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The notions of relaxed submonotone and relaxed monotone mappings in Banach
spaces are introduced and many of their properties are investigated. For example,
the Clarke subdifferential of a locally Lipschitz function in a separable Banach
space is relaxed submonotone on a residual subset. For example, it is shown that
this property need not be valid on the whole space. We prove, under certain
hypotheses, the surjectivity of the relaxed monotone mappings.

1. Preliminaries

The notions submonotone and strictly submonotone mappings in Rn were intro-
duced by Spingarn in 1981 (see [11]) as a local version of monotone operators.
In the recent papers [5, 6], these notions were extended in arbitrary Banach
spaces and many of their properties were considered. It was shown in partic-
ular in [6] that the subdifferential of Pshenichnyi (see [10]) is almost strictly
submonotone almost everywhere in separable Banach spaces.

In this paper, we extend these notions to the so-called relaxed submonotone
mappings. We prove that some of the main properties of the submonotone map-
pings are valid also for the relaxed submonotone ones. We show that, in sep-
arable Banach spaces, the Clarke subdifferential of every locally Lipschitz real
valued functions is almost everywhere (in Baire sense) relaxed submonotone.
We also give an example of a Lipschitz function from R into R which Clarke
subdifferential is not relaxed submonotone on a dense set.

Firstly, we recall some definitions and notations.
We will use the following abbreviations: USC—upper semicontinuous,

UHC—upper hemicontinuous, RM—relaxed monotone, RSM—relaxed sub-
monotone, and SRSM—strictly relaxed submonotone.
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Let (E,‖ · ‖) be a Banach space with dual E∗ and P(E∗) the set of all nonempty
and bounded subsets of E∗. If A ∈ P(E) and x ∈ E∗, we denote by σ(x,A) =
supa∈A〈x,a〉—the support function of A. Here, 〈·,·〉 is the dual brackets be-
tween E and E∗.

The multifunction F : E ⊃D(F)→ P(E∗) is called locally bounded, if for ev-
ery x ∈ D(F) (D(F) is called domain of F), there exists δ > 0 such that F is
bounded on the set U(x,δ) := (x + δB)∩D(F) (B is the unit ball centered in
the origin). That is, ‖F(y)‖ := supe∈F(y)‖e‖ is bounded on y ∈ U(x,δ). If for
every x0 ∈ D(F) and every l ∈ S (where S is the unit sphere in E), there exists
δ > 0 such that F is bounded on the set

U
(
x0, e,δ

)
:=
{
x ∈ E : x 	= x0,

∥∥x− x0
∥∥ < δ,

∥∥∥∥∥ x− x0∥∥x− x0
∥∥ − e

∥∥∥∥∥ < δ

}
∩D(F),

(1.1)

then F is called directionally locally bounded. If y 	= x → y and (x − y)/‖x −
y‖→ e, we will write x→e y.

The multifunction F : X → Y , where X and Y are topological spaces, is called
USC at x, when for every open set V ⊃ F(x) there exists an open set U 
 x such
that F(y)⊂ V for every y ∈U . It is called USC when it is USC at every point of
D(F)= {x ∈ X : F(x) 	= ∅}.

The function f 0(x;h) = limsupz→x
t↓0( f (z + th)− f (z))/t is said to be Clarke’s

derivative at the point x ∈ E in the direction h∈ E for a locally Lipschitz function
f : E→R (see [2]).

The function f ′(x;h)= limt↓0( f (x+ th)− f (x))/t (if it exists) is said to be the
directional derivative at the point x (in the direction h). The set

∂ f (x)= {x∗ ∈ E∗ :
〈
h,x∗

〉≤ f 0(x;h), ∀h∈ E
}

(1.2)

is said to be Clarke’s subdifferential at x for f (see [2]).

Definition 1.1. The mapping F : D(F)→ P(E∗) is said to be RSM at x ∈ E when
the following two conditions hold:

liminf
x 	=y→ex

σ
(
y− x,F(y)

)− σ
(
y− x,F(x)

)
‖y− x‖ ≥ 0 ∀e ∈ S,

liminf
x 	=y→ex

σ
(
x− y,F(x)

)− σ
(
x− y,F(y)

)
‖y− x‖ ≥ 0 ∀e ∈ S.

