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ON A PROBLEM OF LINEAR CONJUGATION IN THE CASE
OF NONSMOOTH LINES AND SOME MEASURABLE

COEFFICIENTS
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Abstract. A boundary value problem of linear conjugation is considered
for more general curves than those studied previously. A condition on the
coefficient is found, under which the classical results are valid for these curves.
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10. Let Γ be a rectifiable closed Jordan curve dividing the plane into to
domains D+

Γ
and D−

Γ
(it is assumed that ∞ ∈ D−

Γ
). The direction that leaves

the domain D+
Γ

lie on the left is assumed to be the positive direction on Γ. The
line directed in this direction is denoted by Γ+, whereas the line directed in the
opposite direction is denoted by Γ−. Occasionally, we will write Γ instead of
Γ+.

In the sequel, we will need classes of analytic functions Ep(D
±
Γ
) which are usu-

ally called Hardy–Smirnov classes. For boundary value problems the following
definition of such classes is convenient.

We say that Φ(z) ∈ Ep(DΓ
), where p > 0 and D

Γ
denotes either D+

Γ
or D−

Γ
,

if:
a) Φ(z) is analytic in D

Γ
;

b) Φ(∞) = 0 if D
Γ

= D−
Γ
;

c) there exists a sequence of curves {Γn}∞n=1 ∈ D
Γ

such that ∞∈Γn, Γn → Γ
as n →∞ and

sup
n

∫

Γn

|Φ(z)|pds < ∞ (1.1)

By the convergence Γn → Γ we understand the same convergence as in [1],
p. 203.

For p ≥ 1, the above-defined class Ep(D
−
Γ
) coincides with the class which is

often denoted by
◦
Ep(D

−
Γ
). We will not use this notation because we will need

only functions Φ(z) vanishing at infinity.
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As usual, we denote by (S
Γ
ϕ(t))(τ) and (K

Γ
ϕ(t))(z) the integrals (whose

contour can be both closed and open):

(S
Γ
ϕ(t))(τ) =

1

πi

∫

Γ

ϕ(t)(t− τ)−1dt, τ ∈ Γ,

(K
Γ
ϕ(t))(z) =

1

2πi

∫

Γ

ϕ(t)(t− z)−1dt, t∈Γ.

It is assumed that ϕ ∈ L(Γ). The first integral is understood in the sense of the
Cauchy principal value (see, e.g., [2], p. 13). For these integrals we sometimes
use the notations S

Γ
ϕ and K

Γ
ϕ or Sϕ and Kϕ.

We say that Γ ∈ R if for any ϕ ∈ Lp(Γ), p > 1, we have

‖S
Γ
ϕ‖Lp(Γ) ≤ Mp‖ϕ‖Lp(Γ).

If Γ ∈ R, ϕ ∈ Lp(Γ), ψ ∈ Lq(Γ), q = p(p− 1)−1, then
∫

Γ

(S
Γ
ϕ)(t)ψ(t)dt = −

∫

Γ

ϕ(t)(S
Γ
ψ)(t)dt (Riesz equality), (1.2)

and if, in addition, Γ is a closed line, then

S2
Γ
ϕ = ϕ (1.3)

(with respect to (1.2) and (1.3) for Γ ∈ R, see [3], [4], [5]).
In the sequel we will need one more well-known definition. We say that the

positive measurable function ρ(t) is a weight and write ρ ∈ Wp(Γ), p > 1, if
∥∥∥ρS

Γ
ρ−1ϕ

∥∥∥
Lp(Γ)

≤ Mp‖ϕ‖Lp(Γ), ∀ ϕ ∈ Lp(Γ).

We will need the following properties of functions of the class Ep(DΓ
), where

Γ ∈ R:
(i1)

{
Φ(z) = (K

Γ±Φ±)(z), Φ± ∈ L1(Γ)
}
⇐⇒

{
Φ(z) ∈ E1(D

±
Γ
)
}
.

(i2)
{
Φ(z) = Eδ(D

±
Γ
), δ > 0, Φ± ∈ Lp(Γ), p > δ

}
⇐⇒

{
Φ(z) ∈ Ep(DΓ

)
}
.

(i3)
{
ϕ ∈ L∞

}
=⇒

{
(exp(Kϕ)(z)

)
− 1 ∈ Eδ(DΓ

) for some δ > 0
}
.

(i4) In (1.1) we can take as Γn the images of the circumferences |w| = rn,
rn → 1 for the conformal transformation of the circle |w| < 1 to D

Γ
.

If D
Γ

= D+
Γ
, then (i1) and (i4) are valid for all rectifiable simple closed lines

(see, e.g., [1], p. 208 and p. 203); (i2) follows from Smirnov’s theorem ([1],
p. 264) and Havin’s theorem ([6], p. 512); (i3) is proved in [7], p. 68.

For D
Γ

= D−
Γ
, these statements or their close analogs are used by various

authors, but Ep(D
−
Γ
) is defined in different ways, which, for p < 1, gives different

classes. Therefore here we present the proofs the more so that they are very
simple.

Take the conformal transformation z = ω0(ζ) = (ζ− a)−1 + a and the inverse
transformation ζ = (z − a)−1 + a, where a ∈ D+

Γ
, z ∈ D−

Γ
, ζ ∈ D+

Γ0
, where Γ0
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is the image of Γ. (An analogous reasoning can be found in [5], p. 32.) We
obviously obtain the equality

(K
Γ±ϕ)(z) = (ζ − a)

(
K

Γ∓
0

(ϕ(ω0(τ)(τ − a)−1)
)
(ζ) (1.4)

and the inclusion

Φ(z) ∈ Ep(D
−
Γ
), p > 0 ⇐⇒ 1

ζ − a
Φ(ω0(ζ)) ∈ Ep(D

+
Γ0

). (1.5)

Indeed,

(K
Γ±ϕ)(ω0(ζ)) = (2πi)−1

∫

Γ±

ϕ(t)(t− ω0(ζ))−1dt

= −(2πi)−1
∫

Γ∓0

(
1

τ − a
+ a− 1

ζ − a
− a

)−1

(τ − a)−2ϕ(ω0(τ))dτ

= (ζ − a)
(
K

Γ∓
0

ϕ(ω0(τ))(τ − a)−1
)
(ζ).

