ASYMPTOTIC FORMULAS AND CRITICAL
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NONLINEAR EIGENVALUE PROBLEMS

TETSUTARO SHIBATA

Received 17 January 2002

We study the nonlinear two-parameter problem —u"(x) + Au(x)? = pu(x)?,
u(x) >0,x€(0,1),u(0) = u(1) = 0. Here, 1 < g < p are constantsand A, 4 > 0 are
parameters. We establish precise asymptotic formulas with exact second term for
variational eigencurve p(A) as A — 0. We emphasize that the critical case con-
cerning the decaying rate of the second term is p = (3g — 1)/2 and this kind of
criticality is new for two-parameter problems.

1. Introduction

We consider the following nonlinear two-parameter problem:

—u" (x) + Au(x)? = pu(x)?, xeI=(01),
u(x) >0, xe€l, (1.1)
u(0) =u(1) =0,

where 1 < g < p and A, 4 > 0 are parameters.

The purpose of this paper is to establish the asymptotic formulas for the
eigencurve y = p(A) with the exact second term as A — o by using a variational
method. We also establish the critical relationship between p and g from a view-
point of the decaying rate of the second term of y(A).

The study of two-parameter eigenvalue problems began with the oscillation
theory and has been investigated by many authors. We refer to [1, 2, 3, 4, 5,
6,7,8,9, 10, 11] and the references therein. One of the main problems in this
area is to analyze the structure of the solution set {(A,y, u)} of (1.1), and the
effective approach to this problem is to study the structure of the set Sy, :=
{Aw llull p41)} C R? for large A. In Shibata [7], by using a standard variational
framework (see Section 2), the variational eigencurve y = (1) was defined to
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672  Two-parameter eigenvalue problems

analyze S, and the following asymptotic formula for (1) as A — oo was estab-
lished:

‘M(A) — ClA(p+3)/(2p—q+3) +0(A(p+3)/(2p—q+3))’ (1.2)

where

o _(ptDg+3) 1 2 n(q+1)<p+1)(q+3)/2(pq)
T\ (p3) g+ Pl p—g PES!

I'((g+3)/2(p—q )) om0

T((p+3)/2(p—q))
I'(r) = Jo yleVdy (r>0).

(1.3)

>

By this formula, we understood the first term of y(1) as A — co. However, the
remainder estimate of y(1) has not been obtained. The purpose here is to ob-
tain the exact second term of (1) as A — co. We emphasize that the second term
depends deeply on the relationship between p and g, and the critical case is
p = (3q — 1)/2. More precisely, if p = (3g — 1)/2, then the asymptotic behav-
ior of the second term of u()) is completely different from that of the case
where p # (3q — 1)/2. As far as we know, this kind of criticality is new for two-
parameter problems and great interest by itself. Finally, it should be mentioned
that the asymptotic behavior of such eigencurve is also effected by the variational
framework (cf. 6, 8]).

2. Main results

We explain notations before stating our results. Let H}(I) be the usual real
Sobolev space. Let ||u||, denote the usual L"-norm. For u € HO1 (I),

1 ’ 1 1
Ex(u):= EHu ||%+q—A||u||gL,

={ueHy(I): llullps1 =y},

(2.1)

where y >0 is a fixed constant. For a given A >0, we call g(A) the variational
eigenvalue when the following conditions are satisfied:

(Lud), ) e Ry xRy x M, satisfies (1.1),
E)x(up) = inf Ej(u). (2.2)

ueM,
Then p(A) is obtained as a Lagrange multiplier and is represented explicitly as

follows:
7112 1
e[ + Al |25,
yp+1

ud) = (2.3)
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Indeed, multiply the equation in (1.1) by u;. Then integration by parts yields
7112 1
[ 115 + Al = o)l = pQ)y?*. (24)

This implies (2.3). The existence of u(1) for a given A > 0 is ensured in [7, Theo-
rem 2.1] and (1) is continuous for A > 0 (cf. [7, Theorem 2.2]). Finally, let

(5@t 1) T (1/(g+ 1))D((g - 1)/2(g +1))
K= (ﬁ(pﬂ) 2(g+1)

2(g+1)/(g—1)
y ng—w(z(p—q))) ’

(Zp 3g-1)/2(1 — shtl
Ky:= J (=577 g (2.5)
2 1 —sP~ 4)

22 p+2) (q+1) y(Zp—2q+2)/(q+1)
Jo (14 y)2(p*2/(@+1)(] — y)2p-2q+2)/(q+1) dy,

q+1

Jm q+3T((q+3)/2(p—q))

Jo= g p 3T ((pe32p—q)

Now, we state our results.