(1.3)

The mapping F is said to be SRSM when

liminf
x←z 	=y→x

y−z→e0

σ
(
y− z,F(y)

)− σ
(
y− z,F(z)

)
‖y− z‖ ≥ 0 (1.4)

for every e ∈ S.
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If F satisfies Definition 1.1 with “≥” replaced by “≤,” then F will be called
relaxed subdissipative at x. Let F : D(F) → P(E∗). For given l ∈ S and x ∈
int(D(F)), we let Φx,l(t)= σ(l,F(x+ tl)).

Proposition 1.2. If F is RSM, then Φx,l is submonotone for every l ∈ S and x ∈
int(D(F)), that is,

limsup
s↑t

Φx,l(s)≤Φx,l(t)≤ liminf
s↓t

Φx,l(s) ∀t ∈R. (1.5)

Proof. Let F be RSM. If y = x+ tl, z = y + sl and s≥ 0, then

liminf
s↓0

(
σ
(
z− y,F(z)

)− σ
(
z− y,F(y)

))
‖z− y‖ ≥ 0, (1.6)

that is,

liminf
s↓0

(
sσ
(
l,F(z)

)− sσ
(
l,F(y)

))
s‖l‖ ≥ 0. (1.7)

Thus, liminf s↓0(σ(l,F(x+ (t+ s)l))−σ(l,F(x+ tl)))≥ 0. Hence, liminf s↓0Φx,l(t+
s)≥Φx,l(t). If z = y− sl, then

liminf
s↓0

(
σ
(
y− z,F(y)

)− σ
(
y− z,F(z)

))
‖z− y‖ ≥ 0, (1.8)

that is,

liminf
s↓0

(
σ
(
l,F(x+ tl)

)− σ
(
l,F
(
x+ (t− s)l

)))≥ 0. (1.9)

That is, limsups↓0Φx,l(t− s)≤Φx,l(t). �

Remark 1.3. Let the map f (·,v) be RSM at x0 for every v ∈ V where v is a pa-
rameter. If liminf in Definition 1.1 is uniform, with respect to v ∈V , we will say
that the mappings { f (·,v) : v ∈ V} are equi-RSM. The equi-SRSM multifunc-
tions are defined analogously.

The following property of RSM (SRSM) mappings is obvious.

Proposition 1.4. If the mappings { f (·,v) : v ∈ V} are equi-RSM (resp., equi-
SRSM), then the mapping F(x)= co f (x,V) is RSM (resp., SRSM).
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We finish this section with an example, showing that the class of RSM map-
pings is substantially different from the class of continuous plus submonotone
mappings.

Example 1.5. Define the mapping F : R→ P(R) as follows:

F(x)=
[

min
a∈{ f (x),g(x)}

a, max
b∈{ f (x),g(x)}

b
]
, (1.10)

where

f (x)=



[0,1] if x = k (k is integer number),
3
√
k+ 1− x if x ∈ (k,k+ 1),

g(x)=




[
3

√
−1

2
, 3

√
1
2

]
if x = k+

1
2
,

3
√
k+ 1− x if x ∈

(
k+

1
2
,k+ 1 +

1
2

)
.

(1.11)

It is easily seen that F is RSM (even SRSM) and cannot be represented as a sum
of continuous and submonotone mappings.

2. Relaxed submonotone operators

In this section, we study the main properties of RSM.

Proposition 2.1. Let F : E→ P(E∗) be directionally locally bounded at x0 ∈ E.
Then, F is RSM at x0 if and only if, for every e ∈ S and every ε > 0 there exists δ > 0
such that

σ
(
e,F(x)

)≥ σ
(
e,F

(
x0
))− ε, σ

(− e,F
(
x0
))≥ σ

(− e,F(x)
)− ε (2.1)

for every x ∈U(x0, e,δ).

