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ON A MULTIPLICATIVITY UP TO HOMOTOPY OF THE
GUGENHEIM MAP
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Abstract. In the category of differential algebras with strong homotopy
there is a Gugenheim’s map {ρi} : A∗ → C∗ from Sullivan’s commutative
cochain complex to the singular cochain complex of a space, which induces
a differential graded coalgebra map of appropriate Bar constructions. Both
(BA∗, dBA∗ ,4, ) and (BC∗, dBC∗ ,4, ) carry multiplications. We show that
the Gugenheim’s map

B{ρi} : (BA∗, dBA∗ ,4) → (BC∗, dBC∗ ,4)

is multiplicative up to homotopy with respect to these structures.
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Let J denote either the category of C∞ manifolds (possibly with boundaries
and corners) and C∞-maps, or that of simplicial complexes and simplicial maps.
Let V denote the category of graded vector spaces over the reals or rationals, and
let A∗ : J → V denote either the classical de Rham functor of differential forms,
or Sullivan’s functor of rational differential forms; see [11]. By C∗ : J → V
we denote the functor of either normalized singular differentiable cochains or
normalized simplicial cochains. The differentiable cochain (chain) functor is
homology equivalent to usual (continuous) singular functors. This is a well-
known fact; for the proof see, for example, [23].

The transformation of functors ρ : A∗ → C∗ is defined by

〈ρω, c〉 =
∫

c

ω,

where c is any singular (or simplicial) chain. This transformation was first
constructed in the 1930’s in the context of smooth manifolds and ordinary
differential forms. The de Rham theorem says, in either case, that ρ induces a
homology isomorphism. Additionally, although ρ itself is not a map of algebras,
the theorem asserts that the isomorphism

ρ∗ : H(A∗) → H(C∗)

is a map of algebras [8].
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Gugenheim in [12] proved that ρ = ρ1 : A∗ → C∗ can be extended to a map
in DASH (the category of differential algebras with strong homotopy) [13], [21],
[22]. This means that there exists a whole family of “higher homotopies”

ρi : A∗⊗ i → C∗ (i ≥ 1),

where A∗⊗ i = A∗ ⊗ · · · ⊗ A∗ (i times), such that

Dρi =
i−1∑

j=1

(−1)j
{
φ(ρj ⊗ ρi−j)− ρi−1(1

(i−j) ⊗ φ⊗ 1(i−j−1))
}
.

Here Dρi = dC∗ · ρi + (−1)i ρi · d⊗A∗ , where d⊗A∗ is a usual differential on A∗⊗ i,
ρi has degree −i + 1 and φ stands for multiplication. Thus

φ(α⊗ β) = α ∧ β (exterior product) if α, β ∈ A∗(X)

= α ^ β (cup product) if α, β ∈ C∗(X).

For i = 1, 2 we get

Dρ1 = 0, Dρ2 = ρ1φ− φ(ρ1 ⊗ ρ1).

The latter statement contains, of course, the classical result that H(ρ) is mul-
tiplicative.

It is well known that any DASH map {ρi} : A∗ → C∗ induces a coalgebra
map of appropriate Bar constructions

B{ρi} : (BA∗, dBA∗ ,4) → (BC∗, dBC∗ ,4);

both (BA∗, dBA∗ ,4) equipped with shuffle µsh and (BC∗, dBC∗ ,4) equipped
with product µE introduced by Baues in [3], [4] are Hopf algebras. In this
paper we shall prove the following

Theorem 1. Gugenheim’s map

B{ρi} : (BA∗, dBA∗ ,4, µsh) → (BC∗, dBC∗ ,4, µE)

is multiplicative up to homotopy.

1. Review of the Notation and Known Results

In this section we recollect the definitions and facts we need; most can be
found in [14], [15], [21]. Since these results are not new, we omit their proofs.

1.1. DG module. Let R be a commutative ring with identity 1R. Let {Mi }i∈Z
be a sequence of R-modules; M =

∑
Mi is called a graded R-module (through-

out this paper we assume Mi = 0 for i < 0). An element x ∈ Mi is said
to be homogeneous of degree i, in which case we write |x| = i. A differential
graded module (DGM) is a graded module M together with an endomorphism
d ∈ End (M) of degree +1 and square zero. Given DGMs M, N and a ho-
momorphism f : (M,dM) → (N, dN) of degree k, define the differential of f
by Df = dNf − (−1)kfdM . The category of DGMs is denoted by DM ; its
morphisms are chain maps, i.e., maps f of degree 0 with Df = 0.
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1.2. DG algebra. DA denotes the category of augmented DGAs with unit. If
(A, d, µ, η, ε) ∈ DA, then the multiplication µ : A⊗A → A, the unit η : R → A,
the augmentation ε : A → R and the differential d : A → A satisfy the usual
requirements. We say that A is connected if η : R → A0 is an isomorphism. A
morphism in DA is a chain map preserving all structure. Let IA = ker(ε) be

the augmentation ideal. The exact sequence 0 → IA
i→ A

ε→ R → 0 defines a
functor I : DA → DM ; the multiplication µ induces a map Iµ : IA⊗ IA → IA
given by i(Iµ) = µ(i⊗ i).

