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A technique, based on the investigations of the images of maps, for obtaining
fixed-point and coincidence results in a new class of maps and domains is de-
scribed. In particular, we show that the problem concerning the existence of fixed
points of expansive set-valued maps and inner set-valued maps on not necessar-
ily convex or compact sets in Hausdorff topological vector spaces has a solution.
As a consequence, we prove a new intersection theorem concerning not necessar-
ily convex or compact sets and its applications. We also give new coincidence and
section theorems for maps defined on not necessarily convex sets in Hausdorff

topological vector spaces. Examples and counterexamples show a fundamental
difference between our results and the well-known ones.

1. Introduction

Suppose that E is a Hausdorff topological vector space, C ⊂ E, C �= ∅. In fixed-
point and coincidence theory and its applications, a great part of the vast lit-
erature in the last century concerns conditions on C, E, F, and G guaranteeing
the existence of fixed points or coincidences of set-valued maps F : C→ 2E and
G : C→ 2E. In various methods of investigations, the assumptions that the maps
are inner and C are convex compact subsets of E play the crucial role (see, e.g.,
[5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 30, 33, 41]). The general
topic of fixed points and coincidences for set-valued maps on convex compact
sets, originating mainly with the work of Kakutani [30], Bohnenblust and Karlin
[5], Glicksberg [23], Fan [15, 16, 17, 18, 19, 20, 21, 22], and Browder [6, 7], has
been well developed in various directions.

In the past decade, there was a renewed interest in the fixed-point and co-
incidence theory of set-valued maps in topological vector spaces (see, e.g., [2,
3, 8, 9, 10, 11, 12, 28, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48]), partially
due to new and powerful methods of investigations introduced into it (notably

Copyright © 2003 Hindawi Publishing Corporation
Abstract and Applied Analysis 2003:1 (2003) 1–18
2000 Mathematics Subject Classification: 47H10, 47H04
URL: http://dx.doi.org/10.1155/S1085337503207028

http://dx.doi.org/10.1155/S1085337503207028


2 Fixed-point and coincidence theorems

based on those introduced by Fan and Browder). Most of the work has centered
around the fixed-point and coincidence theory of maps on convex compact sets,
but there are also a considerable number of papers devoted to maps on noncon-
vex and noncompact sets (see, e.g., [8, 45]).

There exist a number of introductions to and surveys of fixed-point and co-
incidence theory. We mention [47] among the more recent ones but also some
elder ones [14, 49, 50]. See also many references therein.

A natural question arises: whether expansive set-valued maps and inner set-
valued maps on not necessarily convex or compact sets have fixed points and,
as a consequence, theorems of intersection type hold and whether the maps
F : C → 2E and G : C → 2E on not necessarily convex sets in Hausdorff topo-
logical vector spaces have coincidences. The affirmative answers are given in this
paper. Using a technique based on the investigation of the images of maps, we
obtain a number of new fixed-point, coincidence, intersection, and section theo-
rems of Fan-Browder type. Examples and counterexamples show a fundamental
difference between our results and the known results of the above-mentioned
authors.

2. Fixed points and coincidences of expansive set-valued maps
on not necessarily convex or compact sets
in topological vector spaces

Let C be a subset of a Hausdorff topological vector space E over K (K=R or C).
A set-valued map F : C→ E (which will always be denoted by capital letters) is a
map which assigns a unique F(c)∈ 2E (here 2E denotes the family of all subsets
of E) to each c ∈ C. We say that c ∈ C is a fixed point of F : C→ 2E if c ∈ F(c).
We say that a map F : C→ 2E is expansive if C ⊂ F(C) where F(C)=⋃c∈C F(c).

Maps in the usual sense will be considered as special (single-valued) set-
valued maps and these ordinary maps will always be denoted by small letters
f : C→ E.

We prove the following theorem.

Theorem 2.1. LetC be a nonempty subset of a Hausdorff topological vector space E
over R, let F : C→ 2E, and let K be a convex subset of E. Assume that the following
conditions hold:

(i) C ⊂ K ⊂ F(C);
(ii) F(C) is a compact subset of E;

(iii) for each c ∈ C, F(c) is open in F(C);
(iv) for each y ∈ K , F−1(y)= {c ∈ C : y ∈ F(c)} is nonempty and convex.

Then there exists u∈ C such that u∈ F(u).

Proof. By (iii), the compact set F(C) is covered by the sets F(c), c ∈ C, which
are open in F(C). Clearly, there exists a finite set {c1, . . . , cn} ⊂ C such that F(ci)
are nonempty, 1≤ i≤ n, and F(C)=⋃n

i=1F(ci). Let {ϕ1, . . . ,ϕn} be a partition of
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unity with respect to this cover, that is, a finite family of real-valued nonnegative
continuous maps ϕi on F(C) such that ϕi vanish outside F(ci) and are less than
or equal to one everywhere, 1≤ i≤ n, and

∑n
i=1ϕi(y)= 1 for all y ∈ F(C).

Let σ be a simplex spanned by points c1, . . . , cn and let ϕ : F(C) → σ be a
continuous map defined by the formula ϕ(y)=∑n

i=1ϕi(y)ci, y ∈ F(C). Clearly,
σ ⊂ K ⊂ F(C) and hence ϕ(σ)⊂ ϕ(K)⊂ ϕ(F(C))⊂ σ .

If y ∈ K is arbitrary and fixed and ϕi(y) �= 0 for some i ∈ {1, . . . ,n}, then
y ∈ F(ci), so ci ∈ F−1(y). As a consequence, for each y ∈ K , ϕ(y) is a convex
linear combination of points of F−1(y) and by (iv), we get for each y ∈ K ,

ϕ(y)∈ F−1(y), ϕ(y)∈ C. (2.1)

From Brouwer’s theorem, we get u = ϕ(u) for some u ∈ σ and hence, since
σ ⊂ K , by (2.1), u = ϕ(u) ∈ F−1(u) ⊂ C, and therefore, u ∈ F(u) and u ∈ C, as
required. �

By using various sets K , a number of variations of Theorem 2.1 can be ob-
tained, of which the following two are typical.

