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This paper deals with weak solution in weighted Sobolev spaces, of three-point
boundary value problems which combine Dirichlet and integral conditions, for
linear and quasilinear parabolic equations in a domain with curved lateral
boundaries. We, firstly, prove the existence, uniqueness, and continuous depen-
dence of the solution for the linear equation. Next, analogous results are estab-
lished for the quasilinear problem, using an iterative process based on results
obtained for the linear problem.

1. Introduction

Many physical phenomena are modeled by one-dimensional second-order par-
abolic equation which involves nonlocal boundary condition of the form

b
J O(x, t)dx = E(t), (1.1)
0

the so-called energy specification, where b €]0, 1] is a constant, 8(x, ¢) is an un-
known function, and E(t) is a given function.

For heat conduction theory, condition (1.1) represents the internal energy
content of a portion of the conductor [3, 9, 11, 16, 17]. For diffusion processes,
the condition is equivalent to the specification of mass in a portion of the do-
main of diffusion [3, 10, 12]. We note that such problems have other important
applications, for instance, in thermoelasticity [15, 18], in electrochemistry [14],
and in medical science [13].

In this paper, we prove in weighted Sobolev spaces the existence, uniqueness,
and continuous dependence of the weak solution of three-point boundary value
problem for a class of linear and quasilinear parabolic equations with nonlocal
condition in a domain with curved boundaries varying with respect to the time.
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574  Parabolic equations with energy specification

We will first investigate the linear case. Particular cases of it have been treated by
several authors; most of the works were directed to strongly generalized solution
for two-point boundary value problems [1, 2, 3, 4, 5, 6, 7, 19] and to the classical
solutions of the heat equation [8, 9, 10, 11, 12, 16, 17]. In contrast to previous
papers, we consider a weak solution by using a functional analysis method based
on a priori estimates. Then, we investigate the quasilinear problem by combining
an iterative process with results established for the linear case.

The outline of the paper is as follows. In Section 2, we study the linear prob-
lem. In Section 2.1, we give the statement of the problem, the basic assumptions,
and some function spaces needed in the remainder of the work. Section 2.2 is de-
voted to establishing the existence of the solution. The uniqueness and continu-
ous dependence with respect to the data are proved in Section 2.3. In Section 3,
analogous investigation for the quasilinear problem is considered.

2. The linear problem

2.1. Statement of the problem, hypothesis, and notations. Let I'p(7), where
7€1=(0,T) and p = 1,2,3, be nonintersecting curves, varying with time, in
the plane (&,7), such that T';(7) < T5(7) < T2(7). In Q = (T1(1),T2(7)) X I, we
consider the following problem: given a sufficiently smooth dataT', (p = 1,2, 3),
h, 0°, ¥, and E, find the solution 0(&, ) of

- (MEDF) pE DG mEDe-hED, EDEQ
8(£,0) = 0°(8), T1(0) <& <T(0),
0(T2(1),7) = ¥(1), 0<7<T, 1)
3(7)
J: O, T)dE = E(r), 0<7<T,
with
T3(0)
6°(T'(0)) = ¥(0), j 6(£)dE = E(0). (22)
T,(0)

Problem (2.1) can be reduced to a problem with homogeneous boundary
conditions by setting

08, 7) =05, 7)+¥(1)

2(Ty(1) — &) (¥(1) (T5(1) — Ty (1)) — E(1)) (2.3)
(2Ty(7) = T (1) = T3(1)) (T3(7) - T (1)) ’
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then the original problem is equivalent to the problem, for ®(,7) in Q:

2 (PEnR) rmE 0 mEne-gEn, GecQ
(2.4)
B(£,0) =0°(), T1(0)<&<Ty(0),
(2.5)
O(Iy(r), 1) =0, 0<7<T,
S(T)
jrr( (O TdE=0, 0<r<T (2.6)
with
T'3(0)
®°(I5(0)) = 0, J @(£)dE = 0. 2.7)
T (0)

We now introduce new variables x and ¢ connected with £ and 7 by the rela-
tions

o £ (2.8)
(1 —b)E+bIy(1) - T5(7)
o -Lay ° E<i<h),

where t = 7. Under transformation (2.8), the region Q becomes the rectangle
Q={(x1t):0<x<1, 0<t<T}.In the new variable, problem (2.4), (2.5), and
(2.6) assumes the form

