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SOLVABILITY AND THE UNIQUE SOLVABILITY OF A
PERIODIC TYPE BOUNDARY VALUE PROBLEM FOR
FIRST ORDER SCALAR FUNCTIONAL DIFFERENTIAL

EQUATIONS

R. HAKL, A. LOMTATIDZE, AND J. ŠREMR

Abstract. Nonimprovable in a certain sense, sufficient conditions for the
solvability and unique solvability of the problem

u′(t) = F (u)(t), u(a)− λu(b) = h(u)

are established, where F : C([a, b];R) → L([a, b];R) is a continuous operator
satisfying the Carathéodory condition, h : C([a, b];R) → R is a continuous
functional, and λ ∈ R+.
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Introduction

The following notation is used throughout.
R is the set of all real numbers, R+ = [0, +∞[.
C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R with

the norm ‖u‖C = max{|u(t)| : a ≤ t ≤ b}.
C([a, b]; R+) = {u ∈ C([a, b]; R) : u(t) ≥ 0 for t ∈ [a, b]}.
Bi

λc([a, b]; R) is the set of functions u ∈ C([a, b]; R) satisfying the condition
(−1)i+1(u(a)− λu(b)) sgn((2− i)u(a) + (i− 1)u(b)) ≤ c, where c ∈ R, i = 1, 2.

C̃([a, b]; D), where D ⊆ R, is the set of absolutely continuous functions u :
[a, b] → D.

L([a, b]; R) is the Banach space of Lebesgue integrable functions p : [a, b] → R

with the norm ‖p‖L =
b∫
a
|p(s)|ds.

L([a, b]; R+) = {p ∈ L([a, b]; R) : p(t) ≥ 0 for almost all t ∈ [a, b]}.
Mab is the set of measurable functions τ : [a, b] → [a, b].
Lab is the set of linear operators ` : C([a, b]; R) → L([a, b]; R) for which there

is a function η ∈ L([a, b]; R+) such that

|`(v)(t)| ≤ η(t)‖v‖C for t ∈ [a, b], v ∈ C([a, b]; R).

Pab is the set of linear operators ` ∈ Lab mapping the set C([a, b]; R+) into
the set L([a, b]; R+).
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Kab is the set of continuous operators F : C([a, b]; R) → L([a, b]; R) satisfying
the Carathéodory condition, i.e., for each r > 0 there exists qr ∈ L([a, b]; R+)
such that

|F (v)(t)| ≤ qr(t) for t ∈ [a, b], ‖v‖C ≤ r.

K([a, b] × A; B), where A ⊆ R2, B ⊆ R, is the set of functions f : [a, b] ×
A → B satisfying the Carathéodory conditions, i.e., f(·, x) : [a, b] → B is a
measurable function for all x ∈ A, f(t, ·) : A → B is a continuous function for
almost all t ∈ [a, b], and for each r > 0 there exists qr ∈ L([a, b]; R+) such that

|f(t, x)| ≤ qr(t) for t ∈ [a, b], x ∈ A, ‖x‖ ≤ r.

[x]+ = 1
2
(|x|+ x), [x]− = 1

2
(|x| − x).

By a solution of the equation

u′(t) = F (u)(t), (0.1)

where F ∈ Kab, we understand a function u ∈ C̃([a, b]; R) satisfying the equa-
tion (0.1) almost everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of (0.1)
satisfying the boundary condition

u(a)− λu(b) = h(u), (0.2)

where h : C([a, b]; R) → R is a continuous functional such that for each r > 0
there exists Mr ∈ R+ such that

|h(v)| ≤ Mr for ‖v‖C ≤ r,

and λ ∈ R+.
In the case where F is the so–called Nemitsky operator, the problem (0.1),

(0.2) and analogous problems for systems of linear and nonlinear ordinary dif-
ferential equations have been studied in detail (see [7, 15–18] and the references
therein). The foundation of the theory of general boundary value problems for
functional differential equations were laid in the monographs [1] and [30] (see
also [2, 3, 8, 14, 19–27, 29]). In spite of a large number of papers devoted to
boundary value problems for functional differential equations, at present only
a few efficient sufficient solvability conditions are known even for the linear
problem

u′(t) = `(u)(t) + q0(t), (0.3)

u(a)− λu(b) = c0, (0.4)

where ` ∈ Lab, q0 ∈ L([a, b]; R), λ ∈ R+, and c0 ∈ R (see [5, 6, 8–13, 19–26,
29]). Here we attempt to fill this gap in a certain way. More precisely, in
Sections 1 and 2, nonimprovable efficient sufficient conditions are established
for the solvability and unique solvability of the problems (0.3), (0.4) and (0.1),
(0.2), respectively. Section 3 is devoted to the examples showing the optimality
of our main results.
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Finally, all results are concretized for the differential equations with deviating
arguments of the forms

u′(t) = p(t)u(τ(t))− g(t)u(µ(t)) + f(t, u(t), u(ν(t))) (0.5)

and

u′(t) = p(t)u(τ(t))− g(t)u(µ(t)) + q0(t), (0.6)

where p, g ∈ L([a, b]; R+), q0 ∈ L([a, b]; R), τ, µ, ν ∈ Mab, and f ∈ K([a, b] ×
R2; R).

1. Linear Problem

We need the following well–known result from the general theory of linear
boudary value problems for functional differential equations (see, e.g., [4, 21,
30]).

Theorem 1.1. The problem (0.3), (0.4) is uniquely solvable iff the corre-
sponding homogeneous problem

u′(t) = `(u)(t), (0.30)

u(a)− λu(b) = 0 (0.40)

has only a trivial solution.

Remark 1.1. It follows from the Riesz–Schauder theory that if ` ∈ Lab and the
problem (0, 30), (0, 40) has a nontrivial solution, then there exist q0 ∈ L([a, b]; R)
and c0 ∈ R such that the problem (0.3), (0.4) has no solution.

1.1. Main Results.

Theorem 1.2. Assume that λ ∈ [0, 1[, the operator ` admits the representa-
tion ` = `0 − `1, where

`0, `1 ∈ Pab, (1.1)

and let there exist a function γ ∈ C̃([a, b]; ]0, +∞[) satisfying the inequalities

γ′(t) ≥ `0(γ)(t) + `1(1)(t) for t ∈ [a, b], (1.2)

γ(a) > λγ(b), (1.3)

γ(b)− γ(a) < 3 + λ. (1.4)

Then the problem (0.3), (0.4) has a unique solution.