1.3. DG coalgebra. DC denotes the category of coaugmented differential
graded coalgebras (DGC’s) with counit. If (C, ∆, d, η, ε) ∈ DC, then the co-
multiplication ∆ : C → C ⊗ C, the counit ε : C → R, the coaugmentation
η : R → C and the differential d : C → C satisfy the usual requirements. We
say that C is connected if ε : C0 → R is an isomorphism. A morphism in DC
is a chain map preserving all structure. Let JC = co ker(η) be the coaugmen-

tation ideal. The exact sequence 0 → R
η→ C

p→ JC → 0 defines a functor
J : DC → DM ; the comultiplication ∆ induces a map J∆ : JC → JC ⊗ JC
given by (J∆)p = (p⊗ p)∆.

1.4. DG Hopf algebra. A differential graded Hopf algebra (DGHA) is a
connected DGA (A, d, µ, η, ε) together with a coassociative comultiplication
∆ : A → A ⊗ A such that (A, ∆, d, η, ε) is a DGC and ∆ is a map in DA.
The DGHA A is cocommutative if T∆ = ∆ and commutative if µT = µ, where
T : A⊗A → A⊗A is the twisting involution given by T (a⊗ b) = (−1)|a||b|b⊗a.
Let HA denote the category of DGHA’s; morphisms in HA are the coalgebra
maps f in DA, i.e., (f ⊗ f)∆ = ∆f .

1.5. Suspension. The suspension (resp. desuspension) functor s : DM →
DM (resp. s−1 : DM → DM) is given by (sM)n = Mn−1 and dsM = −dM .
On an object M, the map s : M → sM has degree +1, is the identity in each
dimension and Ds = 0. If f : M → N has degree k, so does sf : sM → sN
and the following diagram commutes:

M
f−−−→ N

s

y s

y

sM
sf−−−→ sN.

1.6. Tensor algebra. The free tensor algebra T (M) on a graded module M is
the direct sum T (M) =

∑
i≥0 M⊗i, where M⊗0 = R, with multiplication given

by

µ(a1 · · · ai)⊗ (ai+1 · · · an) = (a1 · · · an).

Let i1 : M → T (M) be the injection. T (M) has the following universal prop-
erty: If A is any DGA and α : M → IA is any homomorphism, then there is a
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unique algebra map fα : T (M) → A commuting the following diagram:

M
i1−−−→ T (M)

α

y fα

y

IA
i−−−→ A

An explicit formula for fα is given by

fα = µn
A(α⊗n ⊗ i⊗n),

where µ1
A = Id, µ2

A = µA and µn
A = µA(µn−1

A ⊗ Id).
Let (C, d,4, η, ε) ∈ DC. The Cobar construction Ω(C, d,4, η, ε) due to

Adams [1] is defined as a free tensor algebra T (s−1(JC)) whose differential dΩ

is defined on generators s−1JC by

dΩ · i1 = −i1(s−1ds) + i2(s−1 ⊗ s−1)(J∆)s,

where ik : (s−1JC)⊗k → T (s−1JC) is an obvious inclusion.
Thus the Cobar construction of a DGC is a DGA with 1 : R → R as unit

and augmentation.

1.7. Tensor coalgebra. The cofree tensor coalgebra T c (M) on a graded mod-
ule M is the direct sum T c (M) =

∑
i≥0 M⊗i, where M⊗0 = R, with the diagonal

given by

∆(a1 · · · an) =
n∑

i=0

(a1 · · · ai)⊗ (ai+1 · · · an).

Let P1 : T c(M) → M be the projection. T c (M) has the following universal
property: If C is any DGC and α : JC → M is any homomorphism, then there
is a unique coalgebra map fα : C → T c(M) commuting the following diagram:

T c(M)
P1−−−→ M

fα

x α

x
C

p−−−→ JC

An explicit formula for fα is given by

fα =
∞∑

i=1

(p⊗i ⊗ α⊗i)∆i
C ,

where ∆1
C = Id, ∆2

C = ∆C and ∆i
C = (∆i−1

C ⊗ Id)∆C .
Let (A, d, µ, η, ε) ∈ DA. The Bar construction on DGA (A, d, µ, η, ε) is a

DGC T c (s(IA)) with differential (coderivation)

dBA[a1| · · · |an] =
n−1∑

i=0

[a1| · · · |ai|dai+1|ai+2| · · · |an]