Proof. Let F be RSM at x0. For every ε > 0 and every e ∈ S, there exists δ > 0 such
that

σ
(
x− x0,F(x)

)− σ
(
x− x0,F

(
x0
))

∥∥x− x0
∥∥ ≥− ε

3
,

σ
(
x0− x,F

(
x0
))− σ

(
x0− x,F(x)

)
∥∥x− x0

∥∥ ≥− ε

3
,

(2.2)

for x ∈ U(x0, e,δ). Since F(·) is directionally locally bounded at x0, there
exists δ1 ∈ (0,δ) such that F is bounded on U(x0, e,δ1), say, by b. Then for
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δ2 =min{ε/(3b),δ1} and x ∈U(x0, ε,δ2), we have

σ
(
e,F

(
x0
))≤ σ

(
x− x0,F

(
x0
))

∥∥x− x0
∥∥ + δ2b

≤ σ
(
x− x0,F(x)

)
∥∥x− x0

∥∥ +
2ε
3

≤ σ
(
e,F(x)

)
+ ε.

(2.3)

The proofs of the second inequality and the opposite direction of the proposition
are similar. �

The following lemma is a modification of a Kenderov’s lemma [8, Lemma
1.7] for monotone mappings. Here the proof is analogous.

Lemma 2.2. Let T : E→ P(E∗) be a RSM mapping, let A⊂ E∗ be a w∗-compact
and convex subset of E∗, and let T−1(A) := {x ∈ E : T(x) ⊂ A} be dense in some
open set U ⊂ E. Then T(x)⊂A for every x ∈U .

Proof. (a) Assume that T(x0) 	⊂ A for some x0 ⊂ U . Choose x∗0 ∈ T(x0) \ A.
Then, by the separation theorem, there exists e0 ∈ S1 and ε > 0 such that 〈e,x∗0 〉 >
σ(e,A) + ε,∀e ∈ B(e0, ε). Since T is RSM at x0, there exists δ ∈ (0, ε) such that

σ

(
x− x0∥∥x− x0

∥∥ ,T(x)

)
> σ

(
x− x0∥∥x− x0

∥∥ ,T(x0
))− ε ∀x ∈U

(
x0, e0,δ

)
. (2.4)

Hence, for x1 ∈ T−1(A)∩U(x0, e0,δ), e1 := (x1− x0)/‖x1− x0‖, we have

σ
(
e1,A

)≥ σ
(
e1,T

(
x1
))≥ 〈e1,x

∗
0

〉− ε > σ
(
e1,A

)
, (2.5)

a contradiction. �

Recall that a subset X1 of a topological space X is said to be residual, if X \X1

is of first Baire category.

Lemma 2.3. Let X be a topological space and let P ⊂ X be a subset. Then the set
X(P)⊂ X , defined by the properties: for every x0 ∈ X(P), either

(1) x0 ∈ P, or
(2) there exists an open set U 
 x0 and a dense subset U ′ ⊂ U such that U ′ ∩

P =∅,

is residual in X .

Proof. We have

X \X(P)= {x ∈ X : x /∈ P, ∀U 
 x open∀U ′ ⊂U dense in U,U ′ ∩P 	= ∅}.
(2.6)
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Assume that X \X(P) is dense in some open U . Then, by definition of X \X(P),
we have simultaneously (X \X(P))∩P =∅ and (X \X(P))∩P 	= ∅, a contra-
diction. �

Theorem 2.4. Every RSM mapping T : D(T)→ P(E∗) is locally bounded at the
points of some dense and open (hence residual) subset of intD(T) (assume that
intD(T) 	= ∅).

Proof. The assertion follows from Lemmas 2.2 and 2.3, applied to the sets Pn =
{x ∈ E : T(x) 	⊂ nB̄∗}, where nB̄∗ := {x∗ ∈ E∗ : ‖x∗‖ ≤ n}. Indeed, by Lemma
2.3, applied to Pn, the set E(Pn) (defined by (1) and (2) in Lemma 2.3, when X
is replaced by E) is residual in E. Define R =⋂∞n=1E(Pn) and let x0 ∈ R. Since
T(x0) is bounded, there exists n0 such that T(x0) ⊂ n0B̄∗, that is, x0 	∈ Pn0 . By
(2) of Lemma 2.3, there exists an open set Ux0 
 x0 and a dense subset U ′ ⊂Ux0