Theorem 2.2. Let C be a nonempty subset of a Hausdorff topological vector space
E over R and let F : C→ 2E. Assume that the following conditions hold:

(i) F is expansive, that is, C ⊂ F(C);
(ii) F(C) is convex;

(iii) F(C) is a compact subset of E;
(iv) for each c ∈ C, F(c) is open in F(C);
(v) for each y ∈ F(C), F−1(y)= {c ∈ C : y ∈ F(c)} is nonempty and convex.

Then there exists u∈ C such that u∈ F(u).

Proof. We use Theorem 2.1 for K = F(C). �

Theorem 2.3. Let C be a nonempty subset of a Hausdorff topological vector space
E over R and let F : C→ 2E. Assume that the following conditions hold:

(i) F is expansive, that is, C ⊂ F(C);
(ii′) C is convex;
(iii) F(C) is a compact subset of E;
(iv) for each c ∈ C, F(c) is open in F(C);
(v′) for each y ∈ C, F−1(y)= {c ∈ C : y ∈ F(c)} is nonempty and convex.

Then there exists u∈ C such that u∈ F(u).

Proof. Indeed, if ϕ and σ are as in the proof of Theorem 2.1 and C is convex,
then σ ⊂ C ⊂ F(C), and we may use Theorem 2.1 for K = C. �

Example 2.4. (a) Let E =R2, let T be a closed triangle with vertices (0,0), (1,0)
and (0,1), and let C = C1 ∪ {(0,0)} ∪ C2 where C1 = {c = (c1,0) : 0 < c1 ≤ 1}
and C2 = {c = (0, c2) : 0 < c2 ≤ 1}. Define sets P = {c = (c1, c2) : |c2− c1| < 1/2},
H1 = {c = (c1, c2) : c2 < c1} and H2 = {c = (c1, c2) : c2 > c1}. If F(C) = T where
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F(0,0) = T ∩ P, F(c) = T ∩H1 for c ∈ C1, and F(c) = T ∩H2 for c ∈ C2, then
the assumptions of Theorem 2.2 are satisfied, C is nonconvex and Fix(F)= C.

(b) Let E =R,C = (1;3), F(C)= [0;4] where F(c)=[0;2) for c ∈ (1;2), F(c)=
(2;4] for c ∈ (2,3) and F(2)= (1;3). Then the assumptions of Theorem 2.2 are
satisfied, C is noncompact and Fix(F)= C.

If in Theorems 2.2 or 2.3 we omit at least one of the assumptions, then we
can construct a counterexample.

Example 2.5. (a) The condition on F(C) in (i) cannot be omitted as the following
two counterexamples show:

(A1) if E = R, C = (1;4), F(C) = [2;5] where F(c) = [2;5] for c ∈ (1;2) and
F(c) = (4;5] for c ∈ [2;4), then assumptions (ii), (iii), (iv), and (v) are
satisfied, C �⊂ F(C), F(C) �⊂ C, and Fix(F)=∅;

(A2) if E = R2, C = {c = (c1, c2) : |c1| ≤ 1, |c2| ≤ 2}, C = C1 ∪ C2 ∪ C3 ∪
(−C3)∪ C4 where C1 = {(0,−2)}, C2 = {(0,2)}, C3 = {c = (c1, c2) : −1
≤ c1 < 0, |c2| ≤ 2}, and C4 = {c = (c1, c2) : c1 = 0, |c2| < 2}, F(C1) = D1,
F(C2) = D2, F(C3) = D3, F(−C3) = −D3, F(C4) = D3 ∪ (−D3), and if
F(C)= {y = (y1, y2) : |y1| ≤ 1, |y2| ≤ 1}whereD1 = {y = (y1, y2) : |y1| <
1/2, |y2| ≤ 1}, D2 = {y = (y1, y2) : 1/2 < |y1| ≤ 1, |y2| ≤ 1}, and D3 =
{y = (y1, y2) : 0 < y1 ≤ 1, |y2| ≤ 1}, then assumptions (ii), (iii), (iv), and
(v) are satisfied, F(C)⊂ C, F(C) �= C, and Fix(F)=∅.

(b) The assumption that F(C) is convex orC is convex is necessary. Indeed, let
E = R2, C = C0 ∪ (−C0) where C0 = {c = (c1,0) : c1 ∈ (1;2)}, F(c) = D0 for c ∈
−C0, and F(c)=−D0 for c ∈ C0 whereD0 = {y = (y1, y2) : ‖(y1, y2)− (3/2,0)‖≤
1}. Then assumptions (i), (iii), (iv), and (v) are satisfied, while (ii) and (ii′) are
not, and Fix(F)=∅.

(c) The assumption that F(C) is compact is necessary. Indeed, let E = R,
C = (0;1), F(c) = (0;c) for 1/2 ≤ c < 1, F(c) = (1/2 + c;1) for 0 < c < 1/2. Then
assumptions (i), (ii), (iv), and (v) are satisfied and Fix(F)=∅.

(d) Assumption (iv) is necessary. Indeed, let E = R, C = (1;4), F(C) = [1;4]
where F(c) = [1;2)∪ (3;4] for c ∈ (2;3), F(c) = (2;5/2) for c ∈ (1;2), F(c) =
[5/2;3) for c ∈ (3;4), F(2)= {3} and F(3)= {2}. Thus assumptions (i), (ii), (iii),
and (v) are satisfied and Fix(F)=∅.

(e) Assumption (v) (or (v′)) is necessary. Indeed, let E =R,C = (1;5), F(C)=
[1;5] where F(c)= (2;3)∪ (4;5] for c ∈ (1;2), F(c)= [1;2)∪ (3;4) for c ∈ (2;3),
F(c) = [1;3)∪ (4;5] for c ∈ (3;4), F(c) = [1;2)∪ (3;4] for c ∈ (4;5), F(2) =
(2;5], F(3) = [1;3)∪ (3;5], and F(4) = [1;4). Then F−1(4) = {2,3} is noncon-
vex. Thus assumptions (i), (ii′), (iii), and (iv) are satisfied, while (v′) is not, and
Fix(F)=∅.