We will prove (1.5). Since a∈Γ0
n, where Γ0

n are the images of the lines Γn ∈ D−
Γ
,

from (1.1), for the mapping ζ = ω−1
0 (z), we have for any analytic function Φ(z)

in D−
Γ
{
Φ(z) ∈ Ep(D

−
Γ
), p > 0

}

⇐⇒
{

sup
n

∫

Γ0
n

∣∣∣Φ(ω0(ζ))
∣∣∣
p|dζ| < ∞, Γ0

n ∈ D
Γ+
0

, a∈Γ0
n, Φ(ω0(a)) = 0

}

⇐⇒
{

1

ζ − a
Φ(ω0(ζ)) ∈ Ep(D

Γ+
0

)
}
.

Thus (1.4) and (1.5) are proved. Hence we easily obtain (i1), (i2) and (i3) for
D

Γ
= D−

Γ
. Indeed,

{
Φ(z) ∈ E1(D

−
Γ
)
}
⇐⇒

{
1

ζ − a
Φ(ω0(ζ)) ∈ E1(D

+
Γ0

)
}

⇐⇒
{

1

ζ − a
Φ(ω0(ζ)) =

(
K

Γ+
0

(
1

τ − a
ϕ(ω0(τ)

))
(ζ)

}

⇐⇒
{
Φ(z) = (ζ − a)

(
K

Γ+
0

(τ − a)−1ϕ(ω0(ζ))
)
(ζ) = (K

Γ−ϕ)(z)
}
.

We have obtained (i1). Let us show (i2) for D
Γ

= D−
Γ
:

{
Φ(z) ∈ Eδ(D

−
Γ
), Φ− ∈ Lp(Γ), p > δ

}

⇐⇒
{

1

ζ − a
Φ(ω0(ζ)) ∈ Eδ(D

+
Γ0

),
1

τ − a
Φ+(ω0(τ)) ∈ Lp(Γ0), p > δ

}

⇐⇒
{

1

ζ − a
Φ(ω0(ζ)) ∈ Ep(D

+
Γ0

)
}
⇐⇒

{
Φ(z) ∈ Ep(D

−
Γ
)
}
.
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Let us show (i3) for D
Γ

= D−
Γ
:

{
Φ(z) = (exp K

Γ−ϕ)(z)− 1, z ∈ D−
Γ
, ϕ ∈ L∞(Γ)

}

⇐⇒
{
Φ(ω0(ζ)) =

(
exp(ζ − a)

(
K

Γ+
0

ϕ(ω0(τ)(τ − a)−1
)
(ζ)

)
− 1, a ∈ D+

Γ0
,

(τ − a)−1ϕ(ω0(τ)) ∈ L∞(Γ)
}

=⇒
{
Φ(ω0(ζ)) ∈ Eδ(D

+
Γ0

), ϕ(ω0(a)) = 0
}

⇐⇒ (ζ − a)−1Φ(ω0(ζ)) ∈ Eδ(D
+
Γ0

) ⇐⇒ Φ(z) ∈ Eδ(D
−
Γ
).

Next let us show (i4) for D
Γ

= D−
Γ
. Let Γ0 be as above and Γ0

n be the
images of the circumferences |w| = rn, rn → 1, for the conformal transformation
ζ = ω1(w) of the unit circle |w| < 1 in D+

Γ0
. Let further Γn be the images of the

circumferences |w| = rn for the transformation z = ω0(ω1(w)), where ω0(ζ) is
the same as above. It is obvious that

sup
n

∫

Γn

|Φ(z)|p|dz| = sup
n

∫

Γ0
n

|Φ(ω0(ζ))|p|ω′0(ζ)||dζ|

= sup
n

∫

Γn

|Φ(ω0(ζ))|p|ζ − a|−2|dζ| ≤ const
∫

Γ0
n

∣∣∣∣
1

ζ − a
Φ(ω0(ζ))

∣∣∣∣
p

||dζ| < ∞

(here we take into account that a∈Γ0
n).

20. Our boundary value problem of linear conjugation is formulated as fol-
lows:

Find a function Φ(z) ∈ Ep(D
±
Γ
) whose angular boundary values satisfy the

condition

Φ+(t) = G(t)Φ−(t) + f(t), t ∈ Γ, (2.1)

where f ∈ Lp(Γ), p > 1, and G ∈ L∞(Γ) are the known functions.
In the case, in which G(t) is piecewise-continuous and Γ is a Lyapunov curve,

this problem was solved for the first time by B. Khvedelidze [9]. The results
obtained subsequently are presented in [2] and other works of various authors.
We will be concerned with the case of a measurable coefficient which was inves-
tigated by I. Simonenko [10] for Lyapunov lines.

The conditions of [10] can be written as followsin the form

(S1) 0 < vrai inf
t∈Γ

|G(t)| < vrai sup
t∈Γ

|G(t)| < ∞ (2.2)

(S2) the function arg G(t) = ϕ(t) can be chosen so that ϕ(t) = ϕ1(t)+ϕ2(t),
where ϕ1(t) is continuous on Γ except perhaps for one point at which it has
a first order discontinuity ϕ1(t0−) − ϕ1(t0+) = 2πκ, where κ is an integer
and ϕ1(t0∓) denotes the unilateral limits along the negative and the positive
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direction on Γ, respectively; ϕ2(t) satisfies the inequality

vrai sup
t∈Γ

|ϕ2(t)| < π

max(p, q)
, q = p(p− 1)−1, p > 1. (2.3)

The function, whose argument satisfies (2.3) and modulus (2.2), is called sec-
torial. In the sequel, for p and q it will always be assumed that p > 1 and
q = p(p− 1)−1.