Remark 1.2. Theorem 1.2 is nonimprovable in a certain sense. More pre-
cisely, the strict inequality (1.4) cannot be replaced by nonstrict one (see On
Remark 1.2 and Example 3.1).
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Remark 1.3. Let λ ∈ [1, +∞[ and ` = `0 − `1, where `0, `1 ∈ Pab. Introduce
the operator ψ : L([a, b]; R) → L([a, b]; R) by

ψ(w)(t)
def
= w(a + b− t) for t ∈ [a, b].

Let ϕ be a restriction of ψ to the space C([a, b]; R). Put ϑ = 1
λ
, and

̂̀
0(w)(t)

def
= ψ(`0(ϕ(w)))(t), ̂̀

1(w)(t)
def
= ψ(`1(ϕ(w)))(t) for t ∈ [a, b].

It is clear that if u is a solution of the problem (0, 30), (0, 40), then the function

v
def
= ϕ(u) is a solution of the problem

v′(t) = ̂̀
1(v)(t)− ̂̀

0(v)(t), v(a)− ϑv(b) = 0, (1.5)

and, conversely, if v is a solution of the problem (1.5), then the function u
def
=

ϕ(v) is a solution of the problem (0, 30), (0, 40).

It is also obvious that if a function γ ∈ C̃([a, b]; ]0, +∞[) satisfies the inequal-

ity (1.2), then β
def
= ϕ(γ) satisfies the inequality

β′(t) ≤ − ̂̀
0(β)(t)− ̂̀

1(1)(t) for t ∈ [a, b], (1.6)

and, conversely, if a function β ∈ C̃([a, b]; ]0, +∞[) satisfies the inequality (1.6),

then γ
def
= ϕ(β) satisfies the inequality (1.2).

In view of Remark 1.3 the following statement is an immediate consequence
of Theorem 1.2.

Theorem 1.3. Let λ ∈ ]1, +∞[, the operator ` admit the representation

` = `0−`1, where `0, `1 ∈ Pab, and let there exist a function γ ∈ C̃([a, b]; ]0, +∞[)
satisfying the inequalities

γ′(t) ≤ −`1(γ)(t)− `0(1)(t) for t ∈ [a, b], (1.7)

γ(a) < λγ(b), (1.8)

γ(a)− γ(b) < 3 +
1

λ
. (1.9)

Then the problem (0.3), (0.4) has a unique solution.

Remark 1.4. According to Remarks 1.2 and 1.3, Theorem 1.3 is nonimprov-
able in that sense that the strict inequality (1.9) cannot be replaced by nonstrict
one.

Theorem 1.2 implies the following assertions for the problem (0.6), (0.4).

Corollary 1.1. Let λ ∈ [0, 1[, p, g ∈ L([a, b]; R+), and τ ∈Mab be such that

λ exp

( b∫

a

p(s)ds

)
< 1, (1.10)

(t− τ(t))p(t) ≥ 0 for t ∈ [a, b], (1.11)
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and

1− λ

1− λ exp
( b∫

a
p(s)ds

)
b∫

a

g(s) exp
( b∫

s

p(ξ)dξ
)
ds < 3 + λ. (1.12)

Then the problem (0.6), (0.4) has a unique solution.

Corollary 1.2. Let λ ∈ [0, 1[, p, g ∈ L([a, b]; R+), and τ ∈Mab be such that

(1− λ)

( b∫

a

g(s)ds + α1

)
+ (3 + λ)β1 < 3 + λ, (1.13)

where

α1 =

b∫

a

p(s)
( τ(s)∫

a

g(ξ)dξ
)

exp
( b∫

s

p(ξ)dξ
)
ds, (1.14)

β1 = λ exp

( b∫

a

p(s)ds

)
+

b∫

a

p(s)σ(s)
( τ(s)∫

s

p(ξ)dξ
)

exp
( b∫

s

p(ξ)dξ
)
ds, (1.15)

σ(t) =
1

2
(1 + sgn(τ(t)− t)) for t ∈ [a, b]. (1.16)

Then the problem (0.6), (0.4) has a unique solution.

Remark 1.5. Corollaries 1.1 and 1.2 are nonimprovable in a certain sense.
More precisely, the strict inequalities (1.12) in Corollary 1.1 and (1.13) in
Corollary 1.2 cannot be replaced by nonstrict ones (see On Remark 1.2 and
Example 3.1).

Theorem 1.3 implies the following statements.

Corollary 1.3. Let λ ∈ ]1, +∞[, p, g ∈ L([a, b]; R+), and µ ∈ Mab be such
that

exp

( b∫

a

g(s)ds

)
< λ, (1.17)

(µ(t)− t)g(t) ≥ 0 for t ∈ [a, b], (1.18)

and

λ− 1

λ− exp
( ∫ b

a g(ξ)dξ
)

b∫

a

p(s) exp
( s∫

a

g(ξ)dξ
)
ds < 3 +

1

λ
. (1.19)

Then the problem (0.6), (0.4) has a unique solution.
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Corollary 1.4. Let λ ∈ ]1, +∞[, p, g ∈ L([a, b]; R+), and µ ∈ Mab be such
that

λ− 1

λ

( b∫

a

p(s)ds + α2

)
+

(
3 +

1

λ

)
β2 < 3 +

1

λ
, (1.20)

where

α2 =

b∫

a

g(s)
( b∫

µ(s)

p(ξ)dξ
)

exp
( s∫

a

g(ξ)dξ
)
ds, (1.21)

β2 =
1

λ
exp

( b∫

a

g(s)ds

)
+

b∫

a

g(s)σ(s)
( s∫

µ(s)

g(ξ)dξ
)

exp
( s∫

a

g(ξ)dξ
)
ds, (1.22)

σ(t) =
1

2

(
1 + sgn (t− µ(t))

)
for t ∈ [a, b]. (1.23)

Then the problem (0.6), (0.4) has a unique solution.

Remark 1.6. Corollaries 1.3 and 1.4 are nonimprovable in a certain sense.
More precisely, the strict inequalities (1.19) in Corollary 1.3 and (1.20) in Corol-
lary 1.4 cannot be replaced by nonstrict ones.

1.2. Proofs of Main Results. To prove Theorem 1.2, we need a result from
[14]. Let us first introduce the following definition.