We say that a single-valued map f : C→ E and a set-valued map F : C→ 2E

have a coincidence if f (c)∈ F(c) for some c ∈ C.
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The following theorem is a generalization of the above one.

Theorem 2.6. Let C be a nonempty convex subset of a Hausdorff topological vec-
tor space E over R, let F : C → 2E be an expansive map, and let f : C → E be a
single-valued continuous map such that f (C) ⊂ F(C). Assume that the following
conditions hold:

(i) F(C) is a compact subset of E;
(ii) for each c ∈ C, F(c) is open in F(C);

(iii) for each y ∈ f (C), F−1(y)= {c ∈ C : y ∈ F(c)} is nonempty and convex.

Then there exists u∈ C such that f (u)∈ F(u).

Proof. Let ϕ and σ be as in the proof of Theorem 2.1. We have ϕ : F(C) → σ ,
σ ⊂ C, and y ∈ F(ϕ(y)) for each y ∈ f (C). On the other hand, ϕ ◦ f : σ → σ
and, by the theorem of Brouwer, (ϕ ◦ f )(u) = u for some u ∈ σ . Consequently,
f (u)∈ F(ϕ( f (u)))= F(u). �

3. Fixed points and coincidences of set-valued inner maps
on not necessarily convex sets in topological
vector spaces

We say that a map F : C → 2E is inner if F(C) ⊂ C. This section is devoted to
new fixed-point and coincidence theorems for set-valued inner maps on not
necessarily convex sets.

We have the following theorem.

Theorem 3.1. Let C be a nonempty compact subset of a Hausdorff topological
vector space E over R and let F : C → 2E be an inner map such that F(C) is a
convex subset of E. Assume that the following conditions hold:

(i) for each c ∈ C, F(c) is nonempty and convex;
(ii) for each y ∈ F(C), F−1(y)= {c ∈ C : y ∈ F(c)} is open in C.

Then there exists u∈ C such that u∈ F(u).

Proof. In virtue of (i) and (ii), there exists a finite set {y1, . . . , yn} ⊂ F(C) such
that F−1(yi) are nonempty, 1 ≤ i ≤ n, and C =⋃n

i=1F
−1(yi). Let {ϕ1, . . . ,ϕn} be

a partition of unity with respect to this cover, let σ be a simplex spanned by
points y1, . . . , yn, and let a continuous map ϕ : C→ σ be defined by the formula
ϕ(c)=∑n

i=1ϕi(c)yi, c ∈ C. Note that σ ⊂ F(C)⊂ C and, consequently, ϕ(σ)⊂ σ .
If c ∈ C and ϕi(c) �= 0 for some i∈ {1, . . . ,n}, then c ∈ F−1(yi), thus yi ∈ F(c).

By (i), for each c ∈ C,

ϕ(c)∈ F(c). (3.1)

On the other hand, from Brouwer’s theorem, we get that u= ϕ(u) for some u∈ σ
and, by (3.1), we have u= ϕ(u)∈ F(u), as required. �
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Recall that a map F : C→ 2E is called upper semicontinuous if, for each c ∈ C
and any open setV containing F(c), there is an open setU containing c such that
F(U ∩C)⊂ V (for details, see [4]). A map F : C→ 2E is called upper demicon-
tinuous on C (after Fan [20]) if, for each c ∈ C and any open half-space H in E
containing F(c), there is a neighbourhood N(c) of c in C such that F(x)⊂H for
each x ∈N(c). It is clear that the condition of upper semicontinuity is stronger
than that of upper demicontinuity.

Let C and D be nonempty sets. The maps F : C → 2D and G : D → 2C are
said to have a coincidence if there exists (u,v) ∈ C×D such that v ∈ F(u) and
u∈G(v).

We now establish the following theorem.

Theorem 3.2. Let C be a nonempty compact subset of a Hausdorff locally convex
topological vector space E over R, let F : C→ 2E be an inner map, and letG : C→ 2E

be an upper demicontinuous map such that G(C)⊂ F(C). Assume that the follow-
ing conditions hold:

(i) F(C) is a closed convex subset of E;
(ii) for each c ∈ C, F(c) is nonempty and convex;

(iii) for each y ∈ F(C), F−1(y)= {c ∈ C : y ∈ F(c)} is open in C;
(iv) for each c ∈ C, G(c) is a nonempty closed convex subset of F(C).

Then there exists (u,v)∈ C×F(C) such that u∈ F(v) and v ∈G(u).

Proof. Let ϕ and σ be as in the proof of Theorem 3.1. Since σ ⊂ F(C) ⊂ C and
ϕ : C→ σ , then G ◦ϕ : F(C)→ 2F(C) and G ◦ϕ is upper demicontinuous on the
compact convex set F(C). By [20, Theorem 6], there exists v ∈ F(C) such that
v ∈G(ϕ(v)). Moreover, in virtue of (3.1), ϕ(v)∈ F(v). This implies the assertion
for u= ϕ(v). �

4. Intersection theorem with applications on not necessarily
convex or compact sets in topological vector spaces

Various intersection theorems concerning convex and compact sets, with their
applications, are given in [6, 17, 18, 21, 22, 33, 35]. From Theorem 2.2, we get
the following new intersection theorem.

Theorem 4.1. Let E be a Hausdorff topological vector space over R and let n≥ 2.
Let C1, . . . ,Cn be nonempty (not necessarily convex or compact) subsets of E, let
K1, . . . ,Kn be compact and convex subsets of E, let S1, . . . ,Sn be nonempty subsets of
En, and let C =∏n

j=1Cj , K =
∏n

j=1Kj , and S=⋃n
j=1 Sj . Assume that the following

properties hold:

(i) C ⊂ K = S;
(ii) for each i, 1≤ i≤ n, and for each point (y1, . . . , yi−1, yi+1, . . . , yn) of

∏n
j �=i Kj ,

the section Si(y1, . . . , yi−1, yi+1, . . . , yn), formed by all points ci ∈ Ci such that
(y1, . . . , yi−1, ci, yi+1, . . . , yn)∈ Si, is a nonempty convex subset of Ci;
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(iii) for each i, 0≤ i≤ n, and for each point ci ∈ Ci, the section Si(ci), formed by
all points (y1, . . . , yi−1, yi+1, . . . , yn) of

∏n
j �=i Kj such that

(
y1, . . . , yi−1, ci, yi+1, . . . , yn

)∈ Si, (4.1)

is an open subset of
∏n

j �=i Kj .