+
n−2∑

i=0

[a1| · · · |ai|µ(ai+1 ⊗ ai+2)|ai+3| · · · |an], (1.7.1)
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where a = (−1)|a|+1a, and degree of [a1| · · · |an] ∈ BA is
∑n

i=1 |ai|+ n.
Thus the Bar construction of DGA is a DGC with 1 : R → R as counit and

coaugmentation.
Let Sp,q denote shuffle permutations in the set of all permutations

∑
p+q, i.e.,

σ ∈ Sp,q implies σ(1) < · · · < σ(p), σ(p + 1) < · · · < σ(p + q). The shuffle
product µsh : BA⊗BA → BA is given by

µsh ([a1| · · · |ap]⊗ [ap+1| · · · |ap+q]) =
∑

σ∈Sp,q

ε(σ)[aσ−1(1)| · · · |aσ−1(p+q)],

where ε(σ) = +1 if the number of transpositions is even, and ε(σ) = −1 if the
number of transpositions is odd. If DGA (A, d, µ, η, ε) is a commutative algebra,
then differential dBA : BA → BA on the Bar construction is a derivation of µsh,
in which case (BA, ∆, dm, µsh) is a DGHA.

1.8. Twisting cochain. In this section we recall briefly the definition of twist-
ing cochains of Brown [7] and some notions and known facts connected with
it.

Definition 2. Let (C, dC ,4, εC , ηC) be a DGC and (A, dA, µ, εA, ηA) DGA.
The complex Hom(C, A) is defined as a DGA with differential

Df = d · f − (−1)| f |f · dC

and multiplication

f ^ g = µ(f ⊗ g)4, f, g ∈ Hom(C,A).

A neutral element in Hom(C, A) is a composition e : C
εC→ R

ηA→ A.

It is easy to check that

D(f ^ g) = Df ^ g + (−1)| f |f ^ Dg.

From now on, throughout the paper, we shall work only with the augmen-
tation and coaugmentation ideals of DGA and DGC. Thus we consider the
complex Hom(JC, IA).

Definition 3. An element t ∈ Hom(JC, IA) of degree -1 is a twisting co-
chain in the sense of Brown [7] if it satisfies

Dt = −t ^ t.

It is easy to show that for any DGA (A, dA, µ, εA, ηA) (resp. DGC
(C, dC ,4, εC , ηC)) the natural map

p1 : BA → A (resp. i1 : C → ΩC)

is a twisting cochain.
Let α : JC → IA be a map of degree -1. By the universal properties,

mentioned in Sections 1.6. and 1.7, any such homomorphism uniquely defines an
algebra map fα : ΩC → A and a coalgebra map gα : C → BA. Homomorphisms
fα : ΩC → A and gα : C → BA are chain maps, i.e., maps in DA and DC
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respectively, if and only if α : JC → IA is a twisting cochain; see [15], for
example. Thus there are bijections

HomDC(C,BA) ↔ T (JC, IA) ↔ HomDA(ΩC, A), (1.8.3)

where by T (JC, IA) we denote the set of all twisting cochains from JC to IA.
Berikashvili in [5] introduced the following equivalence relation on the set

T (JC, IA).

Definition 4. Two twisting cochains α, α′ : JC → IA are equivalent (we
write α ∼ α′) if there exists a homomorphism

β : JC → IA

of degree 0 satisfying the identity

α− α′ = βdC − dAβ + β ^ α′ − α ^ β.

The set T (C, A) factored by this equivalence relation is denoted by D(C, A).
Let f : A → B be a map in DA. It is trivial to check that for any α ∈

T (JC, IA) the composition Ifα, where If : IA → IB, is a twisting cochain in
T (JC, IB). Moreover, if α ∼ α′, then Ifα ∼ Ifα′. Thus for any DGC C a
DGA map f : A → B induces a set map

f∗ : D(JC, IA) → D(JC, IB)

defined by [α] 7−→ [Ifα]. Moreover, Berikashvili in [6] proved the following
result.

Theorem 5. Let f : A → B be a map in DA inducing an isomorphism in
homology. Then

f∗ : D(JC, IA) → D(JC, IB)

is a bijection.

Let f = {fi} : A → B be a DASH map. Kadeishvili in [16] showed that if
α ∈ T (JC, IA), then

φ =
∑

i

Jfi(α⊗ · · · ⊗ α)4i

belongs to T (JC, IB). Thus for any DGC C a DASH map f = {fi} : A → B
induces a set map

T (f) : T (JC, IA) → T (JC, IB)

(α 7−→ ∑
i Jfi(α⊗ · · · ⊗ α)J4i), which itself induces a set map

f∗ : DT (JC, IA) → D(JC, IB)

defined by [α] 7−→ [
∑

i Jfi(α ⊗ · · · ⊗ α)J4i]. Kadeishvili in [16] generalized
Theorem 5 in the following way.
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Theorem 6. Let f = {fi} : A → B be a DASH map, such that its first
component f1 : A → B induces an isomorphism in homology. Then

f∗ : D(JC, IA) → DT (JC, IB)

is a bijection.