such that x 	∈ Pn0 for every x ∈ U ′, that is, T(x) ⊂ n0B̄∗ for every x ∈ U ′. Now
we apply Lemma 2.2 (since n0B̄∗ is w∗-compact) and obtain that T(x) ⊂ n0B̄∗

for every x ∈Ux0 . Obviously, the set R0 =
⋃{Ux : x ∈ R} is open and dense in E

and T is locally bounded at every x ∈ R0. �

Now we can prove the main result in this section.

Theorem 2.5. Every SRSM T : D(T)→ P(E∗) is locally bounded at every point of
intD(T) (assume that intD(T) 	= ∅).

Proof. We follow [6] where the local boundedness of strictly submonotone op-
erators is proved.

By Theorem 2.4, T is locally bounded at the points of some residual subset of
intD(T). Let x0 ∈ intD(T) be an arbitrary point and let ε > 0, e ∈ S. Since T is
SRSM at x0, it follows that there exists δ ∈ (0,1) such that the conditions

x1 	= x2,
∥∥xi− x0

∥∥ < δ, yi ∈ T
(
xi
)
,〈

x1− x2, y1
〉= max

y∈T(x1)

〈
x1− x2, y

〉
, (2.7)

either ∥∥∥∥∥ x1− x2∥∥x1− x2
∥∥ − e

∥∥∥∥∥ < δ or

∥∥∥∥∥ x1− x2∥∥x1− x2
∥∥ + e

∥∥∥∥∥ < δ, (2.8)

imply

〈
x1− x2, y1− y2

〉
∥∥x1− x2

∥∥ >−ε. (2.9)

Since U(0, e,δ/2) is open, there exists y ∈ U(0, e,δ/2) such that y1 := x0 + y ∈
intD(T), y2 := x0 − y ∈ intD(T) and T is locally bounded at yi, i = 1,2, that
is, there exist ε1 > 0 and C > 0 such that yi + ε1B ⊂ intD(T) and ‖z∗‖ < C for
every z∗ ∈ T(yi + ε1B), i= 1,2. Let ε2 ∈ (0,min{δ‖y‖/4,δ/2, ε1}). We will show



T. Donchev and P. Georgiev 25

that the set T(x0 + (ε2/2)B) is bounded. Let x ∈ x0 + ε2B/2, x∗ ∈ T(x). Then
x = x0 + z for some z∈ε2B/2. Let v∈B. We have, as in [6, page 8],

∥∥∥∥∥
(
y + ε2v/2

)
∥∥y + ε2v/2

∥∥ − e

∥∥∥∥∥ < δ,
∥∥∥∥y1 +

ε2v

2
+ z− x0

∥∥∥∥≤ δ (2.10)

and ‖x − x0‖ < ε2/2 < δ/4. For x1 = y1 + ε2v/2 + z, x2 = x, y∗i ∈ T(xi), 〈x1 −
x2, y

∗
1 〉 =maxy∗∈T(x1)〈x1− x2, y∗〉, we obtain 〈y + ε2v/2, y∗1 − x∗〉/‖y + ε2v/2‖ ≥

−ε. Hence, since x1− x2 = y + ε2v/2,

〈
y +

ε2v

2
,x∗

�
≤
〈
y +

ε2v

2
, y∗1

�
+ ε
∥∥∥∥y +

ε2v

2

∥∥∥∥
≤ C

(
‖y‖+

ε2

2

)
+ ε
(
‖y‖+

ε2

2

)

< (C+ ε)
(
δ

2
+
ε2

2

)
.

