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We study the nonlinear two-parameter problem −u′′(x) + λu(x)q = µu(x)p,
u(x) > 0, x ∈ (0,1), u(0)= u(1)= 0. Here, 1 < q < p are constants and λ,µ > 0 are
parameters. We establish precise asymptotic formulas with exact second term for
variational eigencurve µ(λ) as λ→∞. We emphasize that the critical case con-
cerning the decaying rate of the second term is p = (3q− 1)/2 and this kind of
criticality is new for two-parameter problems.

1. Introduction

We consider the following nonlinear two-parameter problem:

−u′′(x) + λu(x)q = µu(x)p, x ∈ I = (0,1),

u(x) > 0, x ∈ I,

u(0)= u(1)= 0,

(1.1)

where 1 < q < p and λ,µ > 0 are parameters.
The purpose of this paper is to establish the asymptotic formulas for the

eigencurve µ= µ(λ) with the exact second term as λ→∞ by using a variational
method. We also establish the critical relationship between p and q from a view-
point of the decaying rate of the second term of µ(λ).

The study of two-parameter eigenvalue problems began with the oscillation
theory and has been investigated by many authors. We refer to [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11] and the references therein. One of the main problems in this
area is to analyze the structure of the solution set {(λ,µ,u)} of (1.1), and the
effective approach to this problem is to study the structure of the set Sλ,µ :=
{(λ,µ,‖u‖p+1)} ⊂ R3 for large λ. In Shibata [7], by using a standard variational
framework (see Section 2), the variational eigencurve µ = µ(λ) was defined to
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analyze Sλ,µ and the following asymptotic formula for µ(λ) as λ→∞ was estab-
lished:

µ(λ)= C1λ
(p+3)/(2p−q+3) + o

(
λ(p+3)/(2p−q+3)), (1.2)

where

C1 =
(

(p+ 1)(q+ 3)
(p+ 3)(q+ 1)

1
γp+1

2
p− q

√
π(q+ 1)

2

(
p+ 1
q+ 1

)(q+3)/2(p−q)

× Γ
(
(q+ 3)/2(p− q)

)
Γ
(
(p+ 3)/2(p− q)

)
)2(p−q)/(2p−q+3)

,

Γ(r)=
∫∞

0
yr−1e−y dy (r > 0).

(1.3)

By this formula, we understood the first term of µ(λ) as λ→∞. However, the
remainder estimate of µ(λ) has not been obtained. The purpose here is to ob-
tain the exact second term of µ(λ) as λ→∞. We emphasize that the second term
depends deeply on the relationship between p and q, and the critical case is
p = (3q− 1)/2. More precisely, if p = (3q− 1)/2, then the asymptotic behav-
ior of the second term of µ(λ) is completely different from that of the case
where p �= (3q− 1)/2. As far as we know, this kind of criticality is new for two-
parameter problems and great interest by itself. Finally, it should be mentioned
that the asymptotic behavior of such eigencurve is also effected by the variational
framework (cf. [6, 8]).

2. Main results

We explain notations before stating our results. Let H1
0 (I) be the usual real

Sobolev space. Let ‖u‖r denote the usual Lr-norm. For u∈H1
0 (I),

Eλ(u) := 1
2
‖u′‖2

2 +
1

q+ 1
λ‖u‖q+1

q+1,

Mγ := {u∈H1
0 (I) : ‖u‖p+1 = γ

}
,

(2.1)

where γ > 0 is a fixed constant. For a given λ > 0, we call µ(λ) the variational
eigenvalue when the following conditions are satisfied:

(
λ,µ(λ),uλ

)∈R+×R+×Mγ satisfies (1.1),

Eλ
(
uλ
)= inf

u∈Mγ

Eλ(u). (2.2)

Then µ(λ) is obtained as a Lagrange multiplier and is represented explicitly as
follows:

µ(λ)=
∥∥u′λ∥∥2

2 + λ
∥∥uλ∥∥q+1

q+1

γp+1 . (2.3)
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Indeed, multiply the equation in (1.1) by uλ. Then integration by parts yields

∥∥u′λ∥∥2
2 + λ

∥∥uλ∥∥q+1
q+1 = µ(λ)

∥∥uλ∥∥p+1
p+1 = µ(λ)γp+1. (2.4)