THEOREM 2.1. (1) Assume p > (3q — 1)/2. Then the following asymptotic formula
holds as A — oo:

u() = Cl/\(p+3)/(2pfq+3) { 1+C(1+ 0(1))/\fZ(PH)(q+1)/((2pfq+3)(q*1)) }’ (2.6)

where

_ _ 2p-9Ks
Cz—Kl(l (2p—q+3)]o)' (2.7)

(2) Assume p < (3q —1)/2. Then as A — oo,
p(A) = CAPHCP=at3) {1 — C5(1+0(1))A~PTI/a-DY (2.8)
where

2(p—q) 2p-q+3)/(2(g+1))
C;=—""""""""KK . 2.9
T ap-qrh (29)

(3) Assume p = (3q — 1)/2. Then as A — oo,

u(d) = CAPT2p=at3 1] _ Cy(1+0(1))A~ 2P D@ D/(Cr=a+3)(a-1) og) ],
(2.10)
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where

2(p—q)(p+1)

= . 2.11
tg-DCp—q+30 210
We briefly explain the idea of the proof. Put
y(A) = AP=D/20p=0) () (1-aV2(p=a),
1(p-9) (2.12)
wi(t) = <¥) up (%), t=v(/1)(x—%)-

Then it follows from (1.1) that w) satisfies

144 1 1
w0 =m0~ w0 1€ L= (- 3900, 39W),
wi(t) >0, teLn, (2.13)
|
w;L( + Ev(/\)) =0.
Then by [7, Lemma 5.1],
Y1) — oo (2.14)

as A — co. Put zy = w)/|Iwallw. Then it is easy to see from (2.3) that

A(p+3)/2p=a)) (1)~ (a+3)/2p=a)) (| |Wi||§ + ||WA||4“)

q+1
uh) = pp

A3 Cp=9) (1)~ (a+3)/2(p—-9) ptl
_ /’l( ) ||W)L||p+1 (215)
yp+1

MmOl [ |z 1

yp+l

Therefore, it is crucial to study the asymptotic behavior of [[w)[le and [zall p+1
as A — oo,

3. Asymptotic behavior of ||w) ||

In this section, we study the asymptotic behavior of ||w) ||« as A — co. We put

p+1

1/(p=q)
bl = (B rean)

11 (3.1)

Then by [7, (5.10), Lemma 5.2], we know that €(A) >0 and €(A) — 0 as A — .
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LemMa 3.1. The following equality holds for A > 0:

Y = 2(q + 1)(%(1 +e(l)

—(g-1)/(2(p—q))
) L),  (2)

where

!
L(E) N JO m((—:,s) ds, (3.3)

m(€,s) = \/sq“ — Pl e(1 —sPt) (€ >0).

Proof. Multiply the equation in (2.13) by w). Then for t € L,y),
wy (Ow) () +wa ()P wy (t) — wy(t)Tw) (1) = 0, (3.4)

which implies that

4 (2w + ﬁm(t)f’“ - qﬁm(tﬂ“) ~o. (3.5)

We know that wy (0)=|lwy |l and w}(0)=0 since uy(1/2)=|lup || and 1} (1/2)=0.
Then put ¢ = 0 to obtain

1, 1 1 1 1
SWA? + (0P = ——wn ()7 = %

= Ll =
p+1 q+1 p+1 *© q+1

(3.6)

Note that w;(t) < 0 for t € (0,v(1)/2) since uy(x) < 0 for x € (1/2,1). Then it
follows from this and (3.1) that for ¢ € (0,v(1)/2),

—aﬂﬂ=HwM§4mIQ%TJquﬂHfmUVH+€MNIfmUVﬂ)

(3.7)
llle e a)
Put s = z). Then (3.1) and (3.7) yield
) Jv(m ~5(1) P
2 Jo \2Aq+Dlmlld me).z) )

~ m p+1 (ql)/(z(pq))J»l 1
-z (—q+1(1+6(/\))) e

This implies (3.2). 0
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In order to study the asymptotic behavior of €(1) as A — oo, we investigate the
asymptotic behavior of L(€) as € — 0.