Then C∩⋂n
i=1 Si �= ∅.

Proof. Define F : C→ 2K as follows. Fix a point c ∈ C and let y ∈ K . We say that
y ∈ F(c) if and only if, for each i∈ {1, . . . ,n}, (y1, . . . , yi−1, ci, yi+1, . . . , yn)∈ Si.

Write c ∈ C in the form c = (c1, . . . , ci−1, ci, ci+1, . . . , cn), 1≤ i≤ n. Using condi-
tion (iii) and taking into consideration that, for each i ∈ {1, . . . ,n}, the section
Si(ci) is an open subset of

∏n
j �=i Kj , we obtain that Si(ci)×Ki is an open subset of

K . Therefore, the set F(c)=⋂n
i=1 (Si(ci)×Ki) is open in K .

Suppose that y ∈ K . Write c = (c1, . . . , ci−1, ci, ci+1, . . . , cn) and note that since c
belongs to F−1(y) if and only if, for each i∈ {1, . . . ,n},

ci ∈ Si
(
y1, . . . , yi−1, yi+1, . . . , yn

)
, (4.2)

we have F−1(y)=∏n
i=1 Si(y1, . . . , yi−1, yi+1, . . . , yn). But, for each i∈ {1, . . . ,n}, the

sections Si(y1, . . . , yi−1, yi+1, . . . , yn) are nonempty convex subsets of Ci by condi-
tion (ii), and thus, F−1(y) is a nonempty convex subset of C. We conclude that
F(C)= K .

It follows from Theorem 2.2 that u ∈ F(u) for some u∈ C. This shows that,
for each i ∈ {1, . . . ,n}, u = (u1, . . . ,ui−1,ui,ui+1, . . . ,un) ∈ Si, that is, u ∈ C ∩⋂n
i=1 Si. �

Example 4.2. Let E =R2, n= 2, K = K1×K2 where K1 = K2 = [0;1], C1 = C1,0∪
C1,1 whereC1,0 = [0;1/3) andC1,1 = (2/3;1],C2 = [0;1],C = C1×C2, S=S1∪ S2

where S1 = K ∩{(x1,x2) : x2 >−3x1 +2}, and S2=K ∩{(x1,x2) : x2<−x1 + 3/2}.
Hence C1 is a noncompact and nonconvex subset of K1, the assumptions of
Theorem 4.1 are satisfied and C∩⋂2

i=1 Si �= ∅.

As an application of Theorem 4.1 we obtain the following theorem.

Theorem 4.3. Let E be a Hausdorff topological vector space over R and let n≥ 2.
Let C1, . . . ,Cn be nonempty (not necessarily convex or compact) subsets of E, let
K1, . . . ,Kn be convex compact subsets of E, and let C =∏n

j=1Cj , K =
∏n

j=1Kj . Let
f1, . . . , fn be real-valued maps defined on K , let t1, . . . , tn be real numbers, and let
the following conditions hold:

(i) C ⊂ K ;
(ii) for each i, 1≤ i≤ n, and for each point (y1, . . . , yi−1, yi+1, . . . , yn) of

∏n
j �=i Kj ,

the set {ci ∈ Ci : fi(y1, . . . , yi−1, ci, yi+1, . . . , yn) > ti} is a nonempty convex
subset of Ci;
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(iii) for each i, 1≤ i≤ n, and for each point ci ∈ Ci, the set

{(
y1, . . . , yi−1, yi+1, . . . , yn

)∈∏
j �=i
Kj : fi

(
y1, . . . , yi−1, ci, yi+1, . . . , yn

)
> ti

}
(4.3)

is an open subset of
∏n

j �=i Kj .
Then there is a point u in C such that fi(u) > ti for each i, 1≤ i≤ n.

Proof. Define the subsets Si of K to be Si = {y : y ∈ K, fi(y) > ti}, i∈ {1, . . . ,n}.
Clearly, (ii) is equivalent to the condition:

(ii′) for each i ∈ {1, . . . ,n} and for each point (y1, . . . , yi−1, yi+1, . . . , yn) of∏n
j �=i Kj , the section Si(y1, . . . , yi−1, yi+1, . . . , yn), formed by all points ci ∈

Ci such that (y1, . . . , yi−1, ci, yi+1, . . . , yn)∈ Si, is a nonempty convex sub-
set of Ki,

and (iii) is equivalent to the condition:

(iii′) for each i∈{1, . . . ,n} and for each point ci∈Ci, the section Si(ci), formed
by all points (y1, . . . , yi−1, yi+1, . . . , yn) of

∏n
j �=i Kj such that

(
y1, . . . , yi−1, ci, yi+1, . . . , yn

)∈ Si, (4.4)

is an open subset of
∏n

j �=i Kj . �

We can apply Theorem 4.1 to obtain C ∩⋂n
i=1 Si �= ∅. Hence, by the defi-

nition of Si, the point u from this intersection satisfies fi(u) > ti for each i ∈
{1, . . . ,n}.

5. Coincidence theorems for set-valued maps and section theorems
on not necessarily convex sets in topological vector spaces

Using his infinite-dimensional version of the KKM theorem as a tool, Fan [16]
established a geometrical “lemma” concerning convex and compact sets. Next,
Browder [6] restated it in the more convenient form of a fixed-point theorem.
A weaker form (with a relaxed compactness assumption) of this theorem was
afterwards obtained by Fan [21]. Finally, Lassonde [33] extended these results.
He gave a proof of the following interesting coincidence theorem:

Theorem 5.1. Let X be a convex space (i.e., a convex set in a vector space with
any topology that induces the Euclidean topology on the convex hulls of its finite
subsets), Y a topological space, and F the map of X into 2Y for which the following
conditions hold:

(i) for each x ∈ X , F(x) is compactly open in Y ;
(ii) for each y ∈ Y , F−1(y)= {x ∈ X : y ∈ F(x)} is nonempty and convex;

(iii) for some c-compact set K ⊂ X , the set Y\⋃x∈K F(x) is compact. Then, for
each single-valued continuous map f of X into Y , there exists an x ∈ X
such that f (x)∈ F(x).
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Our new coincidence theorem does not require convexity.