(2.11)

Analogously, we have ‖(−y + ε2v/2)/‖− y + ε2v/2‖+ e‖ < δ, ‖y + ε2v/2 + z− x0‖
< δ and as above, we obtain

〈
− y +

ε2v

2
,x∗

�
< (C+ ε)

(
δ

2
+
ε2

2

)
. (2.12)

Adding (2.11) and (2.12), we get ε2〈v,x∗〉 < (C + ε)(δ + ε2) which is true for
every v ∈ B. Hence, ‖x∗‖ < (C + ε)((δ + ε2)/ε2) which proves the locally bound-
edness of T at x0. �

Theorem 2.6. Let E be a Banach space such that E∗ is separable and let T : E→
P(E∗) be a RSM mapping with compact images on a residual subset E1 of E. Then,
T is norm to norm continuous on a residual subset of E.

Proof. Since E∗ is separable, E∗ has a countable base α = {Vi}∞i=1 of open sets.
Let �= {In : n∈N} be the set of all finite subsets of the set of natural numbers
N. For any In ∈�, define

Pn =
{
x ∈ E : ∃i∈ In : T(x) 	⊂Vi

}
. (2.13)

By Lemma 2.3, the set E2 := E1 ∩ (
⋂∞

n=1X(Pn)) is residual. Let x ∈ E2 and let
V be an open subset such that T(x) ⊂ V . Since T(x) is compact, there exist a
finite number of elements Vni ∈ α, i = 1, . . . ,m, such that T(x) ⊂⋃m

i=1Vni ⊂ V .
By Theorem 2.5 and Lemma 2.2, we obtain norm upper semicontinuity of T at
x. Applying Fort’s theorem [7, Theorem 2.95], we obtain the result. �
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Theorem 2.7. Let E be a separable Banach space and let f : E→ R be a locally
Lipschitz function. Then, the Clarke subdifferential ∂ f is RSM on a dense Gδ subset
of E.

Proof. Let {en}∞n=1 be a dense subset of E. Since f 0(·;en) is upper semicontinu-
ous (see Clarke [2]), f 0(·;en) is lower semicontinuous on a dense Gδ subset En
of E. Let E0 be the intersection of all En, n > 1. Afterwards, we use the formula
f 0(x;v)=max{〈x∗,v〉 : x∗∈∂ f (x)} (see [2, Proposition 2.1.2(b)]) and the fact
that f 0(x;·) is Lipschitz with the same Lipschitz constant L as f in a neighbor-
hood of x. Denoting ey = (y− x)/‖y− x‖, we obtain

liminf
x 	=y→ex

σ
(
y− x,F(y)

)− σ
(
y− x,F(x)

)
‖y− x‖

= liminf
x 	=y→ex

(
f 0(y;ey

)− f 0(x;ey
))

≥ liminf
x 	=y→ex

(
f 0(y;e)− f 0(x;e)− 2L

∥∥e− ey
∥∥)

≥ 0
(
using lower semicontinuity of f 0(·;e)

)
.

(2.14)

Analogously, we obtain

liminf
x 	=y→ex

σ
(
x− y,F(x)

)− σ
(
x− y,F(y)

)
‖x− y‖

= liminf
x 	=y→ex

(
f 0(x;−ey

)− f 0(y;−ey
))

≥ liminf
x 	=y→ex

(
f 0(x;−e)− f 0(y;−e)− 2L

∥∥e− ey
∥∥)

≥ 0
(
using upper semicontinuity of f 0(·;−e)

)
.

(2.15)

�

The last theorem cannot be improved. That is, there exist (globally) Lipschitz
functions f : Rn→R whose subdifferential ∂ f is not RSM at some points x.

Example 2.8. Let f : R→R be defined as follows:

f (x)=




(x− k)
√

3, x ∈
[
k,k+

1√
3

]
,

1−
(
x− k− 1√

3

) √
3√

3− 1
, x ∈

[
k+

1√
3
,k+ 1

]
.

(2.16)

Here k=±1,±2, . . . . Its subdifferential (in the sense of Clarke) is ∂ f (x)=cog(x),
where

g(x)=




√
3, x ∈

[
k,k+

1√
3

]
,

−
√

3√
3− 1

, x ∈
[
k+

1√
3
,k+ 1

]
.

(2.17)

Obviously, ∂ f (·) is not RSM at any point x = k+ 1/
√

3, k = 0,±1,±2, . . . .