Ju 0 Ju Jdu
S - (@0 ) F @0 St u= fEn, kDE0,  (29)
u(x,0)=1u'(x), 0<x<1,
(2.10)
u(lLt)=0, 0<t<T,
b
J u(x,t)dx =0, 0<t<T, (2.11)
0
with
b
u’(1) =0, J 10 (x)dx = 0. (2.12)
0

Thus, problem (2.1) for 6(¢,7) in the region Q has been reduced to problem
(2.9), (2.10), and (2.11) for u(x, t) in the rectangle Q.
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Assumption 2.1. For all (x,t) € Q, we assume that

91

by <cj, |92 | <cs |3 | <cs.

(2.13)

0<CQSq1SC1, < e,

‘%
ox

Here and in the rest of the paper ¢; are positive constants.

We now introduce some function spaces which are related to the study. By
L2(0,1) we represent the usual space of Lebesgue square integrable functions
on (0,1) whose scalar product and norm will be denoted by (-, -)r2(0,1) and
I - lz2¢0,1), respectively. By Cy(0,b) we denote the space of continuous func-
tions with compact support in (0,b). Let H be a Hilbert space with the norm
lullg and let u:I — H be an abstract function. By [lu(-,t)lly we denote the
norm of the element u(-,t) € H at a fixed t. The space C(I, H) is the set of all
continuous functions u : I — H with [lullcqn) = maxee llu(-, )|y < co, and
L?(I,H) is the set of the measurable abstract functions u such that |||z ) =

f[”u ||Hdt)l/2< 00.

Definition 2.2. Denote by L;(0, 1) the weighted L*-space with the scalar product

(w,w)rz01) = (P w)i2(o,1) (2.14)
and the associated norm
lullz0.1) = VPl 201y (2.15)
where p(x) is a continuous function defined by
x%, 0<x<b,
X) = 2.16
px) {hz, b<x<l. (2.16)

Definition 2.3. Denote by H, (0, 1) the space equipped with the scalar product

du dw
(Wm0, := (L, W)z + (a’ a)y(ol (2.17)

and the associated norm

dull? 12
lullon = (||u||2 +\— ) . (2.18)
5(0,1) 12(0,1) dx Lo

Definition 2.4. Denote by Bé’* (0,b) a completion of the space Cy(0,b) for the
scalar product

b
(U, W) gL (g p) 1= L S¥udiwdx (2.19)
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and the associated norm
luall g0,y 2= 135 ull 20,1y (2.20)

where 5%u = [Pu(n, -)dn.

As 12(0,1) and By*(0,b) are Hilbert spaces, so are the spaces L*(I, L%(0,1))
and L2(1, By*(0,b)).
It is easy to see that

lullzz) < llullr2o),
b 1
lull gre o < —=lull2op) < —= llull2o,p), (2.21)
5" (0,b) V2 V2
lull greop) < 2llxull12(0,b)-

2.2. Existence of the solution. First, we make precisely the concept of the so-
lution of problem (2.9), (2.10), and (2.11) we are considering in this paper. For
this, we take a function v(x,t) € V, the space of functions belonging to C'(Q),
which satisfies the following conditions:

b
v T) =0,  w(Lt)=0, Jvmna=a (2.22)
0

It is easy to observe that 3§v = J;v = 0 and —(d/dx)3Fv =v, forall t € I.
We now consider the inner product in L>(I, L(0, 1)) of (2.9) and the operator

xX*v+2x3Fv, 0<x<b,
v = (2.23)
b2y, b<x<l1,
it follows that
(80, (2
at L2(I,L2(0,1)) ax ax L2(I,L2(0,1))
(2.24)

ou
+< 2—,MV) + (qsu, Mv)
q o LU0 q 12(1,12(0,1))

= (L MV)2@,12(0,1))-

We integrate by parts the first two terms on the left-hand side of (2.24). To
do this, we assume that u,v € C'(Q), u(x,0)=0, v(x, T) =0, v(1,£) =0, and