This implies (2.3). The existence of µ(λ) for a given λ > 0 is ensured in [7, Theo-
rem 2.1] and µ(λ) is continuous for λ > 0 (cf. [7, Theorem 2.2]). Finally, let

K1 :=
(√

2
(
q+ 1
p+ 1

)(q−1)/(2(p−q)) Γ
(
1/(q+ 1)

)
Γ
(
(q− 1)/2(q+ 1)

)
√
π(q+ 1)

×C
(q−1)/(2(p−q))
1

)2(q+1)/(q−1)

,

K2 := 1
2

∫ 1

0

s(2p−3q−1)/2(1− sp+1)(
1− sp−q

)3/2 ds,

K3 := 22(p+2)/(q+1)

q+ 1

∫ 1

0

y(2p−2q+2)/(q+1)

(1 + y)2(p+2)/(q+1)(1− y)(2p−2q+2)/(q+1) dy,

J0 =
√
π

p− q

q+ 3
p+ 3

Γ
(
(q+ 3)/2(p− q)

)
Γ
(
(p+ 3)/2(p− q)

) .

(2.5)

Now, we state our results.

Theorem 2.1. (1) Assume p > (3q− 1)/2. Then the following asymptotic formula
holds as λ→∞:

µ(λ)= C1λ
(p+3)/(2p−q+3){1 +C2

(
1 + o(1)

)
λ−2(p+1)(q+1)/((2p−q+3)(q−1))}, (2.6)

where

C2 = K1

(
1− 2(p− q)K2

(2p− q+ 3)J0

)
. (2.7)

(2) Assume p < (3q− 1)/2. Then as λ→∞,

µ(λ)= C1λ
(p+3)/(2p−q+3){1−C3

(
1 + o(1)

)
λ−(p+1)/(q−1)}, (2.8)

where

C3 = 2(p− q)
(2p− q+ 3)J0

K3K
(2p−q+3)/(2(q+1))
1 . (2.9)

(3) Assume p = (3q− 1)/2. Then as λ→∞,

µ(λ)= C1λ
(p+3)/(2p−q+3){1−C4

(
1 + o(1)

)
λ−2(p+1)(q+1)/((2p−q+3)(q−1)) logλ

}
,

(2.10)
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where

C4 = 2(p− q)(p+ 1)
(q− 1)(2p− q+ 3)2J0

K1. (2.11)

We briefly explain the idea of the proof. Put

ν(λ)= λ(p−1)/2(p−q)µ(λ)(1−q)/2(p−q),

wλ(t)=
(
µ(λ)
λ

)1/(p−q)

uλ(x), t = ν(λ)
(
x− 1

2

)
.

(2.12)

Then it follows from (1.1) that wλ satisfies

−w′′λ (t)=wλ(t)p−wλ(t)q, t ∈ Iν(λ) :=
(
− 1

2
ν(λ),

1
2

ν(λ)
)
,

wλ(t) > 0, t ∈ Iν(λ),

wλ

(
± 1

2
ν(λ)

)
= 0.

(2.13)

Then by [7, Lemma 5.1],

ν(λ)−→∞ (2.14)

as λ→∞. Put zλ =wλ/‖wλ‖∞. Then it is easy to see from (2.3) that

µ(λ)=
λ(p+3)/(2(p−q))µ(λ)−(q+3)/(2(p−q))

(∥∥w′λ∥∥2
2 +
∥∥wλ

∥∥q+1
q+1

)
γp+1

=
λ(p+3)/(2(p−q))µ(λ)−(q+3)/(2(p−q))

∥∥wλ

∥∥p+1
p+1

γp+1

=
λ(p+3)/(2(p−q))µ(λ)−(q+3)/(2(p−q))

∥∥wλ

∥∥p+1
∞
∥∥zλ∥∥p+1

p+1

γp+1 .

(2.15)

Therefore, it is crucial to study the asymptotic behavior of ‖wλ‖∞ and ‖zλ‖p+1

as λ→∞.