Remark 7. Note that the surjectivity of f∗ : D(JC, IA) → DT (JC, IB) im-
plies that for any twisting cochain β : JC → IB there exists a twisting cochain
α : JC → IA making the diagram

JC
α−→ IA

β↘ {Ifi}
y

IB

homotopy commutative; i.e., β ∼ ∑
i Jfi(α⊗ · · · ⊗ α)J4i in T (JC, IB).

It is known that if α, α′ : JC → IA are equivalent twisting cochains, then
fα, fα′ : ΩC → A (resp. gα, gα′ : C → BA) are homotopic in DA (resp. DC);
see [17], for example.

We complete this section with

Theorem 8 ([18]). Let K be a simplicial set.
a) Then in DGA A = Hom(C∗(K), ΩC∗(K)⊗ΩC∗(K)) there exists an element

E of degree −1, satisfying the following conditions
I) DE = −E ^ E (i.e., E is a twisting cochain)
II) The components E1,0 : C → C ⊗R and E0,1 : C → R⊗ C are given by

E1,0(x) = −x⊗ 1,

E0,1(x) = −1⊗ x.

III) En,0 = E0,n = 0 when n 6= 1.
b) If E and E ′ are elements of A of degree −1, satisfying I) and having

E1,0 = E ′1,0 and E0,1 = E ′0,1, then there exists P ∈ A of degree 0 having
P 0,0 = 0 and satisfying

E ′ = E + P ^ E − E ′ ^ P −DP.

In the next section we shall prove the dual theorem for Sullivan’s functor A∗

[10], [11], [19].

2. Sullivan Functor and Some Key Lemmas

We begin this section with a short sketch of the Sullivan functor A(K) mainly
following [10], [19]. For more details see [11].

A simplicial object K with values in a category C is a sequence {Kn}n≥0 of
objects in C, together with C-morphisms

di : Kn+1 → Kn, 0 ≤ i ≤ n + 1 and sj : Kn → Kn+1, 0 ≤ j ≤ n,

called face and degeneracy operators, satisfying certain identities, see [20] for
example.
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A simplicial morphism f : K → L between two such simplicial objects is a
sequence of C-morphisms ϕ : K → L commuting with di and sj.

A simplicial set K is a simplicial object in the category of sets. Thus it
consists of a sequence of sets {Kn}n≥0 together with set maps.

A simplicial cochain algebra A is a simplicial object in the category of cochain
algebras: it consists of a sequence of cochain algebras {An}n≥0 with an appro-
priate face and degeneracy operators. Similarly, simplicial cochain complexes,
simplicial vector spaces . . . are simplicial objects in the category of cochain
complexes, vector spaces . . . .

2.1. The construction of A(K). Let K be a simplicial set, and let A be a
simplicial cochain complex or a simplicial cochain algebra. Then

A(K) = {Ap(K)}p≥0

is an “ordinary” cochain complex (or cochain algebra) defined as follows:
• Ap(K) is the set of simplicial set morphisms from K to Ap.
Thus an element Φ ∈ Ap(K) is a mapping that to each n-simplex σ ∈ Kn

(n ≥ 0) assigns an element Φσ ∈ (Ap)n such that Φdiσ = diΦσ and Φsiσ = siΦσ.
• Addition, scalar multiplication and differential are given by

(Φ + Ψ)σ = Φσ + Ψσ, (λ · Φ)σ = λ · Φσ and (dΦ)σ = dΦσ.

• If A is a simplicial cochain algebra, multiplication in A(K) is given by

(Φ ·Ψ)σ = Φσ ·Ψσ.

• If ϕ : K → L is a morphism of simplicial sets, then A(ϕ) : A(L) → A(K)
is a morphism of cochain complexes (or cochain algebras) defined by

(A(ϕ)Φ)σ = Φϕσ.

• If Θ : A → B is a morphism of simplicial cochain complexes (or simplicial
cochain algebras), then Θ(K) : A(K) → B(K) is a morphism defined by

(Θ(K)Φ)σ = Θ(Φσ).

•When X is a topological space, we write A(X) for A(S∗(X)) where S?(X) =
{Sn(X)}n≥0 is a simplicial set of singular simplices σ : 4n → X on the topo-
logical space X.

Remark 9. Note that the construction A(K) is covariant in A and contravari-
ant in K.