Theorem 5.2. Let C be a nonempty compact set in a Hausdorff topological vector
space E over R and let f : C→ E be a continuous single-valued map on C such that
f (C) is a convex set. Let F : C→ 2 f (C) be a map such that f (C) = F(C). Suppose
that

(i) for each y ∈ f (C), the set F−1(y)= {c ∈ C : y ∈ F(c)} is open in C;
(ii) for each c ∈ C, the set {y ∈ f (C) : y ∈ F(c)} is nonempty and convex.

Then there exists a point u∈ C such that f (u)∈ F(u).

Remark 5.3. If f = IE (the identity map) and C is convex, then Theorem 5.2
becomes the Browder theorem [6, Theorem 1]. However, his method of proving
this fact (based on the partition of unity) is absolutely different from ours.

Section theorems concerning convex compact sets in Hausdorff topological
vector spaces, with various applications, are given by Fan [18, 20]. In the proof
of Theorem 5.2, we need the following two new auxiliary section theorems of
Fan type.

Theorem 5.4. Let C be a nonempty compact set (not necessarily convex) in a
Hausdorff topological vector space E over K . Let f : C→ E and g : C→ E be contin-
uous maps on C, and let f (C) be convex. Let K be a subset of g(C)× f (C) having
the following properties:

(i) for each fixed w ∈ f (C), the set {t ∈ C : (g(t),w)∈ K} is closed in C;
(ii) for each t ∈ C, (g(t), f (t))∈ K ;

(iii) for any fixed t ∈ C, the set {w ∈ f (C) : (g(t),w) /∈ K} is convex (or empty).

Then there exists a point c ∈ C such that {g(c)}× f (C)⊂ K .

Proof. We use KKM set-valued maps. Define a map H : f (C)→ 2E as follows:

H(w)= {t ∈ C :
(
g(t),w

)∈ K}, w ∈ f (C). (5.1)

Obviously, by (i), H(w) is a compact subset of C and thus f (H(w)) is a com-
pact subset of f (C) for each w ∈ f (C). Let {w1, . . . ,wm} be any finite and fixed
subset of f (C). We prove that conv{w1, . . . ,wm} ⊂ f (H(w1))∪···∪ f (H(wm)).
To this goal, we assume that f (s) ∈ conv{w1, . . . ,wm} but f (s) /∈ f (H(w1))∪
··· ∪ f (H(wm)) for some s ∈ C. Then s /∈ H(wi) for all i = 1, . . . ,m, that is,
(g(s),wi) /∈ K for any i = 1, . . . ,m. Therefore, by (iii), wi, i = 1, . . . ,m, are con-
tained in a convex set U = {w ∈ f (C) : (g(s),w) /∈ K}. Consequently,
conv{w1, . . . ,wm} ⊂ U and, in particular, f (s) ∈ U , that is, (g(s), f (s)) /∈ K ,
which, by (ii), is impossible. We must have f (s)∈ f (H(w1))∪···∪ f (H(wm)).
By virtue of [16, Lemma 1, page 305], this yields f (c)∈⋂{ f (H(w)) :w ∈ f (C)}
for some c ∈ C and we conclude that {g(c)}× f (C)⊂ K for some c ∈ C. �
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Theorem 5.5. Let C be a nonempty compact set (not necessarily convex) in a
Hausdorff topological vector space E over K. Let f : C→ E and g : C→ E be con-
tinuous maps on C, and let f (C) be convex. Let B be a subset of g(C)× f (C) and
suppose that

(i) for each fixed y ∈ f (C), the set {c ∈ C : (g(c), y)∈ B} is open in C;
(ii) for any fixed c ∈ C, the set {y ∈ f (C) : (g(c), y) ∈ B} is nonempty and

convex.

Then there exists a point u∈ C such that (g(u), f (u))∈ B.

Proof. Here, B denotes a complement of the set K in g(C)× f (C) where K is
defined in Theorem 5.4 �

Proof of Theorem 5.2. We define a set B = {(c, y)∈ C× f (C) : y ∈ F(c)} and ap-
ply Theorem 5.5 for g = IE. �

6. Coincidences for upper semicontinuous set-valued maps
on not necessarily convex sets in locally convex spaces

Let F : C → 2E and G : C → 2E and let Φ : G(c)× F(c)→ E for each c ∈ C. We
say that maps F and G have a Φ-coincidence if there exist c ∈ C and (u,v) ∈
G(c)×F(c) such that Φ(u,v)= 0; this point c is called a Φ-coincidence point for
F and G. In particular, a Φ-coincidence point is a coincidence point if Φ is of the
form Φ(u,v)= u− v for (u,v)∈G(c)×F(c), and c ∈ C.

We use these notations in the following theorem.

Theorem 6.1. Let C be a nonempty compact (not necessarily convex) set in a lo-
cally convex Hausdorff topological vector space E over K. Let Γ be the set of all
continuous seminorms p on E. Let F : C→ 2E and G : C→ 2E be upper semicontin-
uous maps such that F(c) and G(c) are compact subsets of E for each c ∈ C and let,
for each c ∈ C, the map Φ :G(c)×F(c)→ E be continuous on G(c)×F(c).

(a) Then either F and G have a Φ-coincidence or there exist p ∈ Γ and λ > 0
such that p(Φ(u,v)) > λ for all c ∈ C and all (u,v)∈G(c)×F(c).

(b) Then either F and G have a Φ-coincidence or there exists p ∈ Γ and, for any
c ∈ C and any u∈G(c), there exists v ∈ F(c) such that

0 < p
(
Φ(u,v)

)=Min
{
p
(
Φ(u,w)

)
:w ∈ F(c)

}
. (6.1)

Proof. (a) If F and G do not have a Φ-coincidence in C, then, for all c ∈ C, the
set Φ(G(c)×F(c)) is compact and 0 /∈Φ(G(c)×F(c)).