3. Asymptotic behavior of ‖wλ‖∞
In this section, we study the asymptotic behavior of ‖wλ‖∞ as λ→∞. We put

∥∥wλ

∥∥∞ =
(
p+ 1
q+ 1

(
1 + ε(λ)

))1/(p−q)

. (3.1)

Then by [7, (5.10), Lemma 5.2], we know that ε(λ) > 0 and ε(λ)→ 0 as λ→∞.
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Lemma 3.1. The following equality holds for λ > 0:

ν(λ)=
√

2(q+ 1)
(
p+ 1
q+ 1

(
1 + ε(λ)

))−(q−1)/(2(p−q))

L
(
ε(λ)

)
, (3.2)

where

L(ε)=
∫ 1

0

1
m(ε, s)

ds,

m(ε, s)=
√
sq+1− sp+1 + ε

(
1− sp+1

)
(ε > 0).

(3.3)

Proof. Multiply the equation in (2.13) by w′λ. Then for t ∈ Iν(λ),

w′′λ (t)w′λ(t) +wλ(t)pw′λ(t)−wλ(t)qw′λ(t)= 0, (3.4)

which implies that

d

dt

(
1
2

(
w′λ(t)

)2
+

1
p+ 1

wλ(t)p+1− 1
q+ 1

wλ(t)q+1
)
= 0. (3.5)

We know thatwλ(0)=‖wλ‖∞ andw′λ(0)=0 since uλ(1/2)=‖uλ‖∞ and u′λ(1/2)=0.
Then put t = 0 to obtain

1
2
w′λ(t)2 +

1
p+ 1

wλ(t)p+1− 1
q+ 1

wλ(t)q+1 ≡ 1
p+ 1

∥∥wλ

∥∥p+1
∞ − 1

q+ 1

∥∥wλ

∥∥q+1
∞ .

(3.6)

Note that w′λ(t) < 0 for t ∈ (0,ν(λ)/2) since u′λ(x) < 0 for x ∈ (1/2,1). Then it
follows from this and (3.1) that for t ∈ (0,ν(λ)/2),

−z′λ(t)= ∥∥wλ

∥∥(q−1)/2
∞

√
2

q+ 1

√
zλ(t)q+1− zλ(t)p+1 + ε(λ)

(
1− zλ(t)p+1

)

= ∥∥wλ

∥∥(q−1)/2
∞

√
2

q+ 1
m
(
ε(λ), zλ(t)

)
.

(3.7)

Put s= zλ. Then (3.1) and (3.7) yield

ν(λ)
2
=
∫ ν(λ)/2

0

−z′λ(t)√
2/(q+ 1)

∥∥wλ

∥∥(q−1)/2
∞ m

(
ε(λ), zλ(t)

)dt

=
√

q+ 1
2

(
p+ 1
q+ 1

(
1 + ε(λ)

))−(q−1)/(2(p−q))∫ 1

0

1
m
(
ε(λ), s

)ds.
(3.8)

This implies (3.2). �
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In order to study the asymptotic behavior of ε(λ) as λ→∞, we investigate the
asymptotic behavior of L(ε) as ε→ 0.

Lemma 3.2. For 0 < ε
 1,

L(ε)= Γ
(
1/(q+ 1)

)
Γ
(
(q− 1)/2(q+ 1)

)
(q+ 1)

√
π

ε−(q−1)/(2(q+1)) + o
(
ε−(q−1)/(2(q+1))).

(3.9)

Proof. Put

L1(ε) := L(ε)−
∫ 1

0

1√
sq+1 + ε

ds. (3.10)

Put s= ε1/(q+1) tan2/(q+1) θ. Then

∫ 1

0

1√
sq+1 + ε

ds

= 2
q+ 1

ε−(q−1)/(2(q+1))
∫ tan−1(1/

√
ε)

0
sin−(q−1)/(q+1) θ cos−2/(q+1) θdθ

= 2
q+ 1

(
1 + o(1)

)
ε−(q−1)/(2(q+1))

∫ π/2

0
sin−(q−1)/(q+1) θ cos−2/(q+1) θdθ

= 1
q+ 1

(
1 + o(1)

)
ε−(q−1)/(2(q+1))B

(
1

q+ 1
,

q− 1
2(q+ 1)

)

= 1
q+ 1

(
1 + o(1)

)
ε−(q−1)/(2(q+1)) Γ

(
1/(q+ 1)

)
Γ
(
(q− 1)/2(q+ 1)

)
Γ(1/2)

= 1
q+ 1

(
1 + o(1)

)
ε−(q−1)/(2(q+1)) Γ

(
1/(q+ 1)

)
Γ
(
(q− 1)/2(q+ 1)

)
√
π

.