T. Donchev and P. Georgiev 27

Moreover, let {en}∞n=1 be a sequence consisting of all rational numbers in the
interval (0,1). Let fn(x) be defined by

fn(x)=



(
x− k− en

)√
3, x ∈

[
k+ en,k+

1√
3

+ en

]
,

1−
(
x− k− 1√

3
− en

) √
3√

3− 1
, x ∈

[
k+

1√
3

+ en,k+ 1 + en

]
.

(2.18)

The functions fn (or − f n) are regular in the sense of Clarke (see [2, Defini-
tion 2.3.4]). By Corollary 3 to Proposition 2.3.3 and Remark 2.3.5 of [2], we
have ∂

∑k
n=1(1/n2) fn(x)=∑k

n=1(1/n2)∂ fn(x) for every k. Obviously, every fn(·)
is Lipschitz with a constant

√
3. Hence, the functions hk(x)

∑∞
n=k+1(1/n2) fn(x)

are Lipschitz with constants
√

3
∑∞

n=k+1 1/n2 = Lk. Thus,

∣∣∂hk(x)
∣∣= sup

α∈∂hk(x)
|α| ≤ Lk. (2.19)

Hence, ∂h0(x)=∑k
n=1(1/n2)∂ fn(x) + ∂hk(x). Furthermore

∣∣∣∣ ∑
n=k+1

(
1
n2

)
∂ fn(x)

∣∣∣∣≤ Lk. (2.20)

Consequently, DH(∂h0(x),
∑∞

n=1(1/n)∂ fn(x))≤ 2Lk for every k. Since limk→∞Lk
= 0, we have ∂

∑∞
n=1(1/n2) fn(x) = ∑∞n=1(1/n2)∂ fn(x). Therefore, the function

h0(x) is Lipschitz and its subdifferential ∂h0(x) is not RSM at any point t ∈ Q
(the set of the rational numbers). However, ∂h(x) is relaxed subdissipative at
every such point.

Example 2.9. There exist Lipschitz function whose subdifferentials are neither
RSM nor relaxed subdissipative at any point of a dense set. Indeed, consider
the interval [0,1]. Let 0 < t1 < t2 < ··· < T = 1/

√
2 < ··· < s2 < s1 < 1. Here ti =

T(1− 1/2i) and si = T(1 + 1/2i). Define the function f such that f (x)= 0 for x =
0,1, f (T)= 1. Furthermore, f (s2i)= f (t2i)= 1− 1/2i and f (s2i+1)= f (t2i+1)=
f (t2i)− 1/2i+1. On [ti, ti+1] and on [si+1, si] f (·) is linear. Let {rn}∞n=1 be the set
of all rational numbers and let fn(·) be defined by fn(t)= f (t− rn). Then, fn are
Lipschitz and regular in the sense of Clarke, the function g(x)=∑∞n=1(1/n2) fn(x)
is Lipschitz on R and ∂g(x)=∑∞n=1(1/n2)∂ fn(x). However, ∂g(x) is neither RSM
nor relaxed subdissipative at any point of the form x = T + rn.

Remark 2.10. Let F : R→ R be discontinuous at x0. Obviously at least one of
F(·) or −F(·) is not submonotone at x0. Furthermore, we can easily show that
the multifunction F : R→ 2R defined by F(x)= [α(x),β(x)] is RSM if and only
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if α(·) and β(·) are submonotone. Using this fact and [1, Theorem 3.2, Example
3.4], we can see that there exist functions whose subdifferential in the sense of
Clarke is not RSM on a subset of R with positive Lebesgue measure.

Remark 2.11. It is well known that there exist everywhere differentiable real
functions whose derivatives are not (locally) Riemann integrable, since their
derivatives have sets of discontinuity points with positive measures. Further-
more, we can find such functions whose derivatives are not RSM on sets with
positive measures.

3. Relaxed monotone mappings

In this section, we introduce and study the main properties of RM mappings.
The first author has studied similar properties of the so-called one sided Lips-
chitz maps (see [4]). Some of the results here are contained in [3]. We refer to
[7, 9] for the corresponding properties of the monotone operators.