First, observe that

(i) for each c ∈ C, there exist pc ∈ Γ and λc > 0 such that

pc
(
Φ(u,v)

)
> 2λc ∀(u,v)∈G(c)×F(c). (6.2)
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Indeed, for an arbitrary and fixed w ∈ Φ(G(c)× F(c)), there exists pw ∈ Γ
such that pw(w) �= 0 and, by the continuity of pw, there exist a neighbourhood
Mw of w and µw > 0 such that µw = Inf{pw(t) : t ∈Mw}. Since the family {Mw :
w ∈Φ(G(c)×F(c))} is an open cover of a compact set of Φ(G(c)×F(c)), there
exists a finite subset {w1, . . . ,wm} of Φ(G(c)× F(c)) such that the family {Mwi :
i= 1,2, . . . ,m} covers Φ(G(c)×F(c)) and we may assume that

pc =Max
{
pwi : i= 1, . . . ,m

}
, λc =

(
1
4

)
Min

{
µwi : i= 1, . . . ,m

}
. (6.3)

Now we prove that

(ii) for each c ∈ C, there exist pc ∈ Γ, λc > 0, and a neighbourhood Wc of c,
such that

pc
(
Φ(u,v)

)
> λc ∀x ∈Wc∩C, (u,v)∈G(x)×F(x). (6.4)

Indeed, let c ∈ C be arbitrary and fixed and we define open sets Ac and Bc as
follows:

Ac×Bc =
{

(u,v) : pc
(
Φ(u,v)

)
> λc

}
, (6.5)

where pc and λc are as in (i). Since F(c) ⊂ Ac, G(c) ⊂ Bc, F, and G are upper
semicontinuous, there exist neighbourhoodsUc and Vc of c, such that F(x)⊂Ac
for x ∈ Uc ∩C, and G(y) ⊂ Bc for y ∈ Vc ∩C. Consequently, we may assume
that Wc =Uc∩Vc.

Finally, for each c ∈ C, let pc, λc, and Wc be as in (ii). Since the family {Wc :
c ∈ C} is an open cover of a compact set of C, there exists a finite subset {c1, . . . ,
cn} of C such that the family {Wci : i= 1, . . . ,n} covers C and we may assume that

p =Max
{
pci : i= 1, . . . ,n

}
, λ=Min

{
λci : i= 1, . . . ,n

}
. (6.6)

(b) If F andG do not have a Φ-coincidence inC, let p and λ be as in (a) and let
c ∈ C be arbitrary and fixed. Observe that, for any u∈G(c), the continuous map
p(Φ(u,·)) attains its minimum on a compact set F(c). Let k : G(c)× F(c)→ R
be a map defined by the formula k(u,v) = p(Φ(u,v))−Min{p(Φ(u,w)) : w ∈
F(c)}. Obviously, k(u,v) > 0 for each (u,v)∈G(c)×F(c) and, for each u∈G(c),
there exists v ∈ F(c) such that k(u,v)= 0. �

Example 6.2. Let E = C, U = {c ∈ E : |c| = 1, |Arg(c)| ≤ π/4}, U1 =−U + 21/2,
V1 = {w : w = tc, 0 ≤ t ≤ 1, c ∈ U1}. Let C = U1 ∪ (−U1) and let F : C → 2E,
G : C → 2E be defined by F(c) = −V1 for c ∈ U1, F(c) = V1 for c ∈ −U1, and
G=−F. Then F and G satisfy the assumptions of Theorem 6.1(b) for Φ defined
by Φ(u,v)= u− v, (u,v)∈G(c)×F(c), c ∈ C. The sets C, F(C), G(C), F(c), and
G(c) are nonconvex for all c ∈ C. Moreover, C ⊂ F(C), C ⊂ G(C), the sets F(C)
and G(C) are not contained in C and any c ∈ C is a coincidence of F and G.
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7. Coincidences and fixed points for continuous single-valued maps
on not necessarily convex sets in locally convex spaces

Two maps f : C → E and g : C → E have a Φ-coincidence, where Φ : g(C)×
f (C)→ E, if Φ(g(c), f (c))= 0 for some c ∈ C; this point c is called a Φ-coinci-
dence point for f and g. In particular, a Φ-coincidence point is a coincidence
point if Φ is of the form Φ(u,v) = u− v for (u,v) ∈ g(C)× f (C). We say that
c ∈ C is a Φ-fixed point for f : C→ E where Φ : C× f (C)→ E, if Φ(c, f (c))= 0.
In particular, a Φ-fixed point is a fixed point if Φ is of the form Φ(c,v) = c− v
for (c,v)∈ C× f (C).

For maps defined on convex sets, there are many variations, generalizations,
and applications (see, e.g., [1, 10, 13, 24, 25, 31, 32, 34, 36, 38, 41, 42, 43, 46]) of
the well-known Fan minimax inequality [20], Hartman-Stampacchia variational
inequality [26], and Iohvidov theorem [29].

In this section, we will give further applications of Theorem 5.4. In partic-
ular, we derive some minimax theorem (Theorem 7.1), Hartman-Stampacchia
type variational inequalities (Theorem 7.2), and a theorem of Iohvidov type
(Theorem 7.3(b)) for maps on not necessarily convex sets. One of them will be
used later to prove new results concerning Φ-coincidences and Φ-fixed points
(in particular, coincidences and fixed points) of continuous single-valued maps
on not necessarily convex sets (Theorem 7.4).

A real map ψ, defined on a topological vector space E, is said to be lower
semicontinuous (upper semicontinuous) on E if, for each real number µ, the set
{x ∈ E : ψ(x) > µ} ({x ∈ E : ψ(x) < µ}) is open.

A real map, ψ defined on a convex setA of a vector space E, is said to be quasi-
concave (quasi-convex) on A if, for each real number µ, the set {a∈ A : ψ(a) >
µ} ({a∈A : ψ(a) < µ}) is convex.