(3.11)

We use here the formula

2
∫ π/2

0
sin2m−1 θ cos2n−1 θdθ = B(m,n)= Γ(m)Γ(n)

Γ(m+n)
(m,n > 0), (3.12)

where B(m,n) is the beta function. Next, we calculate L1(ε). Note that for 0 ≤
s≤ 1,

m(ε, s)=
√
sq+1

(
1− sp−q

)
+ ε
(
1− sp+1

)≥ √(sq+1 + ε
)(

1− sp−q
)
. (3.13)
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By this, we obtain
∣∣L1(ε)

∣∣
=
∫ 1

0

(1 + ε)sp+1

m(ε, s)
√
sq+1 + ε

(
m(ε, s) +

√
sq+1 + ε

)ds

≤
∫ 1

0

(1 + ε)sp+1√(
sq+1 + ε

)(
1− sp−q

)√
sq+1 + ε

(√(
sq+1 + ε

)(
1− sp−q

)
+
√
sq+1 + ε

)ds

≤ (1 + ε)
∫ 1

0

sp+1(
sq+1 + ε

)3/2√
1− sp−q

(
1 +
√

1− sp−q
)ds

≤ 2
∫ 1

0

sp+1(
sq+1 + ε

)3/2√
1− sp−q

ds

= 2
∫ δ

0

sp+1(
sq+1 + ε

)3/2√
1− sp−q

ds+ 2
∫ 1

δ

sp+1(
sq+1 + ε

)3/2√
1− sp−q

ds

:= I + II,
(3.14)

where 0 < δ
 1 is a fixed constant. Let Cj,δ > 0 ( j = 1,2, . . .) be constants de-

pending only on δ. Put s= sin2/(p−q) θ. Then

II ≤ 2
δ3(q+1)/2

∫ 1

δ

1√
1− sp−q

ds

= 2
δ3(q+1)/2

2
p− q

∫ 1

sin−1 δ(p−q)/2
sin(2+q−p)/(p−q) θdθ

≤ C1,δ .

(3.15)

Moreover, put s= ε1/(q+1)t. Then for 0 < ε
 1,

I ≤ 2√
1− δp−q

∫ δ

0

ε(p+1)/(q+1)tp+1

ε3/2(tq+1 + 1)3/2
ε1/(q+1)dt

≤ 2
δp+1

√
1− δp−q ε

(2p−3q+1)/(2(q+1)) = o
(
ε−(q−1)/(2(q+1))).

(3.16)

By (3.14), (3.15), and (3.16), we have

∣∣L1(ε)
∣∣= o

(
ε−(q−1)/(2(q+1))). (3.17)

By this, (3.10), and (3.11), we obtain (3.9). �

Now, we study the asymptotic behavior of ε(λ) as λ→∞.

Lemma 3.3. As λ→∞,

ε(λ)= K1
(
1 + o(1)

)
λ−2(p+1)(q+1)/((q−1)(2p−q+3)). (3.18)
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Proof. By (1.2) and (2.12), we have

ν(λ)= λ(p−1)/(2(p−q))µ(λ)(1−q)/(2(p−q))

= λ(p−1)/(2(p−q))(C1λ
(p+3)/(2p−q+3))(1−q)/(2(p−q))(

1 + o(1)
)

= C
(1−q)/(2(p−q))
1

(
1 + o(1)

)
λ(p+1)/(2p−q+3).

(3.19)

On the other hand, by Lemmas 3.1 and 3.2 and Taylor expansion, we have

ν(λ)=
√

2(q+ 1)
(
p+ 1
q+ 1

)−(q−1)/(2(p−q))(
1 + ε(λ)

)−(q−1)/(2(p−q))
L
(
ε(λ)

)

=
√

2(q+ 1)
(
p+ 1
q+ 1

)−(q−1)/(2(p−q))(
1− q− 1

2(p− q)
ε(λ) + o

(
ε(λ)

))

×
(
Γ
(
1/(q+ 1)

)
Γ
(
(q− 1)/2(q+ 1)

)
(q+ 1)

√
π

ε(λ)−(q−1)/(2(q+1))

+ o
(
ε(λ)−(q−1)/(2(q+1))))

=√2
(
p+ 1
q+ 1

)−(q−1)/(2(p−q)) Γ
(
1/(q+ 1)

)
Γ
(
(q− 1)/2(q+ 1)

)
√
π(q+ 1)

× ε(λ)−(q−1)/(2(q+1))(1 + o(1)
)
.