Definition 3.1. The multivalued map F : D(F)→ P(E∗) is said to be RM when

σ
(
x− y,F(x)

)− σ
(
x− y,F(y)

)≥ 0 ∀x, y ∈D(F). (3.1)

The next result may be proved in the same fashion as Proposition 1.2 was.

Proposition 3.2. F(·) is RM if and only if Φx,l(·) is monotone for all l ∈ S.

Obviously every RM map is also SRSM. By Theorem 2.5, every RM map is
locally bounded in the interior of its domain. However, we can prove a stronger
result.

Theorem 3.3. If A : E→ P(E∗) is an RM mapping, then A is locally bounded at
every absorbing point of D(A).

Proof. Here we follow with modifications the method presented in [7] for mono-
tone mappings. Let x0 ∈ D(A) be an absorbing point. Without loss of gener-
ality, we may assume that the images of A are w∗-closed (since the mapping
A(x) := w∗ − clA(x) is also RM), x0 = 0, and (0,0)∈ graphA (by choosing any
x∗0 ∈ A(x0) and considering instead the operator z → A(x0 + z)− x∗0 , which is
also RM). We need to show that A is locally bounded at 0. Define the function
ϕ : E→R∪{+∞} by

ϕ(x)= sup
{〈
x− z,z∗〉 : z ∈D(A), ‖z‖ ≤ 1, z∗ ∈A(z)

}
. (3.2)

Let C = {x ∈ E : ϕ(x)≤ 1 +ϕ(0)}. The function ϕ is convex and lower semicon-
tinuous, 0 ≤ ϕ(x) for all x ∈ E, that is, C is closed, convex, and 0 ∈ C. We will
prove that C is absorbing. Let x ∈ E. By hypothesis, D(A) is absorbing, that is,
there exists λ > 0 such that A(λx) 	= ε. Let M =maxx∗∈A(λx) |x∗|, z ∈U ∩D(A),
z∗ ∈ A(z) and u∗ ∈ A(λx),〈λx − z,u∗〉 = maxx∗∈A(λx)〈λx − z,x∗〉. Since A is
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RM, we have

〈
λx− z,z∗

〉≤ 〈λx− z,u∗
〉≤ ∥∥u∗∥∥(1 + λ‖x‖)≤M

(
1 + λ‖x‖). (3.3)

Hence,

ϕ(λx)≤M
(
1 + λ‖x‖). (3.4)

Let β ∈ [0,1] such that βϕ(λx) < 1. Since ϕ is convex, we have ϕ(βλx)≤ βϕ(λx)
+ (1− β)ϕ(0) < 1 + ϕ(0). Thus, βλx ∈ C and so C is absorbing. It follows that
0∈ intC. Then there exists δ > 0 such that for x ∈ 2δU , we have ϕ(x) < 1 +ϕ(0),
that is, if ‖x‖ < 2δ, then 〈x,z∗〉 < 〈z,z∗〉+ 1 +ϕ(0) for all (z,z∗)∈ graphA with
‖z‖ < 1. If z ∈ (δB)∩D(A) and z∗ ∈A(z), we have

2δ
∥∥z∗∥∥= sup

{〈
v,z∗

〉
: ‖v‖ ≤ 2δ

}
≤ ∥∥z∗∥∥ · ‖z‖+ 1 +ϕ(0)

≤ δ
∥∥z∗∥∥+ 1 +ϕ(0),

(3.5)

which implies ‖z∗‖ ≤ (1 + ϕ(0))/δ, that is, the set {A(z), z ∈ (δB)∩D(A)} is
bounded. �

Definition 3.4. The multifunction F(·) is said to be UHC when it is USC on the
finite dimensional subspaces of E.

Lemma 3.5 (lemma of Minty). Let Ω⊂ E be convex and let A : Ω→ P(E∗) be RM
and UHC. Fix u∈Ω and z ∈ E∗. The following conditions are equivalent:

(i) σ(v−u,A(u)− z)≥ 0 for all v ∈Ω,
(ii) σ(v−u,A(v)− z)≥ 0 for all v ∈Ω.