For the briefness of our exposition we introduce yet another definition:
The statement (A{) or, simply, (A) is valid for problem (2.1) if:
1) all solutions of this problems, when they exist, are written in the traditional

form

Φ(z) = X(z)
(
K

Γ+ (f/X+)
)
(z) + X(z)P{−1(z), (2.4)

where P{−1(z) is a polynomial of degree κ−1 and, in addition to this, it assumed
that Pk(z) ≡ 0 for k < 0. By X(z) we mean the following:

X(z) =





X0(z) for z ∈ D+
Γ
,

(z − a)−{X0(z) for z ∈ D−
Γ
,

(2.5)

X0(z) = exp
(
K

Γ
ln(t− a)−{G(t)

)
(z),

X0(z)− 1 ∈ Ep(D
±
Γ
), X−1

0 (z)− 1 ∈ Eq(D
±
Γ
),

(2.6)

where a ∈ D+
Γ
, κ is the integer depending on G(t) and called the index of the

problem;
2) for κ ≥ 0 the problem is solvable unconditionally, while for κ < 0 for the

problem to be solvable it is necessary and sufficient that the condition
∫

Γ

tkf(t)(X+(t))−1dt = 0, k = 0, 1, . . . ,−κ − 1. (2.7)

be fulfilled.
I. Simonenko showed [10] that for Lyapunov lines, when the conditions (S1)

and (S2) are fulfilled, the statement (A{) is true for problem (2.1). Later,
other authors extended this result to sufficiently general lines (see, for example,
[7], [8], [11]), but in that case the conditions imposed on the lines exclude the
existence of cusps.

Our objective here is to modify condition (2.3) so that the classical result be
valid for the lines with cusps.

Denote by Γab a simple arc with ends a, b and directed from a to b. Denote
by χ(Γab) the characteristic function of the set {t : t ∈ Γab}.

We say that Γab ∈ R
A

if it can be complemented to a closed contour Γ0
ab ∈ R,

Γab ⊂ Γ0
ab, so that the statement (A0) be true for any function [G(t)]χ(Γab)

satisfying, on Γ0
ab, the conditions (S1) and (S2) with the zero index.

Main Result. If in problem (2.1) the simple closed curve Γ can be repre-

sented as Γ =
n∪

k=1
Γakak+1

, ak+1 = a1, where the direction on Γakak+1
coincides
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with the positive direction on Γ, Γakak+1
∈ RA (k = 1, 2, . . . , n) and the function

G(t) satisfies, for t ∈ Γ, the conditions (S1) and (S2) and, moreover, for the
points ak (k = 1, 2, . . . , n) there exist, on Γ, angular neighborhoods Γbkak

⊂ Γ,
Γakck

⊂ Γ, where the conditions

vrai sup
t∈Γbkak

|ϕ2(t)| < αk
π

max(p, q)
,

vrai sup
t∈Γakck

|ϕ2(t)| < (1− αk)
π

max(p, q)

(2.8)

are fulfilled for some α ∈ [0, 1], then the statement (A{) is valid for problem
(2.1).

It is obvious that in these conditions both cusps and other cases may occur
at the points ak.

30. The solution of a boundary value problem of linear conjugation is usually
closely connected with a factorization problem. The factorization of the function
G(t) in Ep(D

±
Γ
) implies that it can be represented as

G(t) = X+(t)(t− a){/X−(t), t ∈ Γ, a ∈ D+
Γ
,

X(z)− 1 ∈ Ep(D
±
Γ
), X−1(z)− 1 ∈ Eq(D

±
Γ
),

(3.1)

where κ is an integer, X±(t) are boundary values of the function X(z).
It is obvious that (3.1) can be rewritten as

X+(z) = (t− a)−{ ·G(t) ·X−(t), t ∈ Γ, a ∈ D+
Γ
,

X(z)− 1 ∈ Ep(D
±
Γ
), X−1(z)− 1 ∈ Eq(D

±
Γ
),

(3.1′)

The function X(z) is called the factor function, and the number κ the index of
the problem.

Lemma 1. If the function G(t) admits a factorization in Ep(DΓ
), p > 1,

then to it there corresponds the unique number κ which can be put in (3.1) or,
which is the same, in (3.1′) and for fixed a ∈ D+

Γ
the factorization is unique.

Proof. Suppose there are two factorizations

G(t) = (t− a1)
{1 ·X+

1 (t) · (X−
1 (t))−1

= (t− a2)
{2 ·X+

2 (t) · (X−
2 (t))−1, a1, a2 ∈ D+

Γ
. (3.2)

Let κ1 > κ2. From (3.2) we have

X+
1 (t) · (X+

2 (t))−1 = (t− a2)
{2−{1

(
t− a2

t− a1

){1

X−
1 (t) · (X−

2 (t))−1. (3.3)

We introduce the function

X(z) =





X1(t) · (X2(t))
−1 for z ∈ D+

Γ
,

(z − a2)
{2−{1

(
(z − a2)/(z − a1)

){1

X1(z) · (X2(z))−1 for z ∈ D−
Γ
.
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By the definition of classes, the property (i4) and the Hölder inequality it ob-
viously follows that X(z) ∈ E1(D

±
Γ
). (3.3) clearly implies that X+(t) = X−(t)

for t ∈ Γ. Therefore X(z) ≡ 0, which is impossible. Thus κ1 = κ2. If now,
along with κ1 = κ2, it is assumed that a1 = a2, then we obtain X(z) ≡ 1, i.e.,
X1(z) = X2(z).

Remark. Representation (3.1) and formula (2.6) clearly imply that if the
condition (A{) is fulfilled, then the function X0(z) = exp(K

Γ
ln(t−a)−{G(t))(z)

is the factor function of the function (t− a)−{G(t) with the zero index and the
factor function of the function G(t) with the index κ.