578  Parabolic equations with energy specification

f(f’ u(x, t)dx= fob v(x, t)dx = 0. In light of the above assumptions, we have

0 0 0
(—u,Mv> ( U ) +2<—u,x8j:v)
ot 12(1,12(0,1)) ot’ ) (LL3(0,1)) ot L2(L,L2(0,b))

b
S (s )
ot” ) o) ot |,
+2(8;"a ,xv) —2<%,V) )
ot 12(I,12(0,b)) ot’ ) 21,8V (0,b)
P) ( au) ) ( ou b
== lq15= ), Mv =—(qi5(x v+2x5*v)
(ax ql ax L2(1,12(0,1)) qlax( * ) 21 lo
1
ou
- —,b2v>
(ql ox 12(I) b
du 3 ’
u ov
g5 5 +2(qu, 35
(q ox’ ax)Lzsz(oU) (a1 xV)LZ(I) 0
8q1
+2(g1u, v —2(—u,5*v> .
(@ )LZ(I,LZ(O,b)) ox V) o)
(2.25)
Substituting (2.25) into (2.24), we obtain
() 2520, 20
ot LZ(I,Lg(o,l)) ot 2 20b)) ot" /21l (0,b)
( ou ﬂ) 2(g1u,v)
195 ox 2(LL2(0,1)) DV ea o
0 ou
2 Gwsi) (@G
8x L2(1,L2(0,b)) ax L2( ILZ(O 1) (226)
ou
+2|gy—,x9* ) + A
(a:55 0t sz T e Az

+2(q3u’ijV)L2(LLZ(O,b))
= (fiveanon +2(F£X359) o) (1, Mv(-,0)) 1201y
This equality may be written as
Awv) = (fiv)zaizon) +2(FLx35V) pa o) + (@S My(-0)) b6, (2.27)

where A(u,v) is the left-hand side of (2.26).

Definition 2.5. We say that u € L*(I,Hy(0,1)) is a weak solution of problem
(2.9), (2.10), and (2.11) if identity (2.27) holds for all v € V, and u verifies con-

ditions (2.10).
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We now give an approximation of problem (2.9), (2.10), and (2.11). To this
end, we suppose that there are sequences of functions f,€ C(Q) and u,eC'[0, 1],
n=12,...,such that

fo— f inLy(0,1), VtETL, (2.28a)

u —u® in H[}(O, 1), (2.28b)
auy,_i< aun>+ %_‘_ _ i)
ot  ox\ 1 o Box T BUn = JiNL)

, (2.29)
Uy (x,0) = uf)(x), un(1,£) =0, J un(x, t)dx = 0.
0
Problem (2.29) possesses a unique classical solution u, = u,(x, t). For the proof,
we refer the reader to [17].
Taking the difference of (2.29) for n = i and n = j, we get

au,-j i( 8u,-]-> N al/l,‘j
ot ox\Tox ) T2 ok

= ﬁ] (X, t))

, (2.30)
w0 =y, (L =0 | s ndx=0,

with uij(x, ) = wi(x, ) — uj(x, 1), fij(x 1) = fi(x,t) = fj(x,1), and uf;(x) = uf (x) -
U (x).
We must derive some a priori estimates for u;;. To this end, we first compute

the integral [o (f (-, 7), M(duij(+, 7)/0t)) 20,1y dT

J’t(auzj(',T) Mauij(':7)> it
0 ot ot 12(0,1)

:Jt ‘auij(':'[) : ouij(+,7) ||* dr
0 ot ot BY*(0,b) ’

fy el 52 w%57) .,
_ J:qlugj(x, H)dx
+%J01q1(x,t)P(x)(aul]a(x’ ) dx — J 01 (x,0) (uf (x))°d
- lJIQI(X,O)P(x ( ) J J %1 2 dxdr
J Jb o (a””) dxdr

a ij\"
_2J <8q1 ,.(.,T)’S:M) dr.
12(0,b)

(0.1

(2.31)

ox ot
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From identities (2.31), we get

I

ouij (- 1) ||* ouij (- 1) ||* )d‘r
ot ot BY*(0,b)

! ou;j (x,
+lj q1(x,t)p(x ( u](x ) dx+f quuj; dx
T)

auz (
J (f( ] >L201)dT+J q1(x,0)(u ?j(x))zdx
1 duli(x)\*  (rta
+’J 511(X>0)P(X)< d]x ) dx+J0 L %ufjdxdr

2, B (5

% *auij(',T))
+2J ( ax uij(-»7),9 ot Lz(o,b)dT

ou;i (-, 1)
+q3uij(-,r)), ]Bt )LZ(Ol)dT
20,

auzj(',T) *auij(';'r))
+2J0 ( <q2 o +q3uij(-,T)),5x o LZ(O,b)dT'