(3.20)

By this and (3.19), we obtain (3.18). �

4. Asymptotic behavior of ‖zλ‖p+1

In this section, we calculate ‖zλ‖p+1. Note that zλ(t)= zλ(−t) for t ∈ Iν(λ). Then
by (3.7) and putting s= zλ(t), we have

∥∥zλ∥∥p+1
p+1 = 2

∫ ν(λ)/2

0
zλ(t)p+1dt

= 2
∫ ν(λ)/2

0
zλ(t)p+1 −z′λ(t)∥∥wλ

∥∥(q−1)/2
∞

√
2/(q+ 1)m

(
ε(λ), zλ(t)

)dt

=
√

2(q+ 1)∥∥wλ

∥∥(q−1)/2
∞

J
(
ε(λ)

)
,

(4.1)

where

J(ε) :=
∫ 1

0

sp+1

m(ε, s)
ds (ε > 0). (4.2)
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Therefore, we study the precise asymptotics of J(ε) as ε→ 0. Put s= sin2/(p−q) θ.
Then as ε→ 0,

J(ε)−→ J(0)=
∫ 1

0

s(2p−q+1)/2
√

1− sp−q
ds

= 2
p− q

∫ π/2

0
sin(p+3)/(p−q) θdθ

=
√
π

p− q

q+ 3
p+ 3

Γ
(
(q+ 3)/2(p− q)

)
Γ
(
(p+ 3)/2(p− q)

) = J0.

(4.3)

We use here the formulas

∫ π/2

0
sinr θ dθ =

√
π

2
Γ
(
(r + 1)/2

)
Γ(r/2 + 1)

(r >−1),

Γ(r + 1)= rΓ(r).
(4.4)

Therefore, put

J1(ε) := J(ε)− J0 :=−εJ2(ε),

J2(ε) :=
∫ 1

0

sp+1
(
1− sp+1

)
m(ε, s)m(0, s)

(
m(ε, s) +m(0, s)

)ds. (4.5)

Now, we study the asymptotic behavior of J2(ε) as ε→ 0.

Lemma 4.1. (1) If p > (3q− 1)/2, then J2(ε)→ K2 as ε→ 0.
(2) If p < (3q− 1)/2, then as ε→ 0,

J2(ε)= K3
(
1 + o(1)

)
ε(2p−3q+1)/(2(q+1)). (4.6)

(3) If p = (3q− 1)/2, then as ε→ 0,

J2(ε)=− 1
2(q+ 1)

(
1 + o(1)

)
logε. (4.7)

Proof. (1) Since p > (3q − 1)/2, we have (2p − 3q − 1)/2 > −1. Therefore, by
Lebesgue’s convergence theorem, as ε→ 0,

J2(ε)−→ 1
2

∫ 1

0

s(2p−3q−1)/2
(
1− sp+1

)
(
1− sp−q

)3/2 ds= K2. (4.8)

(2) We have the following two steps.
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Step 1. Assume that p < (3q− 1)/2. We introduce J3(ε) to approximate J2(ε):

J3(ε) :=
∫ 1

0

s(2p−q+1)/2
√
sq+1 + ε

(
s(q+1)/2 +

√
sq+1 + ε

)ds
= J4(ε,δ) + J5(ε,δ)

:=
∫ δ

0

s(2p−q+1)/2
√
sq+1 + ε

(
s(q+1)/2 +

√
sq+1 + ε

)ds

+
∫ 1

δ

s(2p−q+1)/2
√
sq+1 + ε

(
s(q+1)/2 +

√
sq+1 + ε

)ds,

(4.9)

where 0 < δ
 1 is a fixed small constant. We study the asymptotic behaviors of
J3, J4, and J5 as ε→ 0. Note that 0 < (2p− 2q+ 2)/(q+ 1) < 1 since p < (3q− 1)/2.
Then put s= ε1/(q+1) tan2/(q+1) θ and y = tan(θ/2) to obtain