In connection with Lemma 1 see also [2], p. 110.

40. We will give some auxiliary propositions.

Lemma 2. If f ∈ Lp(Γ), Γ ∈ R, p > 1, G(t) satisfies the condition (S1) and
Φ(z) ∈ Ep(D

±
Γ
), then the following statements are equivalent:

(1) the boundary value problem (2.1) has a unique solution for any f ∈ Lp(Γ);

(2) The operator N
G

ϕ =
1

2
(1 + G)ϕ +

1

2
(1−G)Sϕ is invertible in Lp(Γ);

(3) The function G(t) admits a factorization with the index κ = 0 and the
function Φ(z) given by the equality

Φ(z) = X0(z)
(
K(f/X+

0 )
)
(z), (4.1)

where X0(z) is the factorization of the function G(t), is a solution of problem
(2.1);

(4) The invertible operator N
G

in Lp(Γ) is written in the form

N−1
G

f =
1

2
(1 + G−1)f +

1

2
(1−G−1)X+

0 S
Γ
(f/X+

0 ),

where X0(z) is the same as in (3);
(5) |X+

0 | ∈ Wp(Γ), where X0(z) is the same as in (3) and (4).

The statements of the lemma follow from the classical schemes and are en-
countered in this form or another in the works of many authors. Nevertheless,
for the completeness of our exposition, we will give the proofs, the more so
they are simple and some of their arguments make them different from the well
known proofs.

By virtue of (i1) and (i2) the solution of the problem is Φ(z) = K
Γ
ϕ,

ϕ ∈ Lp(Γ). Applying Privalov’s basic lemma ([1], p. 184), we obviously obtain
Φ+ − GΦ− = 1

2
(1 + G)ϕ + 1

2
(1 − G)Sϕ. Hence it clearly follows that (1) is

equivalent to (2).
Let us show now that (2) implies (3).
Note preliminarily that if (1) holds for some G(t), then the same is true for

G1(t) = AG(t), where A = const, A 6= 0. Therefore it can be assumed without
loss of generality that |G(t)| 6= 1 for t ∈ Γ.
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Taking into account the invertibility of the operator N
G

in Lp(Γ) and using
(1.2), we conclude that the operator 1

2
(1 + G)ψ − 1

2
S(1 − G)ψ is invertible in

Lq(Γ). Using the notation (1−G)ψ = ψ1, we have

1

2
(1 + G)ψ − 1

2
S(1−G)ψ =

1

2

1 + G

1−G
ψ1 − 1

2
Sψ1 =

1

2

G−1 + 1

G−1 − 1
ψ1 − 1

2
Sψ1

= (G−1 − 1)−1
[
1

2
(1 + G−1)ψ1 − 1

2
(G−1 − 1)Sψ1

]

= (G−1 − 1)−1
[
1

2
(1 + G−1)ψ1 +

1

2
(1−G−1)Sψ1

]
= (G−1 − 1)−1N

G−1ψ1.

Therefore N
G−1 ψ is invertible in Lq(Γ) and the problem

X+
1 (t) = G−1(t)X−

1 (t) + G−1(t), X1 ∈ Eq(D
±
Γ
) (4.2)

has a unique solution.
If to this we add that the problem

X+(t) = G(t)X−(t) + G(t), X ∈ Ep(D
±
Γ
), (4.3)

has a unique solution by virtue of (1), then we obtain

X+
1 X+ = G−1(X−1

1 + 1) ·G(X−1 + 1) = (X−1
1 + 1)(X−1 + 1).

Therefore

X+
1 X+ − 1 = (X−

1 + 1)(X− + 1)− 1. (4.4)

Now since X1X ∈ E1(D
+
Γ
) and (X1 + 1)(X + 1) − 1 ∈ E1(D

−
Γ
), from (4.4) we

have

X1(z)X(z)− 1 = 0 for z ∈ D+
Γ
,

(X1(z) + 1)(X(z) + 1)− 1 = 0 for z ∈ D−
Γ
,

which implies

(X(z))−1 = X1(z) ∈ Eq(D
+
Γ
) and (X(z) + 1)−1 = X1(z) + 1,

(X(z) + 1)−1 − 1 ∈ Eq(D
−
Γ
).

(4.5)

Using (4.5) together with (4.3), we conclude that the function

X0(z) =





X(z) for z ∈ D+
Γ
,

X(z) + 1 for z ∈ D−
Γ
,

is the factor function of the function G(t) with the index κ = 0.
By the classical scheme it further clearly follows that if Φ(z) is a unique

solution of problem (2.1) and X0(z) is the facor function, then

Φ+/X+
0 = Φ−/X−

0 + f/X+
0 , Φ/X0 ∈ E1(D

±
Γ
).

From this we obtain (4.1). Thus (1) implies (3).
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To prove that the converse statement is true, we must show only that the
solution is unique. Assume that this not so. Then

Φ+
1 = GΦ−

1 + f, Φ+
2 = GΦ−

2 + f Φ1, Φ2 ∈ Ep(D
±
Γ
).

From this and (3.1) we have

(Φ+
1 − Φ+

2 )/X+
0 = (Φ−

1 − Φ−
2 )/X−

0 .

But as above (Φ1(z) − Φ2(z))/X0(z) ∈ E1(D
±
Γ
) and therefore Φ1(z) = Φ2(z).

Thus the statements (1), (2) and (3) are equivalent.
Concurrently, we have shown that for κ = 0 the solution, if it exists for given

(not necessarily arbitrary) f , is unique.
Let us next show that (3) implies (4). Since (3) is equivalent to (1), there

exists a unique solution in Ep(D
±
Γ
). By the definition of classes for p > 1 we

have Ep ⊂ E1 and by (i1) and (i2) the solution is Φ(z) = Kϕ, ϕ ∈ Lp(Γ). Now
it is clear that

ϕ=N0f =Φ+ − Φ−=
1

2
X+

0

(
f/X+

0 +S(f/X+
0 )

)
−X−

0

2

(
− f/X+

0 +S(f/X+
0 )

)

=
1

2
(1 + G−1)f +

1

2
(1−G−1)X+

0 S(f/X+
0 ) = N−1

G
f. (4.6)

Thus we have found that (3) implies (4). It is obvious that (4) implies (2) and
therefore (1), (2), (3), (4) are equivalent.