Let us denote by 4n the Euclidean n-simplex (
n∑

i=0
ti = 1, ti ≥ 0) in Rn+1and

by 4n
di

À
σi

4n+1 the ordinary coface and codegeneracy operators given by

di(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn) for 0 ≤ i ≤ n + 1,

and

σi(t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1) for 0 ≤ i ≤ n.
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Let 4 be a category whose objects are sets 4n, while morphisms are compo-
sitions of di and σi. A simplicial object in a category B we call any contravariant
functor K : 4→ B

Let us denote by ADR(4n) the classical cochain algebra of the C∞ real dif-
ferential forms on 4n. The (differentiable) maps di and σi induce face and
degeneracy operators

ADR(4n−1)
di← ADR(4n)

si→ ADR(4n+1)

such that the family (ADR(4n), di, si) is a commutative simplicial DGA, i.e., the
simplicial object in the category of commutative differential algebras over the
reals. For the sake of simplicity we remove4n from the notation by writing ADR

for ADR(4n). The Poincaré lemma allows us to prove that each ADR(4n) =
(ADR)n is acyclic (see [19], for example).

Let us denote by AQ a commutative simplicial DGA (over rationals), where
(AQ)n is a subspace in (ADR)n consisting of those differential forms

∑
ωi1···ipdti1 ∧ · · · ∧ dtip

coefficients ωi1···ip of which relative in the barycentric coordinates (t0, t1, . . . tn)
are rational polynomials.

For a classical homotopy operator we have

h : Ap
DR(4n) → Ap−1

DR (4n),

with 1(ADR)p
n

= dh + hd, h(AQ)p
n ⊂ (AQ)p−1

n . Thus (AQ)n is acyclic as well (see
[19], for example).

Definition 10. The Sullivan functor on a topological space X is defined as
a DGA A∗(X, Q) with

Ap(X, Q) = Hom(S∗(X), (AQ)p),

i.e., an element Φ ∈ Ap(X, Q) is a function assigning to each singular n-simplex
of X a polynomial p-form on 4n, n ≥ 0, compatible with the face and degen-
eracy maps (see the construction of A(K) at the beginning of this subsection).
The Sullivan functor A∗(X,Q) is referred to as the cochain algebra of polyno-
mial differential forms on X over rationals.

By analogy we have Ap(X,R) = Hom(S∗(X), (ADR)p) over the reals.

2.2. Acyclicity of the complex Hom(A(X)⊗i,A(X)). In this section we’ll
prove two lemmas which will be used to prove the main theorem of the paper
announced in Introduction.

Lemma 11. The complex Hom(A(X)⊗ i, A(X)) is acyclic.

We will use the machinery of contravariant acyclic models used by Gugen-
heim in [12]; the machinery of acyclic models was introduced (covariantly) by
Eilenberg and MacLane in [9].
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For any contravariant functor K : J →{vector spaces} a new contravariant

functor K̂ : J →{vector spaces} is defined by

K̂(X) =
∏

u:M→X

{K(M), u},

where the product is over all maps u : M → X of J , and M is a “model”, i.e.,
one of the standard simplices 4n. If f : X → Y is a map, then K̂(f) : K̂(Y ) →
K̂(X) is defined by

K̂(f){mv, v} = {mf ·u, u},
where u : M → X, v : Mv → Y , and mv ∈ K(Mv).

If K,L : J → V are contravariant functors, and Θ : K → L is a transforma-
tion of functors, then there is a transformation of functors Θ̂ : K̂ → L̂ defined
by

Θ̂(X){m,u} = {Θ(M)m,u}.
For any contravariant functor K : J → V , the transformation Φ : K → K̂ is

defined by

Φ(X)h = {K(u)h, u} (h ∈ K(X)).

We easily verify that

Θ̂Φ = ΦΘ.

In particular, for the functors A∗ and C∗ the functors Â∗ and Ĉ∗ are defined
by

(Â)n = (̂An), (Ĉ)n = (̂Cn),

and we get differentials

d̂ : Â∗ → Â∗, d̂ : Ĉ → Ĉ∗.

To prove Lemma 11 we need the following

Proposition 12. The Functor A∗ is corepresentable, i.e., there is a trans-
formation of functors Ψ : Â∗ → A∗ such that ΨΦ = the identity.

Proof. We define Ψ(X) : Â∗(X) → A∗(X) by

〈Ψ(X){mu, u}, v〉 = 〈mv, 1Mv〉
where mu ∈ A∗(Mu), mv ∈ A∗(Mv), v : Mv → X, and 1Mv is an identity map
of Mv regarded as a singular chain. Let h ∈ A∗(X), then

〈ΨΦ(h), v〉 = 〈Ψ{A∗(u)h, u}, v〉 = 〈A∗(v)h, 1Mv〉 = 〈h, v(1Mv)〉 = 〈h, v〉,
i.e., ΨΦ = the identity.
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We have mentioned in Subsection 2.1 that the functor A∗ is acyclic on models
M . Moreover there is a homotopy operator (contraction)

hM : A∗(M) → A∗(M)

with 1A∗(M) = dhM +hMd. It follows from the definition of tensor product that
the functors

A∗⊗i : A∗⊗i(M) → A∗⊗i(M)

are acyclic on models as well. Let fix for each i ≥ 1 and a model M , once and
for all, a contraction

hi
M : A∗⊗i(M) → A∗⊗i(M).