(2.32)

13(0,1) ‘

i 2
) dxdr

According to the Cauchy inequality, the first and the last three integrals on the
right-hand side of (2.32) are controlled from above as follows:

Jot (f(.’T)’MWLZ(O,UdT

& t 1 auij(',T) 2
S(ZHZ)LHJ(” Dlizondr + 26 ot Lﬁ(o,ndT
1 (|| 0uij(- 1) |
+— T,
& Jo ot B (0,b)
t aql aui'(')T)
ZI <7 (e )3;17) d
o \ oy Wil T) ot row
aIrmes 2
<83JJ <3q1> uj; dx dr+ () dr,
& Jo ot BY*(0,b)
t ou;i(-, 1) ou;i (-, 1)
(e o) )
MG q3uij (-, 1) o o T
t ol duii\ 2 1 () 0uii (1) |2
1] - 1] >
s284J0J (qu( o > +q3u; )dxdr+£4 N e L%(O,l)dr,
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t ou;i(+,7) ouji(+,T)
ZJ (x(qz—]ax +Q3Uij(',T)),S:7]at >L2(0b)dT
t 1 Ouii\ 2 1 () 0ui(-,T) 2
2 ) 2,2 = g s
=26 Jo Jo (qu(x)< ox ) +q3u,]>dxd‘r+ & Jo ot

Substituting (2.33) into (2.32) and taking into account Assumption 2.1, we get
by choosing ¢; =2, =&3=3,e4 =4,and &5 =3

dr.

By*(0,b)
(2.33)

lJt auij('»T) z aul]( t) :
= _— dt+co||uii (-, t) + o
2 Jo ot o ol ”LzOb 2 ox o
du
<[ Iy + el oy + 5|5
L300 (2.34)
t
# e 36+ 146) | g o)l e
louii (-, ) |2
+<C—2+14ci>J 9uij(,7) dr.
2 0 ox iz
In light of the elementary inequality
b 2
Z”uij(')t)HLz (b,1)
b? N b2 f[0uij (- 1) |
S 2 1 2 d + - ., dt
o+ 5 [ s e 7
0112 2 IJ a”u( )
< —|ud; += i (e dr+ - dt,
< B R+ & [ e g [ ]| .
(2.35)
the last estimate becomes
! auij(')T) : 2
— dr+||uii (-, )|
Jo ot ey T+ Ol o
<o [ I M+ 1 Ry ) e [ g Ry
(2.36)
where
_ max (4,c1,b*/4)
 min (co/2,b%/4)’
oz : @2:37)
., _ max (c2+3c¢5+ 14cz, b%/4,c2/2 + 14c5)
. =

min (co/2, b2/4)
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Therefore, from Gronwall’s lemma, we come to the conclusion that
J t|| Quii (-, 7)
0

2
|

2
l)d‘[ + | |uij (-, t)”H/}(O,l)

L2(0, (2.38)

2 2
< coexp (¢7T) (||ﬁj||L2(1,Lg(o,1)) + ||M?j||H; (0,1))-

If we omit the first term on the left-hand side of (2.38) and integrate the result
over I, it yields

2 2 2
] |L2<1,H,;<o,1)) < ceTexp(c;T) <| | ] |L2(I,Lf,(0,l)) + ||u?j||H;(o,1)>- (2.39)

On the other hand, if in the left-hand side of (2.38) we take the upper bound
with respect to t, from 0 to T, since the right-hand side of the inequality does
not depend on ¢, we obtain

au,-j 2

+llugl e
ot ijllcH)(0,1))

L2(LI3(0,1) (2.40)

2 2
< cgexp (¢;T) (| |fij | |L2(1,Lg(o,1)) + ||U?j||H; (0,1))'

Thus we have proved the following theorem.

THEOREM 2.6. Suppose that Assumption 2.1 holds. Then, the solution of problem
(2.30) satisfies the following estimates, for T > 0:

2 2 2
||“ij||L2(1,H;(o,1)) =3 <||ﬁj||L2(1,Lg(o,1)) + ||”%||H;(o,1)>:

2 2 2
||uij||C(I,HP‘(O,1)) = C9<||ﬁj||L2(1,Lg(o,1)) + ||U%||H;(o,1)>’ (2.41)

auij 2

ot

where cg = cs T exp(c; T) and ¢y = csexp(c; T).