Let us show that (4) implies (5). As said above, it can always be assumed
that G(t) 6= 1 for t ∈ Γ. Therefore (4) clearly implies |X+

0 | ∈ Wp(Γ), i.e., (5) is
true.

Assume now that (5) is fulfilled. If f is continuous, then by (i4), the definition
of classes and the Hölder inequality we obtain Φ(z) = X0(z)(K(f/X0))(z) ∈
E1(D

±
Γ
) and Φ(z) = Kϕ. It is obvious that Φ(z) satisfies the boundary condition

(2.1). Now on account of (4.6), for continuous fn we have that ϕn = N0fn

and Kϕn is a solution. But since |X+
0 | ∈ Wp(Γ), we can pass to the limit

and thus obtain ϕ = N0f for any f ∈ Lp, p > 1. Moreover, ϕ ∈ Lp(Γ),
Φ± = 1

2
(±ϕ + Sϕ) ∈ Lp(Γ) and because of the property of classes (i2) we

have Φ(z) ∈ Ep(D
±
Γ
). The solution is unique by virtue of κ = 0. Therefore

N0 = N−1
G

. The statements (1), (2), (3), (4) and (5) are equivalent.

Lemma 3. If one of the statements of Lemma 2 is fulfilled for the function
G0(t), then for the problem

Φ+(t) = (t− a){G0(t)Φ
−(t) + f(t), f ∈ Lp(Γ), p > 1,

the statements (A{) hold except formula (2.6), where X0(z) means in a general
case the factor function G0(t).

Proof. The statement (1) of Lemma 2 is fulfilled in the conditions of the lemma.
The rest of the proof follows from the well verified arguments of many authors
(see, for example, [10], p. 291). True, they consider the Lyapunov lines but here
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it is sufficient to require of the lines that the properties of the classes Ep(D
±
Γ
),

which we have given for Γ ∈ R in the beginning of the paper, take place.

50. Let us consider a simple closed contour Γ ∈ R. If Γab ⊂ Γ, then the
direction from a to b is assumed to coincide with the positice direction on Γ.

Here and in the sequel it is assumed that Γ =
n∪

k=1
Γakak+1

, where an+1 = a1,

Γakak+1
∈ RA, k = 1, . . . , n, and do not have pairwise the common internal

points. Occasionally, instead of Γakak+1
, we write Γk. Also, we denote by Γ0

k the
contour participating the definition of R

A
, i.e., Γ0

k ≡ Γ0
akak+1

, and by χk(t) the

characteristic function of the set {t : t ∈ Γk}.

Lemma 4. If G(t) is a measurable function satisfying condition (2.2) and
Gk(t) ≡ [G(t)]χk

(t), t ∈ Γ ∪ Γ0
k, satisfies on Γ0

k the condition (S2) with κ = 0,
then:

1) Xk(z) = exp
(
K

Γ
χ

k
ln G

)
(z) is the factor function of the function Gk(t) in

Ep(D
±
Γ
);

2) The boundary value problem

Φ+(t) = Gk(t)Φ
−(t) + f(t), t ∈ Γ, f ∈ Lp(Γ), (5.1)

has a unique solution in Ep(D
±
Γ
);

3)
∣∣∣∣ exp

1

2

(
S

Γ
(χ

k
ln G)

)
(t)

∣∣∣∣ ∈ Wp(Γ). (5.2)

Proof. Since Γk ∈ R
A
, the factor function of the function Gk(t) in Ep(D

±
Γ0

k

) is

Xk(z) = exp
(
K

Γ0
k

(χ
k
ln G)

)
(z). But then Xk(z) − 1 = K

Γ0
k

ψ, ψ ∈ Lp(Γ
0
k) and

X−1
k (z) − 1 = (K

Γ0
k

ψ1)(z), ψ1 ∈ Lq(Γ
0
k). Obviously, ψ = (K

Γ0
k

ψ)+ − (K
Γ0

k

)− =

X+
k − X−

k = X−
k (X+

k /X−
k − 1) = X−

k (Gk(t) − 1) = χ
k
(t)ψ(t). Analogously,

ψ1 = χ
k
(t)ψ1(t). Therefore K

Γ0
k

ψ = K
Γ0

k

χ
k
ψ = K

Γ
χ

k
ψ ∈ Ep(D

±
Γ
) and K

Γ0
k

ψ1 =

K
Γ
χ

k
ψ ∈ Eq(D

±
Γ
).

Thus

Xk(z)− 1 ∈ Ep(D
±
Γ
) and X−1

k (z) ∈ Eq(D
±
Γ
). (5.3)

Moreover, for t ∈ Γ− Γk we have (K
Γ
χ

k
ψ)+/(K

Γ
χ

k
ψ)− = 1. Therefore

X+
k (t)/X−

k (t) = Gk(t) for t ∈ Γ (5.4)

(5.3) and (5.4) prove the statement 1).
Now we will show the validity of the statment 2).
A solution of problem (5.1) is to be sought in the form

Φ(z) = Φ1(z) + Φ2(z) (5.5)
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where Φ1(z) = (K
Γ
ψ)(z), ψ ∈ Lp(Γ) and Φ2(z) =

(
K

Γ
(χ

Γ−Γk
f)

)
(z). Equality

(5.1) then takes the form

Φ+
1 + Φ+

2 = Gk(t)(Φ
−
1 + Φ−

2 ) + f(t), t ∈ Γ. (5.6)

Denoting f0(t) = f(t)− Φ+
2 (t) + GkΦ

−
2 (t), we rewrite (5.6) as

Φ+
1 (t) = Gk(t)Φ

−
1 (t) + f0(t), t ∈ Γ, Φ1 ∈ Ep(D

±
Γ
), (5.7)

and (5.7) is equivalent to




φ+
1 = G(t)Φ−

1 (t) + f0(t) for t ∈ Γk, Φ1 ∈ Ep(D
±
Γ
)

Φ+
1 = Φ−

1 for t ∈ Γ− Γk.
(5.8)

From (5.8) it follows that if Φ1(z) is a solution of (5.8), then

Φ1(z) = (K
Γ
ψ)(z) = K

Γ
(Φ+

1 − Φ−
1 ) = K

Γ
χ

k
ψ = K

Γ0
k

χ
k
ψ ∈ Ep(D

±
Γ0

k

).