For such cases Gugenheim [12] defined the transformation of functors

ĥ i : Â∗⊗i(X) → ⊗iÂ∗⊗i(X)

by ĥ i
M{ωu, u} = {hi

Mωu, u}, where u : M → X. Clearly, Dĥ i
M = 1⊗iÂ∗(M) (see

[12], for instance).

Proof of Lemma 11. Thus we have to show that if Df = 0 for any f ∈
Hom(A⊗i(X), A(X)), deg(f) = k, then there exists g ∈ Hom(A⊗i(X), A(X)) of
degree k − 1 satisfying Dg = f .

Let us assume that g is defined in dimension < n, i.e., on (A⊗i(X))< n, and
satisfies dgj−1−(−1)k−1gjd = fj−1 for any j < n. We write the defining equation
for gn as

gnd = (−1)k−1(dgn−1 − fn−1).

For simplicity, we denote Θi = (−1)k−1(dgn−1 − fn−1). Thus Θi is defined in
dimension n− 1 and we have the following diagram:

(A∗)n−1+k

Θi↗
(A∗⊗i)n−2 −→

d
(A∗⊗i )n−1 −→

d
(A∗⊗i)n .

By the inductive hypothesis, Θid = 0; indeed,

(−1)k−1{dgn−1 − fn−1}d = (−1)k−1dgn−1d + dfn−2

= d{(−1)k−1gn−1d + fn−2} = ddgn−2 = 0.

We have used here Df = 0. Since in the above diagram is functorial, we get

(Â∗)n−1+k

Θ̂i↗ ↖ki

(Â∗⊗i)n−2 −→̂
d

(Â∗⊗i )n−1

ĥ i

←−−→
d̂

(Â∗⊗i)n ,

where Θ̂id̂ = 0. Now we define ki = Θ̂iĥ
i and obtain

kid̂ = Θ̂iĥ
id̂ = Θ̂i(1− d̂ĥ i) = Θ̂i.
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Next we define gn on (A∗⊗i(X))n by

gn = ΨkiΦ,

and verify

gnd = ΨkiΦd = Ψkid̂Φ = ΨΘ̂iΦ = ΨΦΘi = Θi,

as required.

2.3. Twisting cochains on Hom(BA∗⊗BA∗,A∗). Sometimes it is be useful
to represent the homomorphism E : BA∗ ⊗ BA∗ → A∗ by the collection of its
components

{
Ep,q = E|s−1A⊗p⊗s−1A⊗q((s−1)⊗p ⊗ (s−1)⊗q) : (A∗)⊗p ⊗ (A∗)⊗q → A∗}.

Note that if deg E = k, then deg Ep,q = k − (p + q).
In the set of all twisting cochains from BA∗ ⊗ BA∗ to A∗ there is one re-

markable element. This is the “generator” Esh = p1µsh of the shuffle product
µsh : BA∗ ⊗ BA∗ → BA∗. Indeed, since the multiplication on A∗ is commuta-
tive, the Bar construction (BA∗, dBA∗ , µsh,4) of A∗ is a DGHA (see Subsection
1.7), i.e., µsh ∈ DC, by bijection (1.8.3)

Esh = p1µsh : BA∗ ⊗BA∗ → A∗

is a twisting cochain. As we easily see Esh consists only of two nontrivial
components: E0,1

sh = 1 : R⊗A → A and E0,1
sh = 1 : A⊗R → A to which we will

return in the next section.
Let F ∈ Hom(BA∗ ⊗ BA∗, A∗). Let F n denote the sum of components F p,q

of F with p + q = n:

F n =
∑

p+q=n

F p,q.

We call a number p + q filtration of F .

Remark 13. It is easy to see that the product of two homogenous elements
F p1,q1 and F p2,q2 in Hom(BA∗ ⊗ BA∗, A∗) is a homogenous element of type
F p1+p2,q1+q2 . Thus we see that the multiplication in Hom(BA∗ ⊗ BA∗, A∗) is
compatible with filtration.

For the sake of simplicity we write A for Hom(BA∗⊗BA∗, A∗); if F ∈ A has
degree m, we write F ∈ A

m
.

Definition 14. Let n be a given number. We say the elements F1, F2 ∈
A

m
= Homm(BA∗ ⊗BA∗, A∗) coincide up to n (write F1

n
= F2) if

F k
1 = F k

2

for each k ≤ n.
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Let X be a simplicial set. Then the differential D on Hom(BA∗(X)⊗BA∗(X),
A∗(X)) can be expressed as a sum

D = D1 + D2,

where

D1F = F (d∧ ⊗ 1 + 1⊗ d∧) D2F = F (d⊗ ⊗ 1 + 1⊗ d⊗)− (−1)|F |dA∗(X)F,

d∧ and d⊗ are given by the formula

d∧[Φ1| · · · |Φn] =
n−2∑

i=0

[Φ1| · · · |Φi|(Φi+1 · Φi+2)|Φi+3| · · · |Φn],

d⊗[Φ1| · · · |Φn] =
n−1∑

i=0

[Φ1| · · · |Φi|dΦi+1|Φi+2| · · · |Φn],

where Φi ∈ A∗(X), Φi = (−1)|Φi|+1Φi (see Subsection 1.7).