Definition 1.1. We will say that an operator ` ∈ Lab belongs to the set
V +(λ) (resp. V −(λ)) if the homogeneous problem (0, 30), (0, 40) has only a
trivial solution and, for arbitrary q0 ∈ L([a, b]; R+) and c0 ∈ R+, the solution of
the problem (0.3), (0.4) is nonnegative (resp. nonpositive).

Remark 1.7. It follows immediately from Definition 1.1 that ` ∈ V +(λ) (resp.
` ∈ V −(λ)) iff a certain theorem on differential inequalities holds for the equa-

tion (0.3), i.e., if u, v ∈ C̃([a, b]; R) satisfy the inequalities

u′(t) ≤ `(u)(t) + q0(t), v′(t) ≥ `(v)(t) + q0(t) for t ∈ [a, b],

u(a)− λu(b) ≤ v(a)− λv(b),

then u(t) ≤ v(t) (resp. u(t) ≥ v(t)) for t ∈ [a, b].

Lemma 1.1 ([14]). Let λ ∈ [0, 1[ and ` ∈ Pab. Then ` ∈ V +(λ) iff there

exist γ ∈ C̃([a, b]; ]0, +∞[) satisfying

γ′(t) ≥ `(γ)(t) for t ∈ [a, b],

γ(a) > λγ(b).
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Proof of Theorem 1.2. According to Theorem 1.1, it is sufficient to show that
the homogeneous problem (0, 30), (0, 40) has only a trivial solution.

Assume that, on the contrary, the problem (0, 30), (0, 40) has a nontrivial
solution u. By virtue of (1.1) and Lemma 1.1, it follows from (1.2) and (1.3)
that `0 ∈ V +(λ). Consequently, according to Definition 1.1, u must change its
sign. Put

M = max{u(t) : t ∈ [a, b]}, m = −min{u(t) : t ∈ [a, b]}, (1.24)

and choose tM , tm ∈ [a, b] so that

u(tM) = M, u(tm) = −m. (1.25)

Obviously,

M > 0, m > 0 (1.26)

and without loss of generality we can assume that tM < tm. In view of (1.26),
the relations (0, 30), (0, 40), (1.2) and (1.3) yield

(Mγ(t) + u(t))′ ≥ `0(Mγ + u)(t) + `1(M − u)(t) for t ∈ [a, b],

Mγ(a) + u(a)− λ(Mγ(b) + u(b)) ≥ 0,
(1.27)

and

(mγ(t)− u(t))′ ≥ `0(mγ − u)(t) + `1(m + u)(t) for t ∈ [a, b],

mγ(a)− u(a)− λ(mγ(b)− u(b)) ≥ 0.
(1.28)

Hence, according to (1.1), (1.24), the condition `0 ∈ V +(λ), and Remark 1.7, it
follows that

Mγ(t) + u(t) ≥ 0, mγ(t)− u(t) ≥ 0 for t ∈ [a, b].

By virtue of the last two inequalities, (1.1), and (1.24), from (1.27) and (1.28)
we get

(Mγ(t) + u(t))′ ≥ 0, (mγ(t)− u(t))′ ≥ 0 for t ∈ [a, b]. (1.29)

In view of (1.25) and (1.26), the integration of the first inequality in (1.29)
from tM to tm results in

Mγ(tm)−m−Mγ(tM)−M ≥ 0,

i.e.,

γ(tm)− γ(tM) ≥ 1 +
m

M
. (1.30)

On the other hand, on account of (1.25) and (1.26), the integration of the second
inequality in (1.29) from a to tM and from tm to b yields

mγ(tM)−M −mγ(a) + u(a) ≥ 0,

mγ(b)− u(b)−mγ(tm)−m ≥ 0.
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Summing these two inequalities and taking into account that

u(b)− u(a) = u(b)(1− λ) ≥ −m(1− λ),

we get

γ(tM)− γ(tm) + γ(b)− γ(a) ≥ λ +
M

m
. (1.31)

Now from (1.30) and (1.31) we have

γ(b)− γ(a) ≥ 1 + λ +
m

M
+

M

m
≥ 3 + λ,

which contradicts (1.4).

Proof of Corollary 1.1. According to (1.12), there exists ε > 0 such that

ε

1− λ exp
( b∫

a
p(s)ds

)

(
exp

( b∫

a

p(s)ds

)
− 1

)

+
1− λ

1− λ exp
( b∫

a
p(s)ds

)
b∫

a

g(s) exp
( b∫

s

p(ξ)dξ
)
ds < 3 + λ.

Put

γ(t) =
ε

1− λ exp
( b∫

a
p(s)ds

) exp

( t∫

a

p(s)ds

)

+
1

1− λ exp
( b∫

a
p(s)ds

)
t∫

a

g(s) exp
( t∫

s

p(ξ)dξ
)
ds

+
λ exp

( b∫
a

p(s)ds
)

1− λ exp
( b∫

a
p(s)ds

)
b∫

t

g(s) exp
( t∫

s

p(ξ)dξ
)
ds for t ∈ [a, b].

Then γ is a solution of the problem

γ′(t) = p(t)γ(t) + g(t), γ(a)− λγ(b) = ε. (1.32)

Since ε > 0, in view of (1.10), we have γ(t) > 0 for t ∈ [a, b]. Consequently,
(1.32) implies γ′(t) ≥ 0 for t ∈ [a, b], and (1.11) yields

p(t)γ(t) ≥ p(t)γ(τ(t)) for t ∈ [a, b]. (1.33)
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Therefore, by virtue of (1.32) and (1.33), the function γ satisfies the inequalities
(1.2), (1.3), and (1.4) with

`0(w)(t)
def
= p(t)w(τ(t)), `1(w)(t)

def
= g(t)w(µ(t))

for t ∈ [a, b].
(1.34)

Proof of Corollary 1.2. Let the operators `0 and `1 be defined by (1.34). From
(1.13) it follows that β1 < 1. Consequently, by [14, Theorem 2.1 c)], we have
`0 ∈ V +(λ). Choose δ > 0 and ε > 0 such that

(1− λ)(1− β1)
−1

(
α1 +

b∫

a

g(s)ds

)
< 3 + λ− δ, (1.35)

ε <
δ(1− β1)

1− λ
exp

(
−

b∫

a

p(s)ds

)
. (1.36)

According to the condition `0 ∈ V +(λ) and Theorem 1.1, the problem

γ′(t) = p(t)γ(τ(t)) + g(t), (1.37)

γ(a)− λγ(b) = ε (1.38)

has a unique solution γ. It is clear that the conditions (1.2) and (1.3) are
fulfilled. Due to the conditions `0 ∈ V +(λ), g ∈ L([a, b]; R+), and ε > 0, we get
γ(t) ≥ 0 for t ∈ [a, b]. Hence, by (1.37), we find that γ(t) > 0 for t ∈ [a, b]. On
the other hand, γ is a solution of the equation

γ′(t) = p(t)γ(t) + p(t)

τ(t)∫

t

p(s)γ(τ(s))ds + p(t)

τ(t)∫

t

g(s)ds + g(t).