Therefore Φ1(z) simultaneously belongs both to Ep(D
±
Γ
) and to Ep(D

±
Γ0

k

).

Now it is clear that between the solutions of problem (5.1) in Ep(D
±
Γ
) and

the problem

Φ+
1 (t) = Gk(t)Φ

−
1 (t) + f0(t), t ∈ Γ0

k, Φ1 ∈ Ep(D
±
Γ0

k

), (5.9)

there exists a one-to-one correspondence carried out by formula (5.5). But (5.9)
has a unique solution. Therefore (5.1), too, has a unique solution.

Now, by virtue of statement (5) of Lemma 2, 1) and 2) imply |X+
k (t)| ∈

Wp(Γ), from which it follows that

|X+
k (t)| =

∣∣∣ exp(K
Γ
χ

k
ln G)+

∣∣∣ = G(t)
1
2
χ

k exp
1

2
S

Γ
χ

k
ln G| ∈ Wp(Γ)

=⇒
∣∣∣∣ exp

1

2
S

Γ
χ

k
ln G

∣∣∣∣ ∈ Wp(Γ).

Corollary 1. If we take Gk(t) = |G(t)|χk
(t), then by virtue of Lemma 4:

1) the function

exp K
Γk

ln |G| (5.10)

is the factor function of the function |G|χk
(t) in ∩

p>1
Ep(D

±
Γ
);

2)
∣∣∣∣ exp

1

2
S

Γk
ln |G|

∣∣∣∣ ∈ ∩
p>1

Wp(Γ). (5.11)

Corollary 2. If we take Gk(t) = exp iχ
k
ϕ2, where ϕ2 satisfies condition

(2.3), then:
1) exp(K

Γ
iχ

k
ϕ2)(z) is the factor function for exp iχ

k
ϕ2 in Ep(D

±
Γ
), where p

participates in condition (2.3);
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2)
∣∣∣∣ exp

i

2
S

Γ
χ

k
ϕ2

∣∣∣∣ ∈ Wp(Γ) for the same p. (5.12)

Lemma 5. If Γbc is a simple arc on Γ, Γbc ⊂ Γ, Γbc = Γba + Γac, Γba ∈ RA,
Γac ∈ RA and ϕ2(t) is a measurable function on Γ which satisfies the conditions

vrai sup
t∈Γba

|ϕ2(t)| < α
π

max(p, q)
,

vrai sup
t∈Γac

|ϕ2(t)| < (1− α)
π

max(p, q)
,

(5.13)

where α is some number from [0, 1], then

ρ(t) =
∣∣∣∣ exp

i

2
(S

Γbc
ϕ2)(t)

∣∣∣∣ ∈ Wp(Γ) ∩Wq(t). (5.14)

Proof. We make use of the particular case of the well-known Stein theorem (see,
for example [10], p. 288):

If ‖(Sϕ)ρk‖p ≤ Mp‖ϕρk‖, k = 1, 2, p > 1, then

‖(Sϕ)ρ‖ ≤ Mp‖ϕρ‖p for ρ = ρα
1 · ρ1−α

2 , α ∈ [0, 1].

This fact can also be written as follows:
If ρk ∈ Wp(Γ), k = 1, 2, p > 1 and α ∈ [0, 1], then

ρ = ρα
1 · ρ1−α

2 ∈ Wp(Γ). (5.15)

Denote by χ1(t) = χ(Γba) the characteristic function of the set {t : Γba}, and
by χ2(t) that of the set {t : t ∈ Γac}. On account of (5.12) and (5.13) we have

ρ1 =
∣∣∣∣ exp

i

2
S

Γ

1

α
χ1ϕ2

∣∣∣∣ ∈ Wp(Γ), ρ2 =
∣∣∣∣ exp

i

2
S

Γ

1

1− α
χ2ϕ

∣∣∣∣ ∈ Wp(Γ),

from which by virtue of (5.15) we obtain

ρ = ρα
1 · ρ1−α

2 =
∣∣∣∣ exp

i

2
S

Γ
χ1ϕ2

∣∣∣∣ ·
∣∣∣∣ exp

i

2
S

Γ
χ2ϕ2

∣∣∣∣

=
∣∣∣∣ exp

i

2
S

Γ
(χ1 + χ2)ϕ2

∣∣∣∣ =
∣∣∣∣ exp

(
i

2
S

Γbc
ϕ2

)
(t)

∣∣∣∣ ∈ Wp(Γ).

Obviously, in the conditions (5.13) p and q play the same role and therefore
(5.14), too, is valid.