Proposition 15. Let F be an element in A having F n−1 = 0. Then the
equality DF

n
= 0 guarantees that D2F

n = 0, i.e., F n is a chain map of (chain)
complexes

∑

p+q=n

(A∗(X)⊗ p· · · ⊗ A∗(X))⊗ (A∗(X)⊗ q· · · ⊗ A∗(X)) → A∗(X).

Proof. Clear.

Now we are ready to prove

Lemma 16. Let the elements E, E ′ ∈ A
1

satisfy the following conditions
I) DE = −E ^ E and DE ′ = −E ′ ^ E ′ (i.e., E and E ′ are twisting

cochains);
II) E1,0 = E ′1,0 and E0,1 = E ′0,1.

Then there exists P ∈ A
0
, P 0,0 = 0, satisfying

E ′ = E + P ^ E − E ′ ^ P −DP

(i.e., E and E ′ are equivalent twisting cochains).

Proof. Note that it suffices to construct the sequence of elements in A
0

P (0), P (1), P (2), . . .

satisfying the following conditions
I) P (0) = P (1) = 0,

II) P (i) i
= P (i+1), i = 0, 1, . . . ,

III) (P (i))k = 0 when k = 0, 1 or k > i,

IV) DP (i) i
= E − E ′ + P (i−1) ^ E − E ′ ^ P (i−1).

After the construction of such a sequence we define P by

P
i
= P (i), i = 0, 1, . . . .
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Clearly, P thus defined satisfies the required identity E ′ = E + P ^ E −E ′ ^
P −DP .

Assume that P (0), P (1), . . . , P (n−1) have already been constructed. Now we
want to construct P (n) with required conditions I–IV. Consider the following

element in A
1
:

β(n− 1) = E − E ′ + P (n−1) ^ E − E ′ ^ P (n−1) −DP (n−1).

According to conditions I–IV and Remark 13 we get

Dβ(n− 1) = DE −DE ′ + DP (n−1) ^ E + P (n−1) ^ DE −DE ′ ^ P (n−1)

+ E ′ ^ DP (n−1) n
= −E ^ E + E ′ ^ E ′ + (E − E ′

+ P (n−2) ^ E − E ′ ^ P (n−2)) ^ E − P (n−1) ^ E ^ E

+ E ′ ^ E ′ ^ P (n−1) + E ′ ^ (E − E ′ + P (n−2) ^ E

− E ′ ^ P (n−2)) = P (n−2) ^ E ^ E − P (n−1) ^ E ^ E

+ E ′ ^ E ′ ^ P (n−1) − E ′ ^ E ′ ^ P (n−2) n
= 0.

(We have used here equalities like P (n−2) ^ E ^ E
n
= P (n−1) ^ E ^ E;

indeed, since P (n−2), P (n−1) and E have no nontrivial components with filtration

of 0, multiplication is compatible with filtration (Remark 13) and P (n−2) n−2
=

P (n−1) (condition II), elements P (n−2) ^ E ^ E and P (n−1) ^ E ^ E coincide
up to n.) Since β(n− 1) has no nontrivial components with filtration ≤ n− 1,
by Proposition 15

D2β(n− 1)n = 0,

or, equivalently, β(n− 1)n is a cycle in the chain complex

Hom
( ∑

p+q=n

(A∗(X)⊗ p· · · ⊗ A∗(X))⊗ (A∗(X)⊗ q· · · ⊗ A∗(X)), A∗(X)
)
.

Since the complex above is acyclic (see Lemma 11) there exists an element P n

such that
D2P

n = β(n− 1)n.

Now we define P (n) by
P (n) = P (n−1) + P n.

Thus it remains to show that P (n) together with P (0), P (1), . . . , P (n−1) satisfies
condition I–IV. The first three conditions are checked trivially. Let us show the
validity of IV. Since D2P

n = β(n−1)n and β(n−1) has no nontrivial components
with filtration ≤ n− 1, we have

DP n n
= β(n− 1).

Then

DP (n) = DP (n−1) + DP n n
= DP (n−1) + β(n− 1)

= DP (n−1) −DP (n−1) + E − E ′ + P (n−1) ^ E − E ′ ^ P (n−1)
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= E − E ′ + P (n−1) ^ E − E ′ ^ P (n−1).

Thus Lemma 16 is completely proved.

3. Multiplicativity up to Homotopy

In this section we will prove the main theorem of this paper. We use all
the lemmas and theorems which we have proved or mentioned in the preceding
sections.

