, u(0)= u0,

sup
t≥0

∥∥∥∥dundt
(t)−A

(
un(t)

)∥∥∥∥−→ 0,

du

dt
(t) �=A

(
u(t)

)
(t ≥ 0).

(4.2)

In order to prove this result, we will need the following construction. Let {en}
be a Schauder basis for E, let E0 = span{en}, and let {en} ∪ {bx; x ∈ E0} be a
Hamel basis for E. We define the linear operator A : E→ E by Aen = 0 (n∈N∗)
and Abx = x (x ∈ E0). It is easy to see that A2 = 0.

Proof of (A1). For each u0 ∈ E, the function u(t) = u0 + tAu0 (t ≥ 0) is a C∞

solution of (4.1) with u(0)= u0.
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Proof of (A2). We consider the sequence of linear continuous projections

Pnx =
n∑

k=1

e∗k (x)ek
(
x ∈ E, n∈N

∗), (4.3)

where {e∗n } ⊂ E∗ is the associated sequence of coefficient functionals to {en}.
We choose a sequence of integers {kn} ⊂N∗, kn→∞, such that

∥∥Pknb−Pnu0 − b−Pnu0

∥∥ < n−1 (
n∈N

∗) (4.4)

and consider the functions

un(t)= e−t
[
b−Pnu0 −Pkn

(
b−Pnu0 −u0

)]
(t ≥ 0),

u(t)= e−tu0 (t ≥ 0).
(4.5)

Then, letting cn = ‖b−Pnu0 −Pknb−Pnu0 +Pknu0−u0‖→ 0, we have

sup
t≥0

∥∥un(t)−u(t)
∥∥≤ e−tcn,

dun
dt

(t)=−un(t),

A
(
un(t)

)=−e−tPnu0,∥∥∥∥dundt
(t)−A

(
un(t)

)∥∥∥∥= e−t
∥∥− b−Pnu0 +Pkn

(
b−Pnu0 −u0

)
+Pnu0

∥∥
≤ ∥∥− b−Pnu0 +Pknb−Pnu0

∥∥+
∥∥Pnu0−Pknu0

∥∥−→ 0,

(4.6)

for each t ≥ 0.
Finally, we suppose that

du

dt

(
t0
)= A

(
u
(
t0
))

(4.7)

for some t0 ∈R+. Then

−e−t0u0 = e−t0Au, −u0 =Au0,

−Au0 = 0, u0 = 0,
(4.8)

a contradiction.
In the remainder of this section, we put I = [0,1], E = C(I2), and keep fixed a

number T > 0. It is known that E ≈ C(I)⊗εC(I) (the completion of the injective
tensor product, see [1]).

We will need the following classical result.

Theorem 4.1 (Miljutin [3]; see also [2]). Let Q be an uncountable compact metric
space. Then C(Q) is linearly isomorphic to C(I).
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We consider the initial value problem

u(t)= Au(t) + f (t), t ∈ [0,T],

u(0)= u0,
(4.9)

where A : D(A)= E→ E is a linear operator and f : [0,T]→ E, u0 ∈ E are given.

Theorem 4.2. There exists a discontinuous linear operator A : D(A) = E → E,
with dense kernel, such that for each f ∈ C1([0,T],E) and each u0 ∈ E there exist
u,u1,u2, . . .∈ C1([0,T],E) such that A◦uk ∈ C([0,T],E) and

uk −→ u uniformly,

duk
dt

−Auk −→ f uniformly,

uk(0)−→ u0 in E.

(4.10)

Proof. Using Miljutin’s theorem, we obtain an isomorphism U : C(I)→ E. Let
{bn} be a normalized Schauder base of C(I). Then there is an uncountable sub-
set Γ of C(I) such that B = {bn} ∪ Γ is a Hamel basis of C(I). Let {cn} ⊂ Γ be
such that cm �= cn (m �= n). We put e(t)= 1 (t ∈ I). Then we consider the linear
operator T : C(I)→ C(I), defined by

Tck = ke (k ≥ 1),

Tb = 0
(
b ∈ B\{ck}). (4.11)

We also consider the following linear operators:

S : C(I)⊗C(I)−→ C(I)⊗C(I), S= T ⊗ idC(I),

B : C(I)⊗C(I)−→ C(I), B

(∑
i

fi⊗ gi

)
(t)=

∑
i

fi(t)gi(t),

A : E→ E, A=UBSP,

(4.12)

where P : E→ C(I)⊗ε C(I) is an algebraic projection.
Now, let u0 ∈ E and f ∈ C1([0,T],E). Since the linear subspace F = span{bn}

⊗ε C(I) is dense in E (see [1, page 280]), there is a sequence {qn} ⊂ F such that
qn→ u0. We remark that F ⊂ KerS.

We define {uk} ⊂ C1([0,T],E) by

uk(t)= qk − k−1ck ⊗U−1( f (t)
)
. (4.13)

Then, defining u(t)= u0 (t ∈ [0,T]), we have uk → u uniformly because
∥∥k−1ck ⊗U−1( f (t)

)∥∥≤ k−1
∥∥U−1

∥∥‖ f ‖∞ −→ 0. (4.14)

We also have

duk
dt

=−k−1ck ⊗U−1( f (t)
)
, (4.15)
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so that duk/dt→ 0 uniformly. On the other hand,

A
(
uk(t)

)=UBSP
(
uk(t)

)=UBS
(
uk(t)

)
=−k−1UBS

(
ck ⊗U−1( f (t)

))
=−UB

(
e⊗U−1( f (t)

))
=−UU−1( f (t)

)
=− f (t).

(4.16)

Finally, we remark that A has a dense kernel (since F ⊂ KerA), and A �= 0,
because

A
(
c1⊗ c1

)=UBSP
(
c1⊗ c1

)=UB
(
e⊗ c1

)=Uc1 �= 0. (4.17)

Hence A is discontinuous and the proof of our theorem is done. �

References
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