Hence, the Cauchy formula implies

γ(b) ≤ β1γ(b) + α1 +

b∫

a

g(s)ds + ε exp

( b∫

a

p(s)ds

)
.

The last inequality results in

γ(b) ≤ (1− β1)
−1

(
α1 +

b∫

a

g(s)ds

)
+ ε(1− β1)

−1 exp

( b∫

a

p(s)ds

)

and thus, in view of (1.35), (1.36), and (1.38), we have

γ(b)− γ(a) ≤ (1− λ)γ(b) < 3 + λ.

Therefore the assumptions of Theorem 1.2 are fulfilled.

Corollaries 1.3 and 1.4 can be proved analogously.
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2. Nonlinear Problem

In what follows we will assume that q ∈ K([a, b]×R; R+) is nondecreasing in
the second argument and satisfies

lim
x→+∞

1

x

b∫

a

q(s, x)ds = 0. (2.1)

2.1. Main Results.

Theorem 2.1. Let λ ∈ [0, 1[, c ∈ R+,

h(v) sgn v(a) ≤ c for v ∈ C([a, b]; R), (2.2)

and let there exist `0, `1 ∈ Pab such that the inequality

[F (v)(t)− `0(v)(t) + `1(v)(t)] sgn v(t) ≤ q(t, ‖v‖C) for t ∈ [a, b] (2.3)

holds on the set B1
λc([a, b]; R). If, moreover, there exists γ ∈ C̃([a, b]; ]0, +∞[)

satisfying inequalities (1.2), (1.3), and

γ(b)− γ(a) < 2, (2.4)

then the problem (0.1), (0.2) has at least one solution.

Remark 2.1. Theorem 2.1 is nonimprovable in a certain sense. More precisely,
the inequality (2.4) cannot be replaced by the inequality

γ(b)− γ(a) ≤ 2 + ε (2.5)

no matter how small ε > 0 is (see On Remark 2.1 and Example 3.2).

Theorem 2.2. Let λ ∈ [0, 1[,

[h(v)− h(w)] sgn(v(a)− w(a)) ≤ 0 for v, w ∈ C([a, b]; R), (2.6)

and let there exist `0, `1 ∈ Pab such that the inequality
[
F (v)(t)− F (w)(t)− `0(v − w)(t)

+`1(v − w)(t)
]
sgn(v(t)− w(t)) ≤ 0 for t ∈ [a, b] (2.7)

is fulfilled on the set B1
λc([a, b]; R), where c = |h(0)|. If, moreover, there exists a

function γ ∈ C̃([a, b]; ]0, +∞[) satisfying the inequalities (1.2), (1.3), and (2.4),
then the problem (0.1), (0.2) is uniquely solvable.

Remark 2.2. Theorem 2.2 is nonimprovable in the sense that the inequality
(2.4) cannot be replaced by the inequality (2.5) no matter how small ε > 0 is
(see On Remark 2.2).
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Remark 2.3. Let λ ∈ [1, +∞[, and ϕ, ψ be the operators defined in Re-
mark 1.3. Put ϑ = 1

λ
, and

F̂ (w)(t)
def
= −ψ(F (ϕ(w)))(t) for t ∈ [a, b], ĥ(w)

def
= −ϑh(ϕ(w)).

It is clear that if u is a solution of the problem (0.1), (0.2), then the function

v
def
= ϕ(u) is a solution of the problem

v′(t) = F̂ (v)(t), v(a)− ϑv(b) = ĥ(v), (2.8)

and vice versa, if v is a solution of the problem (2.8), then the function u
def
= ϕ(v)

is a solution of the problem (0.1), (0.2).

Therefore, according to Remarks 1.3 and 2.3, Theorems 2.1 and 2.2 imply

Theorem 2.3. Let λ ∈ ]1, +∞[, c ∈ R+,

h(v) sgn v(b) ≥ −c for v ∈ C([a, b]; R), (2.9)

and let there exist `0, `1 ∈ Pab such that the inequality

[F (v)(t)− `0(v)(t) + `1(v)(t)] sgn v(t) ≥ −q(t, ‖v‖C) for t ∈ [a, b]

is fulfilled on the set B2
λc([a, b]; R). If, moreover, there exists γ∈ C̃([a, b]; ]0, +∞[)

satisfying inequalities (1.7), (1.8), and

γ(a)− γ(b) < 2, (2.10)

then the problem (0.1), (0.2) has at least one solution.

Theorem 2.4. Let λ ∈ ]1, +∞[,

[h(v)− h(w)] sgn(v(b)− w(b)) ≥ 0 for v, w ∈ C([a, b]; R), (2.11)

and let there exist `0, `1 ∈ Pab such that the inequality

[F (v)(t)− F (w)(t)− `0(v − w)(t)

+`1(v − w)(t)] sgn(v(t)− w(t)) ≥ 0 for t ∈ [a, b]

is fulfilled on the set B2
λc([a, b]; R), where c = |h(0)|. If, moreover, there exists

a function γ ∈ C̃([a, b]; ]0, +∞[) satisfying inequalities (1.7), (1.8), and (2.10),
then the problem (0.1), (0.2) is uniquely solvable.

Remark 2.4. According to Remarks 1.3 and 2.1–2.3, Theorems 2.3 and 2.4 are
nonimprovable in the sense that the strict inequality (2.10) cannot be replaced
by the inequality

γ(a)− γ(b) ≤ 2 + ε

no matter how small ε > 0 is.

Theorems 2.1 and 2.2 imply the following results for the problem (0.5), (0.2).
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Corollary 2.1. Let λ ∈ [0, 1[, c ∈ R+, p, g ∈ L([a, b]; R+), τ, µ, ν ∈ Mab,
and let (2.2) and the condition

f(t, x, y) sgn x ≤ q(t, |x|) for t ∈ [a, b], x, y ∈ R (2.12)

be fulfilled. If, moreover, the inequalities (1.10), (1.11), and

1− λ

1− λ exp
( b∫

a
p(s)ds

)
b∫

a

g(s) exp
( b∫

s

p(ξ)dξ
)
ds < 2 (2.13)

hold, then the problem (0.5), (0.2) has at least one solution.