Theorem 1. If Γ =
n∪

k=1
Γakak+1

, an+1 = a1, Γakak+1
⊂ RA, and, moreover, for

each point ak (k = 1, . . . , n) there exists an arc neighborhood Γbkak
∪ Γakck

⊂ Γ,
where conditions (2.8) are fulfilled for the function G, and conditions (2.2) and
(2.3) are fulfilled on the entire contour Γ, then

ρ(t) =
∣∣∣∣ exp

i

2
(S

Γ
ϕ2)(t)

∣∣∣∣ ∈ Wp(Γ) ∩Wq(t). (5.16)



ON A PROBLEM OF LINEAR CONJUGATION 519

Proof. To prove the theorem, we make use of Theorem 4.2 from [13], p. 52, by
virtue of which the necessary and sufficient condition for the inequality

∫

Γ

|S
Γ
f |p0w dν ≤ c

∫

Γ

|f |p0w dν, (5.17)

to hold for p0 > 1, is w ∈ Ap0 .
In terms of the above-mentioned work this means that

{
ρ = w

1
p0 ∈ Wp0(Γ), p0 > 1, Γ ∈ R

}
⇐⇒

{
ρp0 = w ∈ Ap0(Γ)

}
. (5.18)

(for the definition of Ap, see [13], p. 42).

Let us write the condition Ap0 for ρ = w
1

ρ0 . Denote by ν the length of the
arc Γ(z, r) which is cut out from Γ by the circle with center z ∈ Γ and radius
r. (Here, like in (5.17), ν is the arc measure on Γ.) We obtain

ρ ∈ Wp0 ⇐⇒ sup
z∈Γ

0<r<diamΓ

(
1

νΓ(z; r)

∫

Γ(z;r)

ρp0dν
) 1

p0

(
1

ν(z; r)

∫

Γ(z;r)

ρ−q0dν
) 1

q0
< ∞,

q0 = p0(1− p0)
−1.

(5.19)

For brevity, we denote by B(Γ(z; r); ρ(t); p0) the expression in (5.19) from which
the supremum is taken. Now (5.19) can be rewritten as

ρ ∈ Wp0 ⇐⇒ sup
z∈Γ

0<r<diamΓ

B
(
Γ(z; r); ρ(t); p0

)
< ∞. (5.20)

Take now the points bk and ck (k = 1, 2, . . . , n) according to condition (2.8)
and take the points ek ∈ Γbkak

and dk ∈ Γakck
different from the end points (Fig.

1).

Fig. 1

Also assume that dn+1 = d1, en+1 = e1, bn+1 = b1, cn+1 = c1 and Γbkak

(k = 1, . . . , n) do not intersect pairwise. Denote δ
(1)
k = min

t∈Γekdk
τ∈Γ−Γbkck

|t− τ |,

δ
(2)
k = min

t∈Γdkek+1
t∈Γ−Γakak+1

|t− τ |.



520 E. GORDADZE

Also denote δ = 1
2

min
i=1,2

i≤k≤n

δ
(i)
k . Assume that z ∈ Γekdk

. Then Γ(z, δ) ⊂ Γbkck
.

But by virtue of Lemma 5 we have
∣∣∣ exp i

2
(S

Γbkck
ϕ2)(t)

∣∣∣ ∈ Wp(Γ)∩Wq(t). Then

if p0 is equal to p or q, we have

sup
z∈Γekdk
0<r<δ

(
B(Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γbkck
ϕ2)(t)

∣∣∣∣, p0

)
< ∞. (5.21)

Meanwhile, if z ∈ Γekdk
and t ∈ Γ(z; δ), then

∣∣∣∣ exp
i

2
(S

Γ−Γbkck
ϕ2)(t)

∣∣∣∣ < const

and therefore along with (5.21) we have

sup
z∈Γekdk
0<r<δ

(
B(Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γ
ϕ2)(t)

∣∣∣∣, p0

)
< ∞. (5.22)

Let now z ∈ Γdkek+1
. In view of (5.12) and (5.18) we obtain

sup
z∈Γdkek+1

0<r<δ

(
B(Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γakak+1
ϕ2)(t)

∣∣∣∣, p0

)
< ∞. (5.23)

But, as above, for t∈Γ(z, r), z∈Γdkek+1
we have

∣∣∣exp i
2
(S

Γ−Γakak+1
ϕ2)(t)

∣∣∣< const,

which, together with (5.23), gives

sup
z∈Γdkek+1

0<r<δ

(
B(Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γ
ϕ2)(t)

∣∣∣∣, p0

)
< ∞. (5.24)

Since (5.22) and (5.24) are fulfilled for k = 1, . . . , n, we obtain

sup
z∈Γ

0<r<δ

B
(
Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γ
ϕ2)(t)

∣∣∣∣, p0

)
< ∞. (5.25)

Since
∣∣∣ exp i

2
(S

Γ
ϕ2)(t)

∣∣∣ ∈ Lp0(Γ), it is obvious that

sup
z∈Γ

δ<r<diamΓ

B
(
Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γ
ϕ2)(t)

∣∣∣∣, p0

)
< ∞,

which, together with (5.25), gives

sup
z∈Γ

0<r<diamΓ

B
(
Γ(z; r);

∣∣∣∣ exp
i

2
(S

Γ
ϕ2)(t)

∣∣∣∣, p0

)
< ∞ (5.26)

which, together with (5.20), proves the theorem.
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Corollary. If ϕ2 satisfies conditions (2.3) and (2.8), then there exists a
number 0 < ε < 1 such that (1 − ε)−1ϕ2 also satisfies these conditions. Hence
from Theorem 1 it follows that

∣∣∣∣ exp
i

2

(
S

Γ

1

1− ε
ϕ2

)
(t)

∣∣∣∣ ∈ Wp(Γ) ∩Wq(Γ) (5.27)

Remark. By a reasoning similar to that used in proving Theorem 1 one can
prove a more general statement.

Let Γ be a simple (not necessarily closed) continuous line and Γ ∈ R. Let
Γt be an arc neighborhood of the point Γ ∈ R. For a more exact definition of
Γt we use, along with the notation Γab, the notations Γ[a,b], Γ(a,b), Γ[a,b), Γ(a,b]

which indicate the belonging or not belonging of the end points to the arc Γab.
Now if t is an internal point of the line Γ, then Γt = Γ(t1,t2), where t ∈ Γ(t1,t2)

and t1, t2 are the points on Γ taken according to the positive direction on Γ.
If however Γ = Γab and t = a or t = b, then Γa ≡ Γ[0,t1) and Γb ≡ Γ(t2,b],
t1, t2 ∈ Γab.