Proof. Obviously σ(v− u,A(u)− z) = σ(v− u,A(u))− 〈v− u,z〉. Hence, σ(v−
u,A(v)− z)− σ(v−u,A(u)− z)≥ 0, that is, (i) implies (ii).

Conversely, for w ∈Ω and t ∈ [0,1], we let v = tu+ (1− t)w, that is, v−u=
(1− t)(w−u). If

σ
(
v−u,A(v)− z

)= (1− t)σ
(
w−u,A(v)− z

)≥ 0, (3.6)

then

σ
(
w−u,A(v)− z

)≥ 0. (3.7)

Since A is UHC, there exists

0≤ lim
t→1+

supσ
(
w−u,A(v)− z

)≤ σ
(
w−u,A(u)− z

)
. (3.8)

�

We will use the following lemma.
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Lemma 3.6. Let D ⊂ Rn be compact convex nonempty subset. Let A : D→ P(Rn)
be USC with convex compact images. Then, there exists x0 ∈ D such that σ(y −
x0,Ax0)≥ 0 for all y ∈D.

Proof. By [7, Theorem 4.41], there exists a continuous function gn : Rn → Rn

with graph(gn) ⊂ graph(IA) + (1/n)B. By Brouwer’s theorem (see [9] for in-
stance) for the mapping x �→ ProjD(gn(x)), there exists a fixed point xn of it, that
is, xn = ProjD(gn(xn)). Therefore,

0≤−〈y− xn,gn
(
xn
)− xn

〉
. (3.9)

Since D is compact, we may assume that xn → x0. Passing to limits, we obtain
0≤ 〈y− x0,x

∗
0 〉, where x∗0 ∈A(x0), therefore 0≤ σ(y− x0,A(x0)). �

Now we are ready to prove the main result in this section.

Theorem 3.7. Let E be a Banach space with dual E∗. Let F : B̄∗ → P(E) be UHC
and RM mapping with convex strongly compact values. If σ(−x,F(x)) < 0 for all
x ∈ ∂B∗, then there exists x0 ∈ B̄∗ with F(x0)
 0.

Proof. For every y ∈ B̄∗ consider the set S(y) = {x ∈ B̄∗ : σ(y − x,F(y)) ≥ 0}.
Let {xi}∞i=1 ⊂ S(y) and let xi → x0 weakly∗ in E∗. Let yi ∈ F(y) such that 〈y −
xi, yi〉 = σ(y− xi,F(y)). Since F(y) is strongly compact, passing to subsequences,
we have yi→ y0 strongly in E. Therefore, 〈y− xi, yi〉 → 〈y− x0, y0〉, that is, σ(y−
x0,F(y)) ≥ 0. Consequently, S(y) is weakly∗ closed. Since S(y) ⊂ B̄∗, S(y) is
weakly∗ compact. By Lemmas 3.5 and 3.6, we obtain that the family {S(y) : y ∈
B̄∗} has finite intersection property. By compactness, there exists x0 ∈∩{S(y) :
y ∈ B̄∗}. By Lemma 3.5, we obtain σ(y− x0,F(x0))≥ 0 for every y ∈ B̄∗. Taking
y = 0, we conclude that x0 cannot belong to the boundary of B∗, so x0 ∈ intB∗,
which implies 0∈ F(x0). �
Corollary 3.8. Let F : E∗ → P(E) be UHC and RM mapping with convex and
strongly compact values. If lim‖x‖→∞ σ(−x,F(x))/‖x‖ =−∞, that is, F is coercive,
then F is surjective.

Proof. Let y ∈ E. Consider the map A(x) = F(x)− y. Obviously A satisfies the
assumptions of Theorem 3.7 for the set U∗ = rB̄∗ where r is sufficiently large.
Therefore, there exists x0 ∈ E such that A(x0)
 0, that is, y ∈ F(x0). �
Remark 3.9. Let E be reflexive. In this case E=(E∗)∗. Therefore, due to Corollary
3.8, if F : E→ P(E∗) is RM and coercive, then F is surjective. That is, [3, Corol-
lary 2] follows from Corollary 3.8. Furthermore, [3, Theorem 5] follows from
Theorem 3.7.
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