As a consequence of Theorem 5.4, we obtain the following theorem.

Theorem 7.1. Let C be a nonempty compact set (not necessarily convex) in a
Hausdorff topological vector space E over K. Let f : C→ E and g : C→ E be con-
tinuous maps on C and let f (C) be convex.

(a) Let Ψ : g(C)× f (C)→R be a map such that (i) for each v ∈ f (C), Ψ(·,v)
is a lower semicontinuous map on g(C); (ii) for each u∈ g(C), Ψ(u,·) is a quasi-
concave map on f (C). Then there exists c ∈ C such that

Sup
{
Ψ
(
g(c), f (t)

)
: t ∈ C}≤ Sup

{
Ψ
(
g(s), f (s)

)
: s∈ C}. (7.1)

Let, additionally, (iii) Ψ(g(s), f (s))≤ 0 for all s∈ C. Then there exists c ∈ C such
that

Ψ
(
g(c), f (t)

)≤ 0 ∀t ∈ C. (7.2)

(b) Let Ω : g(C)× f (C)→ R be a map such that (iv) for each v ∈ f (C), the
map Min{Ω(·,w) : w ∈ f (C)}−Ω(·,v) is lower semicontinuous on g(C); (v) for
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each u∈ g(C), Ω(u,·) is a quasi-convex map on f (C). Then there exists c ∈ C such
that

Ω
(
g(c), f (c)

)≤Ω
(
g(c),w

) ∀w ∈ f (C). (7.3)

Proof. (a) If µ= Sup{Ψ(g(s), f (s)) : s∈ C}, then the setK defined byK = {(g(t),
f (s)) ∈ g(C)× f (C) : Ψ(g(t), f (s)) ≤ µ} satisfies the assumptions of Theorem
5.4 and thus, there exists c ∈ C such that {g(c)}× f (C)⊂ K , that is, Ψ(g(c),v)≤
µ for all v ∈ f (C). This yields the assertion.

(b) Let Ψ(u,v) = Min{Ω(u,w) : w ∈ f (C)} −Ω(u,v). The map Ψ satisfies
conditions (i) and (ii) on g(C)× f (C). Moreover, for each u∈ g(C), there exists
v ∈ f (C) such that Ψ(u,v)= 0 and, by the assertion of (a), we get

Sup
{
Ψ
(
g(s), f (s)

)
: s∈ C}≥ 0. (7.4)

Thus, there exists c ∈ C such that Ψ(g(c), f (c))≥ 0. �

If E is a locally convex Hausdorff topological vector space over K and E′

denotes the topological vector space of continuous linear functionals on E, let
〈λ; x〉 denote the pairing between λ in E′ and x in E.

Now, we show the following theorem.

Theorem 7.2. Let C be a nonempty compact set (not necessarily convex) in a lo-
cally convex Hausdorff topological vector space E over K. Let f : C→ E and g : C→
E be continuous maps on C and let f (C) be convex. Let Φ : g(C)× f (C)→ E be a
continuous map such that

Φ
(
u,µ1v1 +µ2v2

)= µ1Φ
(
u,v1

)
+µ2Φ

(
u,v2

)
(7.5)

holds for all u∈ g(C), v1,v2 ∈ f (C) and µ1 ≥ 0, µ2 ≥ 0 with µ1 +µ2 = 1.
(a) If Γ = {pα : α ∈ Z} is the set of all continuous seminorms pα on E, α ∈ Z,

{pα1 , pα2 , . . . , pαn} is a finite subset of Γ and pα = pα1 + pα2 + ···+ pαn , then there
exists at least one c ∈ C such that, for each w ∈ f (C),

pα
[
Φ
(
g(c), f (c)

)]≤ pα
[
Φ
(
g(c),w

)]
. (7.6)

(b) Let T : g(C)→ E′ be continuous. Then there exists c ∈ C such that

Inf
{

Re
〈

(T ◦ g)(c);Φ
(
g(c), f (t)

)〉
: t ∈ C}

≥ Inf
{

Re
〈

(T ◦ g)(s);Φ
(
g(s), f (s)

)〉
: s∈ C}. (7.7)

Let, additionally, Φ(g(s), f (s))= 0 for all s∈ C. Then there exists c ∈ C such that

Re
〈

(T ◦ g)(c);Φ
(
g(c), f (t)

)〉≥ 0 ∀t ∈ C. (7.8)
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(c) Let h : g(C)→ E and L : [(IE − h) ◦ g](C)→ E′ be continuous. Then there
exists c ∈ C such that

Inf
{

Re
〈
L
[
g(c)−h(g(c)

)]
;Φ
(
g(c), f (t)

)〉
: t ∈ C}

≥ Inf
{

Re
〈
L
[
g(s)−h(g(s)

)]
;Φ
(
g(s), f (s)

)〉
: s∈ C}. (7.9)

Let, additionally, Φ(g(s), f (s))= 0 for all s∈ C. Then there exists c ∈ C such that

Inf
{

Re
〈
L
[
g(c)−h(g(c)

)]
;Φ
(
g(c), f (t)

)〉
: t ∈ C}≥ 0 ∀t ∈ C. (7.10)

Proof. (a) We denote Ω= pα ◦Φ and use Theorem 7.1(b).
(b) Let Ψ : g(C)× f (C)→R be a map of the form

Ψ(u,v)=−Re
〈
T(u);Φ(u,v)

〉
. (7.11)

Then Ψ satisfies the conditions of (iv) and (v) and, consequently, there exists
c ∈ C such that

Inf
{

Re
〈

(T ◦ g)(c);Φ
(
g(c), f (t)

)〉
: t ∈ C}

≥ Inf
{

Re
〈

(T ◦ g)(s);Φ
(
g(s), f (s)

)〉
: s∈ C}. (7.12)

(c) We use (b) for T = L◦ (IE−h). �

Our new coincidence theorem does not require convexity.