For p > 1 the following statement holds true:

(ρ(t) ∈ Wp(Γt) for any t ∈ Γ) =⇒ ρ ∈ Wp(Γ). (5.28)

The proof is published in [12]. Like Theorem 1, this result is based on Theo-
rem 4.2 from [13], p. 52.

Theorem 2. If Γ is the same as in Theorem 1, G(t) = |G(t)| exp i(ϕ1 +ϕ2),
where ϕ1(t) is a continuous function, |G(t)| and ϕ2(t) satisfy conditions (2.2)
and (2.3) as well as the additional condition (2.8), then

ρ(t) =
∣∣∣∣ exp

1

2
(S

Γ
ln G)(t)

∣∣∣∣ ∈ Wp(Γ) ∩Wq(Γ). (5.29)

Proof. Denote

ρ1(t) ≡
∣∣∣∣ exp

1

2
(S

Γ
ln |G|)(t)

∣∣∣∣, ρ2(t) ≡
∣∣∣∣ exp

i

2
(S

Γ
ϕ1)(t)

∣∣∣∣,

ρ3(t) ≡
∣∣∣∣ exp

i

2
(S

Γ
ϕ2)(t)

∣∣∣∣.

It is obvious that ρ1(t) =
n∪

k=1

∣∣∣ exp 1
2
(S

Γk
ln |G|)(t)

∣∣∣. For 0 < α < 1 we have
∣∣∣ exp 1

2

(
S

Γ1

1
α

ln |G|
)
(t)

∣∣∣ ∈ Wp(Γ) for any p > 1, and
∣∣∣ exp 1

2

(
S

Γ2

1
1−α

ln |G|
)
(t)

∣∣∣ ∈
Wp(Γ) for any p > 1. Hence, applying the Stein theorem (5.15), we find that∣∣∣ exp 1

2

(
S

Γ1+Γ2
ln |G|

)
(t)

∣∣∣ ∈ Wp(Γ) for any p > 1, and for any G(t) satisfying

(2.2). Performing the same n times we obtain ρ1 ∈ Wp(Γ) for any p > 1 and
G(t) satisfying (2.2). Therefore

ρ
1

α0
1 ∈ ∩

p>1
Wp(Γ) for 0 < α0 < 1. (5.30)
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ρ2 also belongs to ∩
p>1

Wp(Γ), which follows from the fact that the boundary

value problem for Γ ∈ R with a continuous coefficient is solved completely ([14],
p. 547).

It is clear that

ρ
1

1−α0
2 ∈ ∩

p>1
Wp(Γ), 0 < α0 < 1. (5.31)

By the same Stein theorem, (5.30) and (5.31) imply that ρ1 · ρ2 ∈ ∩
p>1

Wp(Γ)

for any G(t) and ϕ1(t) satisfying the conditions of the theorem. Therefore

(ρ1 · ρ2)
1
ε ∈ ∩

p>1
Wp(Γ) for 0 < ε < 1. (5.32)

Let po be any one of the numbers p and q participating in condition (2.8),
and ε be the same as in (5.27). Then

(ρ3)
1

1−ε ∈ Wp0(Γ). (5.33)

By virtue of the Stein theorem, (5.32) and (5.33) give
(
(ρ1 · ρ2)

1
ε

)ε ·
(
ρ

1
1−ε

3

)1−ε
= ρ1 · ρ2 · ρ3 ∈ Wp0 ,

which is equivalent to (5.29).

Theorem 3. If Γ is the same as everywhere in Section 50, G(t) is the mea-
surable function G(t) = |G(t)| exp(iϕ1(t) + iϕ2(t)) on Γ, conditions (2.2), (2.3)
are fulfilled, the function ϕ1(t) is continuous except for one point at which it has
a first kind jump equal to 2πκ, where κ and integer, and if, additionally, (2.8)
is fulfilled ϕ2, then the statement A({) is valid for the boundary value problem
(2.1) with the coefficient G(t).

Proof. First assume that κ = 0. By virtue of Lemma 2 of [8], p. 1654, the
boundedness of ln |G0| and formula (5.29) imply that X0(z)=exp(K

Γ
ln G0)(z)

is the factor function of the function G0(t). Since we have defined Eδ(D
−) for

δ < 1 and the factor function in a somewhat different way, in our case we will
repeat with an insignificant modification the reasoning of [8], p. 1654.

From (i3) it follows that X0(z) − 1 ∈ Eδ(D
±
Γ
) for some δ > 0. Further, by

(5.29) and (5.18) we obtaon ρ± ∈ Lp(Γ) ∩ Lq(Γ), which, by (i2), implies that
X±

0 (z)−1 ∈ Ep(D
±
Γ
)∩Eq(D

±
Γ
), where X0(z), which evidently satisfies conditions

(3.1), is the factor function with κ = 0.
Thus statement (5) is fulfilled and so are the other statements of Lemma 2

and problem (2.1) has a unique solution in Ep(D
±
Γ
).

If κ 6= 0, then, taking a ∈ D+
Γ
, we can write

G0(t) = (t− a)−{G(t) = |G0(t)| exp(iϕ0
1 + iϕ2),

where ϕ0
1(t) is already continuous, and by virtue of the facts proved the problem

with the coefficient G0(t) has a unique solution, while the factor function of
the function G0(t) has form (2.6). Now due to Lemma 3 we conclude that
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the statement (A{) is true for problem (2.1) with the coefficient G(t) = (t −
a){G0(t).

Remark. Theorem 3 is the main result of this paper. As an example of
curves for which this theorem is valid we may name piecewise-smooth curves and
curves with bounded rotation (Radon curves), where an additional condition
is imposed on coefficient (2.8) at cusps. As Γk we can also take the curves
considered in [8] and others. Cases may occur, in which unilateral tangent lines
do not exist at the points ak.
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