Theorem 17. Gugenheim’s map

B{ρi} : (BA∗(X), dBA∗ ,4, µsh) → (BC∗(X), dBC∗ ,4, µE)

is multiplicative up to homotopy.

Proof. As we have mentioned in Introduction, Baues introduced a multiplication

µE : BC∗(X)⊗BC∗(X) → BC∗(X)

on BC∗(X) so that (BC∗(X), dBC∗(X),4, µE) is a DGHA, see [4]. Moreover,
it is shown that this product is strict associative and homotopy commutative.
Let consider the twisting cochain

BA∗(X)⊗BA∗(X)
B{ρi}⊗B{ρi}−→ BC∗(X)⊗BC∗(X)

µE→ BC∗(X)
P1→ C∗(X)

which is the composition of coalgebra maps and the twisting cochain P1, see
Subsection 1.8.

Since the first component ρ = ρ1 : A∗(X) → C∗(X) (〈ρω, c〉 =
∫
c ω) of

Gugenheim’s (DASH) map

ρi : ⊗iA∗(X) → C∗(X) ; (i ≥ 1)

induces an isomorphism in homology, Theorem 6 says that there exists a twisting
cochain (see Remark 7)

E : BA∗(X)⊗BA∗(X) → A∗(X)

satisfying P1µE(B{ρi} ⊗ B{ρi}) ∼ ∑
i
ρi(E ⊗ · · · ⊗ E)4i = P1B{ρi}µE, where

µE : BA∗(X)⊗BA∗(X) → BA∗(X)

is the coalgebra map induced by E (see the universal property of the tensor
coalgebra, Subsection 1.7). As we know, equivalent twisting cochains on T (C, A)
induce homotopic DG coalgebra maps on Hom(C,BA) (see Subsection 1.8);
thus µE(B{ρi} ⊗ B{ρi}) ∼ B{ρi}µE in DC, i.e.,

B{ρi} : (BA∗(X), dBA∗ ,4, µE) → (BC∗(X), dBC∗ ,4, µE)

is multiplicative up to homotopy, but there is no guarantee that such randomly
constructed µE coincides with µsh.

Let us assume that the components E
0,1

and E
1,0

of E are identity maps (we
show below that this is always achievable for our E). Then we have two twisting
cochains Esh (Esh is the “generator” of the shuffle product µsh, see Subsection
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2.3) and E on Hom(BA∗(X) ⊗ BA∗(X), A∗(X) having E
0,1

= E1,0
sh = 1 and

E
1,0

= E1,0
sh = 1; according to Lemma 16 there exists P ∈ Hom(BA∗(X) ⊗

BA∗(X), A∗(X)) such that Esh
P∼ E, hence µsh ∼ µE or, equivalently,

1 : (BA∗(X), dBA∗ ,4, µsh) → (BA∗(X), dBA∗ ,4, µE)

is multiplicative up to homotopy. Taking the composition

B{ρi} · 1 : (BA∗(X), dBA∗ ,4, µsh)

→ (BA∗(X), dBA∗ ,4, µE) → (BC∗(X), dBC∗ ,4, µE),

we have that Gugenheim’s map

B{ρi} : (BA∗(X), dBA∗ ,4, µsh) → (BC∗(X), dBC∗ ,4, µE)

is multiplicative up to homotopy.

Thus, it remains to show that the components E
0,1

and E
1,0

are the iden-
tity maps. First of all, note that µE is a homotopy commutative, homotopy
associative and homotopy compatible with unit. Indeed,

{ρi}∗(E) = P1B{ρi}µE ∼ P1µE(B{ρi} ⊗ B{ρi}) ∼ P1µET (B{ρi} ⊗ B{ρi})
= P1µE(B{ρi} ⊗ B{ρi})T ∼ P1B{ρi}µET = P1B{ρi}µET = {ρi}∗(ET ),

where we have used the fact that µE ∼ µET on BC∗(X) [4]. Since {ρi}∗(E) ∼
{ρi}∗(ET ), according to the bijection of Theorem 6

{ρi}∗ : D(BA∗(X)⊗BA∗(X), A∗(X)) → D(BA∗(X)⊗BA∗(X), C∗(X)),

E ∼ ET , hence µE ∼ µET ; i.e., µE is homotopy commutative. By analogy,
we can easily show that it is homotopy associative and has a homotopy unit.
Then, according to Anick’s fundamental theory [2], µE can be replaced by the
new product

µF ∼ µE : BA∗(X)⊗BA∗(X) → BA∗(X)

which is strictly commutative, associative and compatible with unit (see Defi-
nition 5.3, Lemma 5.4 and Proposition 5.5 in [2]). The latter means that the
twisting cochain

F = P1µF : BA∗(X)⊗BA∗(X) → BA∗(X) → A∗(X)

has F 0,1 = 1, F 1,0 = 1 and, moreover, F 0,k = F k,0 = 0 when k 6= 1. This
completes the proof.
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