J3(ε)= 2
q+ 1

ε(2p−3q+1)/(2(q+1))
∫ tan−1 (1/

√
ε)

0

tan(2p−2q+2)/(q+1) θ

1 + sinθ
dθ

= 22(p+2)/(q+1)

q+ 1
ε(2p−3q+1)/(2(q+1))

×
∫ tan(1/2)(tan−1(1/

√
ε))

0

y(2p−2q+2)/(q+1)

(1 + y)2(p+2)/(q+1)(1− y)(2p−2q+2)/(q+1) dy

= 22(p+2)/(q+1)

q+ 1

(
1 + o(1)

)
ε(2p−3q+1)/(2(q+1))

×
∫ 1

0

y(2p−2q+2)/(q+1)

(1 + y)2(p+2)/(q+1)(1− y)(2p−2q+2)/(q+1) dy

= K3
(
1 + o(1)

)
ε(2p−3q+1)/(2(q+1)).

(4.10)

Similarly, we obtain

J4(ε,δ)= K3
(
1 + o(1)

)
ε(2p−3q+1)/(2(q+1)),

J5(ε,δ)≤ 1
δq+1 .

(4.11)

Since p < (3q− 1)/2, this along with (4.10) implies that J3(ε)/J4(ε,δ)→ 1 as ε→
0 for a fixed δ.
Step 2. We show that as ε→ 0,

J2(ε)
J3(ε)

−→ 1. (4.12)
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Let an arbitrary 0 < δ
 1 be fixed. Put

J2(ε)= J6(ε,δ) + J7(ε,δ)

:=
∫ δ

0

sp+1
(
1− sp+1

)
m(ε, s)m(0, s)

(
m(ε, s) +m(0, s)

)ds
+
∫ 1

δ

sp+1
(
1− sp+1

)
m(ε, s)m(0, s)

(
m(ε, s) +m(0, s)

)ds.
(4.13)

Then for 0 < ε
 1,

∣∣J7(ε,δ)
∣∣≤ C2,δ

∫ 1

δ

1− sp+1(
1− sp−q

)3/2 ds≤ C3,δ . (4.14)

Moreover, by (3.13), we obtain

(
1− δp+1)∫ δ

0

s(2p−q+1)/2
√
sq+1 + ε

(
s(q+1)/2 +

√
sq+1 + ε

)ds
≤ J6(ε,δ)≤ 1(

1− δp−q)3/2

∫ δ

0

s(2p−q+1)/2
√
sq+1 + ε

(
s(q+1)/2 +

√
sq+1 + ε

)ds.
(4.15)

This implies

(
1− δp+1)J4(ε,δ)≤ J6(ε,δ)≤ 1(

1− δp−q)3/2 J4(ε,δ). (4.16)

By (4.11), (4.14), and (4.16), we see that J7(ε,δ)= o(J6(ε,δ)) as ε→ 0 for a fixed
δ since p < (3q− 1)/2. Then by (4.10), (4.11), (4.13), (4.14), and (4.16),

(
1− δp+1)≤ liminf

ε→0

J6(ε,δ)
J4(ε,δ)

= liminf
ε→0

J2(ε)
J3(ε)

≤ limsup
ε→0

J2(ε)
J3(ε)

= limsup
ε→0

J6(ε,δ)
J4(ε,δ)

≤ 1(
1− δp−q)3/2 .

(4.17)

By letting δ→ 0, we obtain (4.12). Then by (4.10) and (4.12), we obtain (4.6).
(3) If p = (3q− 1)/2, then by the asymptotic formula

tan−1 x = π

2
− 1
x

+O
(

1
x3

)
(x 1), (4.18)
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Taylor expansion of tanx at x = π/4, and (4.10), we obtain

J3(ε)= 8
q+ 1

∫ tan((1/2)(tan−1(1/
√
ε)))

0

y

(1 + y)3(1− y)
dy

= 1
q+ 1

∫ tan((1/2)(tan−1(1/
√
ε)))

0

{
1

1− y
+

1
1 + y

+
2

(1 + y)2
− 4

(1 + y)3

}
dy

= 1
q+ 1

(
− log

∣∣∣∣1− tan
(

1
2

tan−1
(

1√
ε

))∣∣∣∣+ log2− 1
2

+ o(1)
)

= 1
q+ 1

(
− log

∣∣∣∣
(
π

2
− tan−1

(
1√
ε

))(
1 + o(1)

)∣∣∣∣+ log2− 1
2

+ o(1)
)

= 1
q+ 1

(
− 1

2

(
1 + o(1)

)
logε+ log2− 1

2
+ o(1)

)
.