17 0112
paBon) =09 <||fzj||L2(1,Lg(o,1)) + ||uz]||H;(o,1))’

From estimates (2.41), it follows immediately that {u,}, is a Cauchy se-
quence. Thus we have the following corollary.

CoROLLARY 2.7. Under the assumptions of Theorem 2.6, the sequence {uy}, con-
verges to U in the following sense:

up — U in I*(IL,Hy(0,1)), (2.42)
U, — U in C(I,H;(O, 1)), (2.43)
ou,  OU . 5o
~ = in L*(I,L;(0,1)). (2.44)

We must prove that the limit function %(x, t) is a solution of problem (2.9),
(2.10), and (2.11) in the sense of Definition 2.5. For this purpose, we consider
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the weak formulation of problem (2.29)

Aluy,v) = (fn,V)Lz(I’L/z)(O’l)) +2(fur XI5V) o)) + (1 MV(+,0)) 2(q,1)-
(2.45)

However, u, = (u, — t1) + o, ud = (u% —u®) +u°, and f, = (f, — f) + f, then it
follows from the last identity that

A(”n — 1, V) +A(ﬁ, V)= (fn - f’ V)LZ(I,Lf,(O,l)) + (f’ V)LZ(I,Lg(O,l))

+2(fu = LX35V) e T 2(HX55Y) L ow)
+ (= 1%, M(+,0)) 12g,1) + (4% MV(+,0)) 2o 1)-
(2.46)

In light of the Schwarz inequality and inequalities (2.21), we get the following
estimates:

0(un — 1i)

V) 31ty — i)
ot ) panon

,xv)
ot L2(L12(0,b))
( o(u, — 1) 8v>
17~ >3
ox 0x/ 21201

e

A(un—ﬁ,v)z( +z(s;;
—2(8(”"_ﬁ),v)
ot L2(LBY* (0))

+(q23(un—ﬁ) v)
ox ) panon)

+

L2(I,L2(0,b))

~ alJ1 ~
+ 2(41 (4 — 1), V)LZ(I,LZ(O,b)) - 2(& (un — 1), S;kv>L2(1L2(o o)

+ (q3(”n — 1), V)LZ(I,Lg(O,l)) + 2(q3(un - 1), ijV)LZ(LLZ(O,b))

<max (5+2,¢1+ (1+v2)cg, 2c1 +2¢3+ (1++/2)¢s)

e

(1 = 1%, Mv(~,0)) 1201
< (1+v2)|uf) - u0||Hp‘(0,1) A0,

+ ||ﬁ - u”HLZ(I,Hl(O,l))) ||V||L2(I,HP1(O,1))>
L2(LL3(0,1)) ’

(fn_f)v)l,l

*
(LL3(0,1) + z(fn B f’xsx V)LZ(LLZ(O,ZJ))

< (1 + \/E)an - f||L2(I,L/2,(0,1)) HV”LZ(I,L/ZJ(O,I))-
(2.47)

Therefore, if we pass to the limit in equality (2.46), by taking into account the
limit relations (2.42) and (2.44), and estimates (2.47), we conclude that # satis-
fies equality (2.27). On the other hand, it follows from Corollary 2.7 that
fot i(x, t)dx is in C(Q); from which we deduce that #(1,t) = 0 almost everywhere.
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[t remains to prove that o satisfies the initial condition. Let

||ﬁ(':0)_”0||H;(0,1)5||1N‘('> ) — tn(-, ||H101 + [[u) ”O||H;(o,1)

N y (2.48)
<||u- ”n”cu,Hg(o,n) +|[up) - ||H;(o,1)-

Passing to the limit as n — +oo in the above inequality, by taking into account
(2.43) and (2.28b), we get u(x,0) = u°(x).
We have thus proved the following theorem.

Tueorem 2.8. If u® belongs to H,(0,1) and f to L*(I,L;(0,1)), then there ex-
ists a weak solution u of problem (2.9), (2.10), and (2.11) possessing the following
properties:

U, V) (f V)L ( (LL3(0,1)) (f’ijV)B(I,LZ(O,b))

2.49
+ (U0, Mv(+,0)) 21y, 4 € L*(ILHy(0,1)). (2.49)

Moreover,
ue C(I,H,(0,1)), % € L*(I,L;(0,1)). (2.50)

2.3. Continuous dependence and uniqueness. We first establish the continu-
ous dependence of the solution with respect to the data. The uniqueness then
follows directly.