Corollary 2.2. Let λ ∈ [0, 1[, c ∈ R+, p, g ∈ L([a, b]; R+), τ, µ, ν ∈ Mab,
and let conditions (2.2) and (2.12) be fulfilled. If, moreover,

(1− λ)

( b∫

a

g(s)ds + α1

)
+ 2β1 < 2 (2.14)

holds, where α1 and β1 are defined by (1.14) and (1.15) with σ given by (1.16),
then the problem (0.5), (0.2) has at least one solution.

Remark 2.5. Corollaries 2.1 and 2.2 are nonimprovable in a certain sense.
More precisely, the strict inequalities (2.13) in Corollary 2.1 and (2.14) in Corol-
lary 2.2 cannot be replaced by the inequalities

1− λ

1− λ exp
( b∫

a
p(s)ds

)
b∫

a

g(s) exp
( b∫

s

p(ξ)dξ
)
ds ≤ 2 + ε (2.15)

and

(1− λ)

( b∫

a

g(s)ds + α1

)
+ 2β1 ≤ 2 + ε, (2.16)

no matter how small ε > 0 is (see On Remark 2.1 and Example 3.2).

Corollary 2.3. Let λ ∈ [0, 1[, p, g ∈ L([a, b]; R+), τ, µ, ν ∈ Mab, and let
(2.6) and the condition

[f(t, x1, y1)− f(t, x2, y2)] sgn(x1 − x2) ≤ 0

for t ∈ [a, b], x1, x2, y1, y2 ∈ R
(2.17)

be fulfilled. If, moreover, inequalities (1.10), (1.11), and (2.13) hold, then the
problem (0.5), (0.2) is uniquely solvable.

Corollary 2.4. Let λ ∈ [0, 1[, p, g ∈ L([a, b]; R+), τ, µ, ν ∈Mab, and let the
conditions (2.6) and (2.17) be fulfilled. If, moreover, the inequality (2.14) holds,
where α1 and β1 are defined by (1.14) and (1.15) with σ given by (1.16), then
the problem (0.5), (0.2) is uniquely solvable.
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Remark 2.6. Corollaries 2.3 and 2.4 are nonimprovable in that sense that the
strict inequalities (2.13) in Corollary 2.3 and (2.14) in Corollary 2.4 cannot be
replaced by inequalities (2.15) and (2.16), no matter how small ε > 0 is (see On
Remark 2.2).

The following corollaries of Theorems 2.3 and 2.4 hold true.

Corollary 2.5. Let λ ∈ ]1, +∞[, c ∈ R+, p, g ∈ L([a, b]; R+), τ, µ, ν ∈Mab,
and let (2.9) and the condition

f(t, x, y) sgn x ≥ −q(t, |x|) for t ∈ [a, b], x, y ∈ R (2.18)

be fulfilled. If, moreover, inequalities (1.17), (1.18), and

λ− 1

λ− exp
( b∫

a
g(ξ)dξ

)
b∫

a

p(s) exp
( s∫

a

g(ξ)dξ
)
ds < 2 (2.19)

hold, then the problem (0.5), (0.2) has at least one solution.

Corollary 2.6. Let λ ∈ ]1, +∞[, c ∈ R+, p, g ∈ L([a, b]; R+), τ, µ, ν ∈Mab,
and the conditions (2.9) and (2.18) be fulfilled. If, moreover,

λ− 1

λ

( b∫

a

p(s)ds + α2

)
+ 2β2 < 2, (2.20)

where α2 and β2 are defined by (1.21) and (1.22) with σ given by (1.23),then
the problem (0.5), (0.2) has at least one solution.

Corollary 2.7. Let λ ∈ ]1, +∞[, p, g ∈ L([a, b]; R+), τ, µ ∈ Mab and let
(2.11) and the condition

[f(t, x1, y1)− f(t, x2, y2)] sgn(x1 − x2) ≥ 0

for t ∈ [a, b], x1, x2, y1, y2 ∈ R,
(2.21)

be fulfilled. If, moreover, inequalities (1.17), (1.18), and (2.19) hold, then the
problem (0.5), (0.2) is uniquely solvable.

Corollary 2.8. Let λ ∈ ]1, +∞[, p, g ∈ L([a, b]; R+), τ, µ, ν ∈ Mab, and let
the conditions (2.11) and (2.21) be fulfilled. If, moreover, the inequality (2.20)
holds, where α2 and β2 are defined by (1.21) and (1.22) with σ given by (1.23),
then the problem (0.5), (0.2) is uniquely solvable.

Remark 2.7. Corollaries 2.5–2.8 are nonimprovable in the sense that the strict
inequality (2.19) in Corollaries 2.5 and (2.7), and the strict inequality (2.20) in
Corollaries 2.6 and (2.8) cannot be replaced by the inequalities

λ− 1

λ− exp
( b∫

a
g(ξ)dξ

)
b∫

a

p(s) exp
( s∫

a

g(ξ)dξ
)
ds ≤ 2 + ε
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and

λ− 1

λ

( b∫

a

p(s)ds + α2

)
+ 2β2 ≤ 2 + ε,

no matter how small ε > 0 is.

2.2. Auxiliary Propositions. First we formulate the result from [24, Theo-
rem 1] in the form suitable for us.

Lemma 2.1. Let there exist a positive number ρ and an operator ` ∈ Lab

such that the homogeneous problem (0, 30), (0, 40) has only a trivial solution,

and let for every δ ∈ ]0, 1[, an arbitrary function u ∈ C̃([a, b]; R) satisfying the
relations

u′(t) = `(u)(t) + δ[F (u)(t)− `(u)(t)], u(a)− λu(b) = δh(u), (2.22)

admits the estimate

‖u‖C ≤ ρ. (2.23)

Then the problem (0.1), (0.2) has at least one solution.