(4.19)

By this and the same arguments as those in the proof of (2), we obtain (4.7).
�

5. Proof of Theorem 2.1

By summing up Lemmas 3.1, 3.2, 3.3, and 4.1, we now prove Theorem 2.1. By
(2.15), (3.1), (4.1), and (4.5), we have

µ(λ)(2p−q+3)/(2(p−q)) =
√

2(q+ 1)

γp+1 λ(p+3)/(2(p−q))
∥∥wλ

∥∥(2p−q+3)/2
∞ J

(
ε(λ)

)

=
√

2(q+ 1)

γp+1 λ(p+3)/(2(p−q))
(
p+ 1
q+ 1

)(2p−q+3)/(2(p−q))

× (1 + ε(λ)
)(2p−q+3)/(2(p−q))(

J0− ε(λ)J2
(
ε(λ)

))
.

(5.1)

Moreover, it is easy to check that



√

2(q+ 1)

γp+1




2(p−q)/(2p−q+3)

p+ 1
q+ 1

J
2(p−q)/(2p−q+3)
0 = C1. (5.2)

By this, (5.1), and Taylor expansion, we obtain

µ(λ)=


√

2(q+ 1)

γp+1




2(p−q)/(2p−q+3)

p+ 1
q+ 1

J
2(p−q)/(2p−q+3)
0 λ(p+3)/(2p−q+3)

× (1 + ε(λ)
)(

1− 2(p− q)
(2p− q+ 3)J0

ε(λ)J2
(
ε(λ)

)
+ o
(
ε(λ)J2

(
ε(λ)

)))
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= C1λ
(p+3)/(2p−q+3)

×
(

1 + ε(λ)− 2(p− q)
(2p− q+ 3)J0

(
1 + o(1)

)
ε(λ)J2

(
ε(λ)

))
.

(5.3)

There are three cases to consider.

Case 5.1. Assume that p > (3q− 1)/2. Then by Lemmas 3.3 and 4.1(1), we have

µ(λ)= C1λ
(p+3)/(2p−q+3)

{
1 +

(
1− 2(p− q)K2

(2p− q+ 3)J0

)
ε(λ) + o

(
ε(λ)

)}

= C1λ
(p+3)/(2p−q+3)

×
{

1 +
(

1− 2(p− q)K2

(2p− q+ 3)J0

)
K1
(
1 + o(1)

)
λ−2(p+1)(q+1)/((2p−q+3)(q−1))

}
.

(5.4)

This implies (2.6).

Case 5.2. Assume that p < (3q− 1)/2. Then by Lemma 3.3, (4.6), and (5.3), we
have

µ(λ)= C1λ
(p+3)/(2p−q+3)

×
{

1− 2(p− q)
(2p− q+ 3)J0

K3K
(2p−q+3)/(2(q+1))
1

(
1 + o(1)

)
λ−(p+1)/(q−1)

}
.

(5.5)

This implies (2.8).

Case 5.3. Assume that p = (3q− 1)/2. Then by Lemma 3.3, we have

logε(λ)=− 2(p+ 1)(q+ 1)
(q− 1)(2p− q+ 3)

(
1 + o(1)

)
logλ. (5.6)

This along with (4.7) and (5.3) implies

µ(λ)= C1λ
(p+3)/(2p−q+3)

×
{

1− 2(p− q)(p+ 1)
(q− 1)(2p− q+ 3)2J0

×K1
(
1 + o(1)

)
λ−2(p+1)(q+1)/((2p−q+3)(q−1)) logλ

}
.

(5.7)

This implies (2.10). Thus, the proof is complete.
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