LEMmMa 3.2. ForO0<e < 1,

Le) = /a+ 1)();:(14)?/%)/2(@ D) c~a-10/0ar) 4 p(e-la- 12y,

(3.9)

Proof. Put

1
Li(e) = L(€) — L ﬁd& (3.10)

Put s = €D tan¥@*) 9. Then

1
1
J ————ds
0 Vsitl + €

tan~!(1/,/€)

— ﬁef(qfl)/(%q#—l))‘[ Sin—(q—l)/(qﬂ)HCOS—Z/(q-H)Gdg
0
2 a-vaigen) [ a1t g —2ge)
=——(1+0(1))e " 1 sin MY G cos T 0 dO
q+1 0
1 (g 1 g-1 )
= (q-1/Qg+D)) g ——
q+1(1+0(1))€ B(q+1’2(q+1)
1 (a r(l/(q+1))r((q— 1)/2(q+1))
_ (g-1)/C(g+1))
gr1to)e I(1/2)
Loy ta e FZ@ T DTG = D/2(g + 1)
q+1 VT
(3.11)

We use here the formula

/2
ZJ in"! B cos?1 0d6 = B(m,n) — L)

0 Tminy 720 (12

where B(m, n) is the beta function. Next, we calculate L, (€). Note that for 0 <
s<1,

me,s) = /st (1 —sp=0) + (1 —sP1) = /(s3] +€) (1 —sP70).  (3.13)
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By this, we obtain

|Li(€) |
:Jl (1+€)sP*!
0 m(e,s)\/qu( (€, s)+\/sﬂT)
(1+¢)sPt!

- L VT +€) (1—5270) /5T T+ € ([ (577 +€) (1 - 5p-9) + V57T +€ ) &

1 5p+1
< (1+€)J - ds
0 (s7*1 +¢€) 1 —sP=9(14+/1—sP9)

1 Sp+1
= ZJ L2 =
0 (s1*1 +€) 1—sP 4

s s+l 1 shtl
=2J 372 = d5+2J 372 =
0 (s1*l+¢€) 1—sP 4 & (s1t1 +€) 1—sP 4
=1+1I,
(3.14)

where 0 < § < 1 is a fixed constant. Let C;5 >0 (j = L,2,...) be constants de-
pending only on 8. Put s = sin”?~? . Then

2 ! 1
IT < 63(q+1)/2 J{s 1— Spiq ds
1
= # i J sin®ta-p/ (=9 g 49 (3.15)
§3(q+1)/2 P —q Jsintsw-0r
< Cl,(S-

Moreover, put s = €/(4*¢, Then for 0 < € < 1,

e(p+1)/(g+1) ¢p+1

=1 —61’ Jo e (gt 4 1) €
1
- 25P_+€(2p—3q+1>/<2<q+1>> — o(e-a-1/2lgr1)),

V1 —08P74
By (3.14), (3.15), and (3.16), we have

1/(g+1) dt
(3.16)

|Li(€)] = o(e a1/, (3.17)

By this, (3.10), and (3.11), we obtain (3.9). O
Now, we study the asymptotic behavior of €(1) as A — .
LEMMA 3.3. AsA — oo,

E(/\) — K1(1 +0(1))/\—z(p+1)(q+1)/((q—1)(2p—q+3))' (3.18)
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Proof. By (1.2) and (2.12), we have

() = A =1/ Q2p-q) (A)(lfq)/(z(pfq))
= AP=V/Cp=) (¢, AP +3V(2p=g43)) =D/ @e=D) (1 4 (1) (3.19)

—Cl 9)/(2(p—q)) (1+0(1))/1(P+1) (2p-q+3)

On the other hand, by Lemmas 3.1 and 3.2 and Taylor expansion, we have

—(q-1)/2(p-9))
v(A)=J2(q+l)(§T+i) T ey D L)
p+1 —(g-1)/Q2(p—q)) ~ g-1
(q+1)<q+1> (1 z(p_q)e(/l)+0(€()t)))
[(1/(g+D)T((g=1/2(g+1) " (0 1aigen)
1)~ q
X< (g+1)ym b (3.20)
+0(€(A)f(q*1) (2(q+1)))>
:ﬁ<p+1) @V T(1/(q+1))T((q - 1)/2(q + 1))
g+l n(g+1)

X €(1)" @D/ (1 4 0(1)).