THEOREM 2.9. Suppose that Assumptzon 2.1 holds. Let (f,uo), (f*,ug) € L*(I,
H,(0,1)) X Hy(0,1) and let u, u* be two solutions of problem (2.9), (2.10), and
(2.11) corresponding, respectively, to the above data. Then

2 2 2
7 u*||L2(I,Hp1(O,1)) = ‘58(||f - f*”Lz(I,Lg(o,l)) +[[u’ - ”*OHHg(o,l))’

2 2 2
[Ju— “*||C(1,H;(o,1)) = C9<||f —f*||L2(1,Lg(o,1)) +[u’ - M*OHle(o,n)» (2.51)

ou  ou*|?
<o (I1f = £ waon *+ 1480 =l o )-

ot ot

/\

Proof. Let {u,(x,t)}, be a sequence of classical solutions of problem (2.29),
converging to the weak solution. Therefore, we have the analogue of estimates
(2.41), with u;; replaced by u,. If we pass to the limit, in the resulting inequali-
ties, as n — oo, by taking into account (2.28), we obtain

L2(LI3(0,1))

2
||”||%2(1,Hg,(o,1)) = CS(”f”%Z(I,Lg(O,l)) + ||u0||H;(o,1))’

2
||“||ZC(1,H;(0,1)) = C9<||f||%2(I,L})(0,l)) + ||“0||H;(o,1))’ (2.52)
a_u 2
ot

2 0|12
PEB0.1) = C9(”f||L2(1,Lg(o,1)) +||u ||H;(0,1))~
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Set i =u—u*, 1% =u® —u*, and f = f — f*. From (2.52), with u replaced
by u, u® by 1, and f by f, we get inequalities (2.51). 0
CoroLLARY 2.10. Under the assumptions of Theorem 2.8, the weak solution of
problem (2.9), (2.10), and (2.11) is unique.
3. The quasilinear problem

3.1. Statement of the problem. In this section, we consider a boundary value
problem for quasilinear parabolic equation which combines Dirichlet and in-
tegral conditions in a domain with curved boundaries. Precisely, we state the
problem as follows. Find a function 6 satistying

gf azi:(pl(ffaf%pz“agﬂ”ff)@ h(StT’ ’?)?) &1 eqQ

9(6} O) = 60({)) l_‘1 (0) < f < FZ(O))

0(T2(1),7) =¥(r), O0<7<T,

Is5(7)
L( 0, 0)dE =E(t), 0<t<T.

Here, we conserve the notations given in Section 2.
As in Section 2.1, we reduce problem (3.1) to the following:

ou 0

ou u
5 a(ql(x, t)a) + q2(x, t) +q3(x, Hu = f(x,t, u, a), (x,1) € Q)

u(x,0)=1u'(x), 0<x<1,

u(l,t) =0, 0<t<T,

b
J u(x,t)dx=0, 0<t<T.
0

(3.2)
Consider now the following auxiliary problem:
9 _ 9 ac“) %
5%  ox (ql(x, )a +qa(x, t) +q3(x, ) =0,
{(x0)=u(x), 0<x<lI,
(3.3)

{(Lt)y=0, 0<t<T,

b
J {(x,t)dx=0, 0<t<T.

0
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Let w = u — {, where u is the solution of problem (3.2). Then it follows from
(3.2) and (3.3) that w verifies

dw 0 ow 8()

g—a—<q1(x,t) >+q2(x,t) +g3(x, tw = f(x,tw+(—+ax

b
00 =0, (Lt =0, J w(x, t)dx = 0.
0
(3.4)

Section 2 implies that problem (3.3) admits a unique weak solution that depends
continuously with respect to the initial condition. Thus it remains to establish
the proof for problem (3.4). For this purpose, we employ the following iteration
procedure.