Definition 2.1. We say that an operator ` ∈ Lab belongs to the set U(λ) if
there exists a positive number r such that, for arbitrary q∗ ∈ L([a, b]; R+) and

c ∈ R+, every function u ∈ C̃([a, b]; R) satisfying the inequalities

[u(a)− λu(b)] sgn u(a) ≤ c, (2.24)

[u′(t)− `(u)(t)] sgn u(t) ≤ q∗(t) for t ∈ [a, b], (2.25)

admits the estimate

‖u‖C ≤ r (c + ‖q∗‖L) . (2.26)

Lemma 2.2. Let c ∈ R+,

h(v) sgn v(a) ≤ c for v ∈ C([a, b]; R), (2.27)

and let there exist ` ∈ U(λ) such that the inequality

[F (v)(t)− `(v)(t)] sgn v(t) ≤ q(t, ‖v‖C) for t ∈ [a, b] (2.28)

is fulfilled on the set B1
λc([a, b]; R). Then the problem (0.1), (0.2) has at least

one solution.

Proof. First of all we note that, due to the condition ` ∈ U(λ), the homogeneous
problem (0, 30), (0, 40) has only a trivial solution.

Let r be the number appearing in Definition 2.1. According to (2.1), there
exists ρ > 2rc such that

1

x

b∫

a

q(s, x)ds <
1

2r
for x > ρ.



SOLVABILITY AND THE UNIQUE SOLVABILITY 539

Now assume that u ∈ C̃([a, b]; R) satisfies (2.22) for some δ ∈ ]0, 1[. Then,
according to (2.27), u satisfies the inequality (2.24), i.e., u ∈ B1

λc([a, b]; R). By
(2.28) we obtain that the inequality (2.25) is fulfilled with q∗(t) = q(t, ‖u‖C)
for t ∈ [a, b]. Hence, according to the condition ` ∈ U(λ) and the definition of
the number ρ, we arrive at the estimate (2.23).

Since ρ depends neither on u nor on δ, it follows from Lemma 2.1 that the
problem (0.1), (0.2) has at least one solution.

Lemma 2.3. Let

[h(v)− h(w)] sgn(v(a)− w(a)) ≤ 0 for v, w ∈ C([a, b]; R) (2.29)

and let there exist ` ∈ U(λ) such that the inequality

[F (v)(t)−F (w)(t)−`(v−w)(t)] sgn(v(t)−w(t))≤0 for t ∈ [a, b] (2.30)

holds on the set B1
λc([a, b]; R), where c = |h(0)|. Then the problem (0.1), (0.2)

is uniquely solvable.

Proof. It follows from (2.29) that the condition (2.27) is fulfilled with c = |h(0)|.
By (2.30) we see that on the set B1

λc([a, b]; R) the inequality (2.28) holds with
q ≡ |F (0)|. Consequently, all the assumptions of Lemma 2.2 are satisfied and
therefore the problem (0.1), (0.2) has at least one solution. It remains to show
that the problem (0.1), (0.2) has at most one solution.

Let u1, u2 be arbitrary solutions of the problem (0.1), (0.2). Put u(t) =
u1(t)− u2(t) for t ∈ [a, b]. Then (2.29) and (2.30) yield

[u(a)− λu(b)] sgn u(a) ≤ 0,

[u′(t)− `(u)(t)] sgn u(t) ≤ 0 for t ∈ [a, b].

These two inequalities, together with the assumption ` ∈ U(λ), result in u ≡ 0.
Consequently, u1 ≡ u2.

Lemma 2.4. Let `0 ∈ Lab and the homogeneous problem

v′(t) = `0(v)(t), v(a)− λv(b) = 0

have only the trivial solution. Then there exists a positive number r0 such that
for any q∗ ∈ L([a, b]; R) and c ∈ R, the solution v of the problem

v′(t) = `0(v)(t) + q∗(t), v(a)− λv(b) = c (2.31)

admits the estimate

‖v‖C ≤ r0 (|c|+ ‖q∗‖L) . (2.32)

Proof. Let

R× L([a, b]; R) = {(c, q∗) : c ∈ R, q∗ ∈ L([a, b]; R)}
denote the Banach space with the norm

‖(c, q∗)‖R×L = |c|+ ‖q∗‖L,
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and Ω be the operator which to every (c, q∗) ∈ R × L([a, b]; R) assigns the
solution v of the problem (2.31). According to Theorem 1.4 from [21], Ω :
R×L([a, b]; R) → C([a, b]; R) is a linear bounded operator. Let r0 be the norm
of Ω. Then, clearly, the inequality

‖Ω(c, q∗)‖C ≤ r0

(
|c|+ ‖q∗‖L

)

holds for arbitrary (c, q∗) ∈ R × L([a, b]; R). Consequently, the solution v =
Ω(c, q∗) of the problem (2.31) admits the estimate (2.32).

Lemma 2.5. Let λ ∈ [0, 1[ and the operator ` admit the representation ` =
`0− `1, where `0 and `1 satisfy the condition (1.1). Let, moreover, there exist a

function γ ∈ C̃([a, b]; ]0, +∞[) satisfying the inequalities (1.2), (1.3) and (2.4).
Then ` ∈ U(λ).

Proof. Let q∗ ∈ L([a, b]; R+), c ∈ R+ and u ∈ C̃([a, b]; R) satisfy the inequalities
(2.24) and (2.25). It is clear that

u′(t) = `0(u)(t)− `1(u)(t) + q̃(t), (2.33)

where
q̃(t) = u′(t)− `(u)(t) for t ∈ [a, b].

Obviously,

q̃(t) sgn u(t) ≤ q∗(t) for t ∈ [a, b]. (2.34)

According to (1.1), (1.2), (1.3), and Lemma 1.1, we see that `0 ∈ V +(λ).
Therefore, the assumptions of Lemma 2.4 are fulfilled. Let r0 be the number
appearing in Lemma 2.4 and put

r = r0

(
1 + 4

(
1 + γ(b)− γ(a)

)(
4− (γ(b)− γ(a))2

)−1)
. (2.35)

We will show that (2.26) holds with r defined by (2.35).
Let us first suppose that u does not change its sign. Then, in view of (1.1)

and (2.34), the equality (2.33) yields

|u(t)|′ ≤ `0(|u|)(t) + q∗(t) for t ∈ [a, b],

and from (2.24) we get
|u(a)| − λ|u(b)| ≤ c.

Therefore, by Remark 1.7, the condition `0 ∈ V +(λ) implies

|u(t)| ≤ v(t) for t ∈ [a, b],

where v is a solution of the problem (2.31). Due to Lemma 2.4, the function v
admits the estimate (2.32), and so the estimate (2.26) holds.