By this and (3.19), we obtain (3.18). O

4. Asymptotic behavior of ||z} || p+1

In this section, we calculate ||z} [/ p+1. Note that z(¢) = zy(—t) for t € I(y). Then
by (3.7) and putting s = z)(t), we have

1 v(1)/2
a2 = 2L (0P dt

pt1
»(1)/2 —Z’(t)
=2 £)pH A dt
Jo A w82 2/(q + Dm(eQ), 2 (1)) (4.1)
2(g+1)
= WNE(M)’
where
1 Sp+1
7(€) = L Sl (€0 (4.2)
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Therefore, we study the precise asymptotics of J(€) as € — 0. Put s = sin¥P~9 g,
Then as € — 0,

1 (2p—q+1)/2

J(e) — J(0) = o ﬁds
/2

- p_z ], sintrreooan (43)

- 0

_ /7 q+3T((q+3)/2(p—9q))

p=qp+3T((p+3)2(p-q)

= Jo.

We use here the formulas

w2 JAL((r+1)/2)
Jo i 0d0 = =Ty 7D (4.4)
I'(r+1)=rI(r).

Therefore, put

Ji(€) :=]J(€) = Jo := —€](€),
Jl sPHL(1 _sp+1) (4.5)

o m(€,5)m(0,s)(m(e,s) +m(0,s))

L(€):=

Now, we study the asymptotic behavior of J,(€) as € — 0.

LemMma 4.1. (1) If p > (3q —1)/2, then ],(€) — K, as € — 0.
(2)If p<(3q—1)/2, then as € — 0,

J>(€) = K3 (1+0(1)) e@p~3a+1/Q2gr1)), (4.6)

(3)Ifp=(3q—-1)/2, thenase — 0,

L(e) = — (1+0(1))loge. (4.7)

2(g+1)

Proof. (1) Since p > (3q — 1)/2, we have (2p — 3q — 1)/2 > —1. Therefore, by
Lebesgue’s convergence theorem, as € — 0,

1 J»l s@P=39-1/2(1 — gp+1)
€) — = ds = K;. 4.8
]2( ) 2 Jo (1 _Sp—q)3/2 2 ( )

(2) We have the following two steps.
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Step 1. Assume that p < (3q — 1)/2. We introduce J3(€) to approximate J,(€):

1 S(2p—q+1)/2
Ja(e) = .[o ST 4 € (s@tD/2 4 /sa] +e)d$
= ]4(6) 8) +]5(€) 8)
8 s2p=q+1)12 (4.9)
.ZJ 3‘1+1+e(s(‘1“)/2+x/s‘1“+€)d$
1 s2p—gq+1)/2
+I ds,
8 V/sTH +€(slatD/2 4+ /511 +€)

where 0 < § < 1 is a fixed small constant. We study the asymptotic behaviors of
J3,Js,and J5 as € — 0. Note that 0 < (2p —2q +2)/(q+ 1) < 1since p < (3g —1)/2.
Then put s = €/(4*D tan*4*) § and y = tan(6/2) to obtain

tan~! (1/./€) (2p—2g+2)/(q+1)
Ty(€) = L€<2p—3q+1>/<z<q+1>>J tan™PTHTATI0 49
q+1 0 1+sin6
/
_ 2 s
q+1
tan(1/2)(tan"'(1//€)) y(2p72q+2)/(q+l)
XJ 2pr2)/(g 2 4
0 (1+)/) (p+ )/(q+)(1_y)(p q+2)/(q+1) (4.10)
2(p+2)/(g+1)
= ﬁ (14 0(1))e?p3a+1/ (1)
q+1
1 y(2p—2q+2)/(q+1)
X J — d)/
0 (1 +y)2(p+2)/(q+l)(1 _ y)(Zp 2g+2)/(q+1)

= K3(1+0(1))e?p—3a+1/(2(g+1),
Similarly, we obtain

Ji(€,0) = K3(1 +0(1))6(2p—3q+1)/(2(q+1)))
1 (4.11)
Js(€,6) < ST
Since p < (3g — 1)/2, this along with (4.10) implies that J3(€)/Js(€,8) — 1 as€ —
0 for a fixed 9.
Step 2. We show that as € — 0,

J2(€) 1
J3(€)

(4.12)
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Let an arbitrary 0 < § < 1 be fixed. Put

J2(€) =Js(€,8) +]7(€,6)
- 8 Sp+l(1 _Sp+1) p
o ,[o m(e, s)m(0,s) (m(e,s) + m(0,5)) (4.13)

1 Sp+1(1 _Sp+1)
* ,[5 m(e€,s)m(0,s) (m(e, s) + m(0,s)) s

Thenfor0<e < 1,

1 1 —sP+l
|J7(€,0)| < Cys L mds < Gs. (4.14)
-5
Moreover, by (3.13), we obtain
s@p-q+1)2
é\pﬂ J
Vit + g (stath/2 + \/qu)
1 ) Crgeie (4.15)
=< ]6(6: 8) = 3/2 J
(1-8r-4) 0 V/s1tT + ¢ (slat! /2+\/SqT)
This implies
1
(1-67"1)]4(€,08) < Js(€,8) < —————7/a(€,0). (4.16)