Theorem 7.3. Let C be a nonempty compact set (not necessarily convex) in a lo-
cally convex Hausdorff topological vector space E over K. Let Γ be the set of all
continuous seminorms p on E. If f : C→ E and g : C→ E are continuous on C, if
f (C) is convex, and if Φ : g(C)× f (C)→ E is a continuous map such that

Φ
(
u,µ1v1 +µ2v2

)= µ1Φ
(
u,v1

)
+µ2Φ

(
u,v2

)
(7.13)

holds for all u∈ g(C), v1,v2 ∈ f (C) and µ1 ≥ 0, µ2 ≥ 0 with µ1 +µ2 = 1, then
(a) either f and g have a Φ-coincidence in C or there exist c ∈ C and p ∈ Γ,

such that

0 < p
[
Φ
(
g(c), f (c)

)]=Min
{
p
[
Φ
(
g(c),w

)]
:w ∈ f (C)

}
; (7.14)

(b) if, for each u∈ g(C), there is some v ∈ f (C) with Φ(u,v)= 0, then f and g
have a Φ-coincidence in C.
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Proof. (a) Denote Aα = {t ∈ C : pα[Φ(g(t), f (t))] = 0}, α ∈ Z. Obviously, Aα
is a closed subset of C and thus compact, α ∈ Z. Assume that the second as-
sertion does not hold, that is, for each point t ∈ C and for any pα ∈ Γ such
that pα[Φ(g(t), f (t))] > 0, there exists a point w ∈ f (C) with pα[Φ(g(t),w)] <
pα[Φ(g(t), f (t))].

We then prove that the above yields the first assertion, that is, that

⋂{
Aα : α∈ Z} �= ∅. (7.15)

To this aim, observe that if {pα1 , pα2 , . . . , pαn} is a finite subset of Γ and pα =
pα1 + pα2 + ··· + pαn , then, by (7.6), there exists at least one c ∈ C such that,
for all t ∈ f (C), we have pα[Φ(g(c), f (c))] ≤ pα[Φ(g(c), t)]. But, by the above
assumption, if pα[Φ(g(c), f (c))] > 0, then, for some w ∈ f (C), we obtain 0 <
pα[Φ(g(c), f (c))]≤ pα[Φ(g(c),w)] < pα[Φ(g(c), f (c))], which is impossible and
thus, pα[Φ(g(c), f (c))]= 0. Consequently, c ∈ Aα1 ∩Aα2 ∩···∩Aαn . This yields⋂{Aα : α∈Z} �=∅.

Part (b) is a simple consequence of (a). �

By using various maps Φ, f , and g, a number of variations of Theorem 7.3
can be obtained, of which the following is typical.

Theorem 7.4. Let C be a nonempty compact set (not necessarily convex) in a lo-
cally convex Hausdorff topological vector space E over K. Let Γ be the set of all
continuous seminorms p on E.

(i) If f : C→ E and g : C→ E are continuous on C and if f (C) is convex, then
we have (a) either f and g have a coincidence or there exist c ∈ C and p ∈ Γ such
that 0 < p[g(c)− f (c)] = Min{p[g(c)−w] : w ∈ f (C)}; (b) if, for each c ∈ C,
there exists λ∈K such that |λ| < 1 and λ f (c) + (1− λ)g(c)∈ f (C), then f and g
have a coincidence.

(ii) If f : C→ E is continuous on C, if f (C) is convex, and if Φ : C× f (C)→ E
is a continuous map such that Φ(c,µ1v1 +µ2v2)= µ1Φ(c,v1) +µ2Φ(c,v2) holds for
all c ∈ C, v1,v2 ∈ f (C) and µ1 ≥ 0, µ2 ≥ 0 with µ1 + µ2 = 1, then (c) either f has
a Φ-fixed point in C or there exist c ∈ C and p ∈ Γ such that 0 < p[Φ(c, f (c))]=
Min{p[Φ(c,w)] : w ∈ f (C)}; (d) if, for each c ∈ C, there is some v ∈ f (C) with
Φ(c,v)= 0, then f has a Φ-fixed point in C.

(iii) If f : C → E is continuous on C and if f (C) is convex, then we have (e)
either f has a fixed point in C or there exist c ∈ C and p ∈ Γ, such that 0 < p[c−
f (c)]=Min{p(c−w) : w ∈ f (C)}; (f) if, for each c ∈ C, there exists λ∈K such
that |λ| < 1 and λ f (c) + (1− λ)c ∈ f (C), then f has a fixed point in C.

Proof. We prove only (b). Assume that the assertion does not hold, that is, g(c) �=
f (c) for any c ∈ C. By (a), there exist a point c ∈ C and some p ∈ Γ, such that

0 < p
[
g(c)− f (c)

]=Min
{
p
[
g(c)−w] :w ∈ f (C)

}
. (7.16)
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Obviously, by the assumption, there is a number λ ∈ K such that |λ| < 1
and w = λ f (c) + (1− λ)g(c) ∈ f (C). But then w − g(c) = λ[ f (c)− g(c)] and,
by (7.16), we get 0 < p[g(c)− f (c)] ≤ p[g(c)−w] = |λ|p[g(c)− f (c)] which is
impossible because |λ| < 1. �

Example 7.5. Let E =C,

C =
{
c ∈ E :

∣∣Arg(c)−π∣∣≤ π

4
,

1
2
≤ |c| ≤ 1

}

∪
{
c ∈ E :

∣∣Arg(c)
∣∣≤ π

4
, |c| ≤ 2

}
,

(7.17)

g(c) = c and f (c) = −(c̄)2 + a, c ∈ C, where a = 21/2 + 141/2. Then C is
compact but nonconvex, f is not injective on C, f (C) = {c ∈ E : |c− a| ≤ 4,
π/2 ≤ Arg(c − a) ≤ 3π/2}, f is neither expansive nor inner and Fix( f ) =
{[−1 + (1 + 4a)1/2]/2}. For all c ∈ C, the segment [c, f (c)] contains at least two
points of f (C). Moreover, the set ∂C contains an infinite subset C0 such that, for
all c ∈ C0, the segment [c, f (c)] contains only one point of C. Thus, the assump-
tions of Theorem 7.4(b) are satisfied, but the assumptions of [19, Theorems 1
and 3] are not.
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