Now assume that u changes its sign. Define numbers M and m by (1.24) and
choose tM , tm ∈ [a, b] such that (1.25) holds. It is clear that (1.26) is fulfilled
and either

tM < tm (2.36)
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or

tm < tM . (2.37)

According to (1.1), (1.2), (1.3), (1.24), (1.26), and (2.31), we have

(Mγ(t) + v(t))′ ≥ `0(Mγ + v)(t) + M`1(1)(t) + q∗(t)

≥ `0(Mγ + v)(t) + `1([u]+)(t) + q∗(t) for t ∈ [a, b], (2.38)

Mγ(a) + v(a)− λ(Mγ(b) + v(b)) ≥ c,

and

(mγ(t) + v(t))′ ≥ `0(mγ + v)(t) + m`1(1)(t) + q∗(t)

≥ `0(mγ + v)(t) + `1([u]−)(t) + q∗(t) for t ∈ [a, b],

mγ(a) + v(a)− λ(mγ(b) + v(b)) ≥ c.

(2.39)

On the other hand, in view of (2.34) and (2.24), the equality (2.33) yields

[u(t)]′+ ≤ `0([u]+)(t) + `1([u]−)(t) + q∗(t) for t ∈ [a, b],

[u(a)]+ − λ[u(b)]+ ≤ c,
(2.40)

and

[u(t)]′− ≤ `0([u]−)(t) + `1([u]+)(t) + q∗(t) for t ∈ [a, b],

[u(a)]− − λ[u(b)]− ≤ c.
(2.41)

In view of the condition `0 ∈ V +(λ) and Remark 1.7, it follows from (2.38) and
(2.41), and from (2.39) and (2.40), that

Mγ(t)+v(t)≥ [u(t)]− and mγ(t)+v(t)≥ [u(t)]+ for t ∈ [a, b]. (2.42)

Inequalities (2.38)–(2.41), by virtue of (2.42) and the assumption `0 ∈ Pab,
imply

[u(t)]′−≤(Mγ(t)+v(t))′, [u(t)]′+≤(mγ(t)+v(t))′ for t ∈ [a, b]. (2.43)

Note also that in view of the condition `0 ∈ V +(λ), we have

v(t) ≥ 0 for t ∈ [a, b]. (2.44)

Let us first suppose that (2.36) is fulfilled. On account of (1.25), (1.26), and
(2.44), the integration of the first inequality in (2.43) from tM to tm results in

m≤Mγ(tm)+v(tm)−Mγ(tM)−v(tM)≤M(γ(tm)−γ(tM))+‖v‖C . (2.45)

On the other hand, in view of (1.25), (1.26), and (2.44), the integration of the
second inequality in (2.43) from a to tM and from tm to b yields

M − [u(a)]+ ≤ mγ(tM) + v(tM)−mγ(a)− v(a)

≤ m(γ(tM)− γ(a))− v(a) + ‖v‖C , (2.46)

[u(b)]+≤mγ(b)+v(b)−mγ(tm)−v(tm)≤m(γ(b)−γ(tm))+v(b). (2.47)
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Multiplying both sides of (2.47) by λ and taking into account that m > 0, λ < 1
and γ is a nondecreasing function, we obtain

λ[u(b)]+ ≤ m(γ(b)− γ(tm)) + λv(b).

Summing the last inequality and (2.46) and taking into account (2.31) and
(2.40), we get

M ≤ m(γ(tM)− γ(tm) + γ(b)− γ(a)) + ‖v‖C . (2.48)

In view of (1.24), (2.36), and the condition γ′(t) ≥ 0 for t ∈ [a, b], it follows
from (2.45) and (2.48) that

‖u‖C ≤ ‖u‖C(γ(tm)− γ(tM))(γ(tM)− γ(tm) + γ(b)− γ(a))

+ (1 + γ(b)− γ(a))‖v‖C .

Consequently, by virtue of the inequality

AB ≤ 1

4
(A + B)2, (2.49)

‖u‖C ≤ ‖u‖C

4

(
γ(b)− γ(a)

)2
+

(
1 + γ(b)− γ(a)

)
‖v‖C .

Hence, by(2.4),

‖u‖C ≤ 4
(
1 + γ(b)− γ(a)

)(
4− (γ(b)− γ(a))2

)−1‖v‖C . (2.50)

Therefore, according to (2.32) and (2.35), the estimate (2.26) holds.
Now suppose that (2.37) is fulfilled. On account of (1.25), (1.26), and (2.44),

the integration of the second inequality in (2.43) from tm to tM results in

M ≤ mγ(tM) + v(tM)−mγ(tm)− v(tm)

≤ m(γ(tM)− γ(tm)) + ‖v‖C . (2.51)

On the other hand, in view of (1.25), (1.26), and (2.44), the integration of the
first inequality in (2.43) from a to tm and from tM to b yields

m− [u(a)]− ≤ Mγ(tm) + v(tm)−Mγ(a)− v(a)

≤ M(γ(tm)− γ(a))− v(a) + ‖v‖C , (2.52)

[u(b)]−≤Mγ(b)+v(b)−Mγ(tM)−v(tM)≤M(γ(b)−γ(tM))+v(b). (2.53)

Multiplying both sides of (2.53) by λ and taking into account that M > 0,
λ < 1 and γ is a nondecreasing function, we get

λ[u(b)]− ≤ M(γ(b)− γ(tM)) + λv(b).

Summing the last inequality and (2.52) and taking into account (2.31) and
(2.41), we show that

m ≤ M(γ(tm)− γ(tM) + γ(b)− γ(a)) + ‖v‖C . (2.54)
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Accordingg to (1.24), (2.37), and the condition γ′(t) ≥ 0 for t ∈ [a, b], it follows
from (2.51) and (2.54) that

‖u‖C leq‖u‖C(γ(tM)− γ(tm))(γ(tm)− γ(tM) + γ(b)− γ(a))

+ (1 + γ(b)− γ(a))‖v‖C .

Consequently, by virtue of (2.4) and (2.49), the inequality (2.50) is fulfilled.
Therefore, according to (2.32) and (2.35), the estimate (2.26) holds.

2.3. Proofs of Main Results. Theorem 2.1 follows from Lemmas 2.2 and 2.5,
whereas Theorem 2.2 is a consequence Lemmas 2.3 and 2.5.

Proof of Corollary 2.1. Obviously, the condition (2.12) yields (2.3), where

F (v)(t)
def
= p(t)v(τ(t))− g(t)v(µ(t)) + f(t, v(t), v(ν(t))),

`0(v)(t)
def
= p(t)v(τ(t)), `1(v)(t)

def
= g(t)v(µ(t)) for t ∈ [a, b].