(1-0r-1)

By (4.11), (4.14), and (4.16), we see that J;(€,6) = 0(Js(€,9)) as € — 0 for a fixed
0 since p < (3q — 1)/2. Then by (4.10), (4.11), (4.13), (4.14), and (4.16),

]6(6) 6)

_ Sptl
(1-67") < liminf 5)

= Ja(e

(
= liminf 2 L(€) < limsu L(€)

0 o) T e P (e (4.17)

. Js(€,0) 1
=1 < .
P e ) = (1-6p-4)"?

By letting § — 0, we obtain (4.12). Then by (4.10) and (4.12), we obtain (4.6).
(3) If p = (3q — 1)/2, then by the asymptotic formula

+o(xi> (x> 1), (4.18)

tan'x= 21
2 x
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Taylor expansion of tanx at x = 71/4, and (4.10), we obtain

() = 8 tan((1/2)(tan"1(1//€))) ¥ J
c I S
Js qg+1Jo (T+y2(1-n?
1 tan((1/2)(tan"1(1//€))) 1 1 2 4 d
Tq+1l)o {1—er1+er(1+y)2_(l+y)3 Y

L

—log l—tan(%tanf1 (%)) ’ +log2—%+o(1))

(1+0(1))loge +log2 — % +0(1)).

NI>—‘

q+1<

1
—m<‘1°g
_ 1 (
q+1

(g —tan~! (%)) (1+0(1)) ' +log2 - %4'0(1))

(4.19)

By this and the same arguments as those in the proof of (2), we obtain (4.7).

5. Proof of Theorem 2.1

]

By summing up Lemmas 3.1, 3.2, 3.3, and 4.1, we now prove Theorem 2.1. By

(2.15), (3.1), (4.1), and (4.5), we have

u(A)@2p=a+3/2(p=0)) \/7A(p+3 )/(2(p-q)) ||(2p q+3)/2 T(e)
\/7)L(p+3 )V(2(p-q) (p+1)(2P q+3)/(2(p—q))

yp+l q+ 1
x (14+€) P10 (1 e, (e(L)).

Moreover, it is easy to check that

2(p—q)/(2p—q+3)
y2(g+1) P+1 20p-q)/2p-q+3)
-_— — =C.

yp+1 q+ 1

By this, (5.1), and Taylor expansion, we obtain

2(g+1)
b = (q—

: p+1 Z(P*‘I)/(ZP*4+3))L(p+3)/(2p—q+3)
yP*

2(p—q)/(2p—q+3)
) q+1 0

< (1) (1- o2 D () +oleW (D)) )

(2p—q+3)o
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_ Cl/l(p+3)/(2p—q+3)

2(p—q)
x (1 v~ o L +o(1))e(A)12(e(A))).

There are three cases to consider.

Case 5.1. Assume that p > (3g — 1)/2. Then by Lemmas 3.3 and 4.1(1), we have

2(p - K

N =C /\(p+3)/(2p7q+3){1 + (1 kY S T
) =G 2p—q+3)o

Je+oetin |
— CIA(p+3)/(2p—q+3)
_ 2p-9K C2p+1)(gHA(2p—q+3)(g-1)
x{1+(1 (Zp_q+3)]0>Kl(1+o(1))/\ (}. |
5.4

This implies (2.6).

Case 5.2. Assume that p < (3q — 1)/2. Then by Lemma 3.3, (4.6), and (5.3), we
have

‘bl(/\) _ Cl)L(P”)/(ZP_q”)

2(p—q) (2p-q+3)/(2(g+1) “peig-n] D)
xJ1- —F—T KK 1+0(1))A~ P+ 1>}.
{ (2p—q+3)]o 348 ( o( ))
This implies (2.8).
Case 5.3. Assume that p = (3g — 1)/2. Then by Lemma 3.3, we have
oge(l) = - 2@FD@HD (5.6)

(g—1D@2p-q+3)
This along with (4.7) and (5.3) implies

y()t) _ Cll(p+3)/(2p7q+3)

__2p=qpt])
gt (q-D2p—q+3)% (5.7)

x Ky (1+0(1)) A2+ D@+ D/(2p=q+3)(g-1)) log)t}.

This implies (2.10). Thus, the proof is complete.
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