Let @ = 0 and let {w™}, be defined as follows: if w1 is given, then solve
the following problem:

ow™ 9 [ dw™ dw™ () _ o1y, 5 0w 9L
ot 8x<q1 8x)+q2 ox B ‘f<"’t"" 0o 8x)

b
0™ (x,0) =0, 0™ (1,1) =0, J 0™ (x,t)dx = 0.
0
(3.5)

Theorem 2.8 implies, for fixed n, that each of problems (3.5) possesses a unique
solution w™ (x, t). Taking its difference for n = k and n = k + 1, it follows that

®) *) N
920 9 <q az_) r 2 4 gy = FoD (o,
ot 0x 0. ox
. (3.6)
©(x,0)=0, 2018 =0, J 29 (x, )dx = 0,
0
where
20 (xt) = 0V (x, 1) — 0 (x,1),
~ ow® 9 dwk=1 ¢
-1y 4y — W),y 00 90 k1), p 005
f f(x,t,w 6 0x +8x> f(x,t,w 0 ox 8x>
(3.7)

3.2. A priori estimates

TuroreM 3.1. Let Assumption 2.1 be fulfilled, let f (x,t,0,0) € L*(I, L;(0,1)), and
let f(x,t, 1, y) satisfy the Lipschitz condition, that is,

3L>0:[f () - st <Lln=nll+ly - 2l).  (3.8)
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Then

12911 = cnl [~V

where cjo = L\/2T¢y;.

Proof. Integrating by parts [;(f*~V(-,7), Mz®(-,T))12(0,1)dT and proceeding as
in the establishment of Theorem 2.6, we get

)

where ¢;; = 4exp(c; T)/ min(co/2, b*/4).
Applying Lipschitz inequality to the right-hand side of (3.10), we obtain

» k=12, (3.9)

9z (-, 1)

ot

2 t
(FNIE Fk-1)¢. 2
Lg(o,ndTJrHZ ( ’t)”Hg(O,l) = CllL IIf ( ’T)HL,Z,(O,l)dT’

(3.10)

H1oz® (- 1) | 2
TGO g 120, 1)
Jo 53 2  e 1 0
(k=1) [|2
2 (k-1) 2 0z
<2enl (HZ ||L2(I,L/2,(O,1))+‘ ax eazon (3.11)
L2(0,

2||,(k=1)[|? 2||,(k=1)[|?
<2c1L ||Z( )||L2(I,HP1(O,1)) <2enTL ||Z( )||C(I,H,§(0,l))
<2en TL||2% V|2
The right-hand side of the above inequality being independent of ¢, we take the
supremum with respect to ¢ in the left-hand side. It then follows that

2

1205 < 2¢1, TL?| |25 V)3, (3.12)

from which we have estimate (3.9). O

3.3. Existence of the solution

THEOREM 3.2. Let the hypotheses of Theorem 3.1 hold. If

1

x/ZTCH)

then problem (3.4) admits a weak solution in the space B.

L<

(3.13)

Proof. It is easy to see that if ¢5 < 1, that is, L < 1/4/2T¢;;, then the series
> k=128 (x, ) converges. Consequently, the sequence {w™},cxy defined by

n—1

0™ (xt) = > (0*V(xt) - 0® (1) + 0O (x,t), n=12..,  (3.14)
k=0
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converges, in the norm of space B, to @(x, t). To prove that this function is a weak
solution of problem (3.4), we proceed exactly as in the proof of Theorem 2.8.
([

3.4. Uniqueness of the solution. In this section, we first establish an a priori
estimate. The uniqueness of the solution is then a direct corollary of it.

TueoreM 3.3. Under the hypotheses of Theorem 3.1, assume that w, and w, are
two solutions in B of problem (3.4). Then

||w1—w2||Bsc12||w1—w2||3. (3.15)
Proof. Let @(x,t) = w(x,t) — wy(x, 1), (x,t) € Q. Then @(x,t) satisfies

0w 0

9w 9 9®
Jt  ox

M+%uﬁw:ﬁnm

0@
QI (-x) t) - |t Q2 (x) t)
( ax> (3.16)

b
060 =0,  @(Lt) =0, meﬂhza
0

where

dwy  9¢

ox ax)_f<”tw2+¢§9%+§§) (3.17)

f(x, t) = f(x twr+(, 5 o

Performing similar calculations to that for Theorem 3.1, we obtain

lollp < cr2ll@llp. (3.18)

From estimate (3.15), we conclude that
(1—612)”601—(02”330. (319)

Since ¢;; < 1, then |lw; — w;|lg = 0, that is, wi(x,t) = w,(x, 1), for all (x,t) € Q,
from which we have the following corollary.

CoROLLARY 3.4. Suppose that the hypotheses of Theorem 3.1 are satisfied, then the
solution of problem (3.4) is unique.
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