(2.55)

Moreover, similarly to the proof of Corollary 1.1 one can show that, accord-
ing to the conditions (1.10), (1.11), and (2.13), there exists a function γ ∈
C̃([a, b]; ]0, +∞[) satisfying the inequalities (1.2), (1.3), and (2.4). Therefore,
the assumptions of Theorem 2.1 are satisfied.

Proof of Corollary 2.4. Obviously, the condition (2.17) yields the condition
(2.7) with F , `0 and `1 defined by (2.55). Moreover, analogously to the proof
of Corollary 1.2, according to the condition (2.14), where α1 and β1 are defined
by (1.14) and (1.15) with σ given by (1.16), one can show that there exists a

function γ ∈ C̃([a, b]; ]0, +∞[) satisfying the inequalities (1.2), (1.3), and (2.4).
Therefore, the assumptions of Theorem 2.2 are fulfilled.

Corollaries 2.2, 2.3 and 2.5–2.8 can be proved in a similar manner.

3. On Remarks 1.2, 2.1 and 2.2

On Remark 1.2. In Example 3.1, we have constructed an operator ` ∈ Lab

such that the homogeneous problem (0, 30), (0, 40) has a nontrivial solution.
Then, according to Remark 1.1, there exist q0 ∈ L([a, b]; R) and c0 ∈ R such
that the problem (0.3), (0.4) has no solution.

Example 3.1. Let λ ∈ [0, 1[, a = 0, b = 4, ε ≥ 0, and let

`0 ≡ 0, `1(v)(t)
def
= g(t)v(µ(t)) for t ∈ [a, b], (3.1)

where

g(t) =





1 + λ for t ∈ [0, 1[

1 for t ∈ [1, 3[

ε for t ∈ [3, 4]

, µ(t) =





3 for t ∈ [0, 1[

1 for t ∈ [1, 3[

2 for t ∈ [3, 4]

.
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Obviously, ‖g‖L = 3 + λ + ε. Choose δ > 0 such that δ > λ ‖g‖L

1−λ
and define the

function γ by

γ(t) = δ +

t∫

a

g(s)ds for t ∈ [a, b]. (3.2)

It is clear that γ ∈ C̃([a, b]; ]0, +∞[) satisfies the conditions (1.2), (1.3), and

γ(b)− γ(a) = 3 + λ + ε.

On the other hand, the problem (0, 30), (0, 40) has a nontrivial solution

u(t) =





λ− (1 + λ)t for t ∈ [0, 1[

t− 2 for t ∈ [1, 3[

1 for t ∈ [3, 4]

.

Example 3.1 shows that the strict inequality (1.4) in Theorem 1.2 cannot be
replaced by nonstrict one. This example also shows that the strict inequali-
ties (1.12) in Corollary 1.1 and (1.13) in Corollary 1.2 cannot be replaced by
nonstrict ones.

On Remark 2.1. In Example 3.2 functions g, z ∈ L([a, b]; R+) and µ ∈Mab

are constructed such that the problem

u′(t) = −g(t)u(µ(t))− z(t)u(t), u(a)− λu(b) = 0 (3.3)

has a nontrivial solution. Then, by Remark 1.1, there exist q0 ∈ L([a, b]; R) and
c0 ∈ R such that the problem (0.1), (0.2), with

F (v)(t)
def
= −g(t)v(µ(t))− z(t)v(t) + q0(t) for t ∈ [a, b], h(v)

def
= c0,

has no solution, while the conditions (2.2) and (2.3) are fulfilled, where `0, `1

are defined by (3.1), q ≡ |q0|, and c = |c0|.
Example 3.2. Let λ ∈ [0, 1[, ε > 0, and choose η1 ∈ [0, λ] such that 0 <

η1 < λ if λ 6= 0, and η2 ∈ ]0, 1[ such that η1 + η2 ≤ ε. Put a = 0, b = 5,
t0 = η1

1+η1
+ 1,

g(t) =





0 for t ∈ [0, 1[ ∪ [2, 3[

1 + η1 for t ∈ [1, 2[

1 + η2 for t ∈ [3, 4[

ε− η1 − η2 for t ∈ [4, 5]

, µ(t) =





5 for t ∈ [0, 2[

2 for t ∈ [2, 4[

t0 for t ∈ [4, 5]

,

z(t) =





z0(t) for t ∈ [0, 1[

0 for t ∈ [1, 2[ ∪ [3, 5]
(1− η2)

(1− η2)(2− t) + 1
for t ∈ [2, 3[

,
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where

z0(t) =





0 if λ = 0
λ− η1

λ− (λ− η1)t
if λ 6= 0

for t ∈ [0, 1[ .

Obviously, ‖g‖L = 2 + ε. Choose δ > 0 such that δ > λ ‖g‖L

1−λ
and define the

function γ by (3.2). It is clear that γ ∈ C̃([a, b]; ]0, +∞[) satisfies the conditions
(1.2), (1.3), and

γ(b)− γ(a) = 2 + ε.

On the other hand, the problem (3.3) has a nontrivial solution

u(t) =





(λ− η1)t− λ for t ∈ [0, 1[

(η1 + 1)(t− 1)− η1 for t ∈ [1, 2[

(1− η2)(2− t) + 1 for t ∈ [2, 3[

(1 + η2)(3− t) + η2 for t ∈ [3, 4[

−1 for t ∈ [4, 5]

.

Example 3.2 shows that the strict inequality (2.4) in Theorem 2.1 cannot be
replaced by the inequality (2.5), no matter how small ε > 0 is. Example 3.2
also shows that the strict inequalities (2.13) in Corollary 2.1 and (2.14) in
Corollary 2.2 cannot be replaced by the inequalities (2.15) and (2.16), no matter
how small ε > 0 is.

On Remark 2.2. Example 3.2 shows that the strict inequality (2.4) in
Theorem 2.2, resp.(2.13) in Corollary 2.3, resp. (2.14) Corollary 2.4, cannot be
replaced by the inequaity (2.5), resp. (2.15), resp. (2.16), no matter how small
ε > 0 is.
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27. I. Kiguradze and B. Půža, On a singular two–point boundary value problem for the
nonlinear m-th order differential equation with deviating arguments. Georgian Math. J.
4(1997), No. 6, 557–566.
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