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CHARACTERISTIC FUNCTIONS AND s-ORTHOGONALITY
PROPERTIES OF CHEBYSHEV POLYNOMIALS OF THIRD

AND FOURTH KIND

MARIA RENATA MARTINELLI

Abstract. The properties of two families of s-orthogonal polynomials, which
are connected with Chebyshev polynomials of third and fourth kind, are
studied. Evaluations of the remainders are given and asymptotic formulae
are calculated for the corresponding hyper-Gaussian formulae used for an
approximate estimation of integrals.
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Introduction

In their various works A. Ossicini and F. Rosati dealt with the problem of
construction of families of orthogonal polynomials which are at the same time
s-orthogonal with respect to predefined weights.

Recently, in collaboration with the above-mentioned authors we have car-
ried out a study of two families of s-orthogonal polynomials, connected with
Chebyshev polynomials of first and second kind [1].

This paper is concerned with the properties of two families of s-orthogonal
polynomials “connected” with Chebyshev polynomials of third and fourth kind.1

Using proper formulae of an upper bound, hyper-Gaussian functionals are stud-
ied and used for an approximate estimation of “integrals with weight”; evalu-
ations of the remainders are given and asymptotic formulae are derived. The
above results allow one to go beyond those obtained by A. Ossicini and F. Rosati
in [3] and [4].

1. s-Orthogonal Polynomials And Fundamental Formulae

Let [a, b], a < b, be a finite interval on the x-axis, and p(x) a fixed measurable
function which is almost everywhere positive and summable in [a, b] (p(x) ∈
L[a, b]).

Under such a hypothesis, having fixed an integer s ≥ 0, it was proved ([5], [6])
that it is possible to determine a sequence {Ps,m(x)} of polynomials of degree m
(each polynomial being determined up to a multiplicative constant factor cs,m)

1For the definition of such polynomials, which are of course Jacobi polynomials, see [2].
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s-orthogonal in [a, b] with respect to the weight p(x), i.e., such that for each
integer m ≥ 1

b∫

a

p(x)Πm−1(x)[Ps,m(x)]2s+1dx = 0 ,

where Πm−1(x) denotes an arbitrary polynomial of degree ≤ m− 1. Moreover,
for m ≥ 1 it follows that the m zeros of the polynomial Ps,m(x) are real and
distinct and located in the interior of [a, b].

For s = 0, Ps,m(x) are the classical orthogonal polynomials.
Such systems of s-orthogonal polynomials are of particular importance in

studying of hyper-Gaussian quadrature formulae (see [7]) of the following type:

b∫

a

p(x)f(x)dx =
m∑

j=1

2s∑

h=0

Ahjf
(h)(xm,j) + Rs,m[f ] for each f ∈ AC2s[a, b] ,

where the coefficients Ahj (dependent on s and m) are independent of f and are
uniquely determined by means of the condition: Rs,m[f ] = 0 if f is an arbitrary
polynomial of degree ≤ 2m(s+1)− 1. Moreover, it follows that the nodes xm,1,
xm,2, . . . , xm,m (dependent in general on s) are necessarily m zeros of Ps,m(x).

With these preliminary remarks, let us consider two families of s-orthogonal
polynomials connected to Chebyshev polynomials of 3rd and 4th kind of degree
m = 0, 1, 2, . . . . We write such families as

{c∗mVm(x)}, {c∗mWm(x)}, x ∈ [−1, 1] , (1)

where c∗m is an appropriate normalization factor to be discussed later (see (18)).
Let us specify the property of s-orthogonality of the above-mentioned systems
of polynomials.

Theorem 1.1. Polynomials (1) orthogonal with respect to the weights (1 −
x)

1
2 (1 + x)−

1
2 and (1 + x)

1
2 (1 − x)−

1
2 over the interval [−1, 1] are s-orthogonal

over the interval [−1, 1] with respect to the weights

p[1](x) = (1− x)
1
2
+s(1 + x)−

1
2 and p[2](x) = (1− x)−

1
2 (1 + x)

1
2
+s (2)

for each integer s ≥ 0 (see, e.g., [3]).

Proof. For Chebyshev polynomials of 3rd and 4th kind given in (1) the formulae

(1− x)s[Vm(x)]2s+1 = 2−s
s∑

k=0

(−1)k

(
2s + 1
s− k

)
Vm(2k+1)+k(x) (3)

and

(1 + x)s[Wm(x)]2s+1 = 2−s
s∑

k=0

(
2s + 1
s− k

)
Wm(2k+1)+k(x) (4)
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hold, if we set x = cos θ and take into consideration the relations

(sin θ)2s+1 = 2−2s
s∑

k=0

(−1)k

(
2s + 1
s− k

)
sin(2k + 1)θ

and

(cos θ)2s+1 = 2−2s
s∑

k=0

(
2s + 1
s− k

)
cos(2k + 1)θ,

as well as the relations

cos2 θ

2
=

1 + cos θ

2
, sin2 θ

2
=

1− cos θ

2
. (5)

The proof follows from (3), (4) and the well known relations of orthogonality of
the systems Vm(x) and Wm(x) (see also [3]).

Let us recall now some general formulae which we will use for the so-called
“characteristic functions” [8]. Such functions prove to be particularly useful to
determine the convergence of quadrature formulae; it is convenient to operate
in the complex plane (see [3], [4]; for an easier reference see the formulae in [1]).

Let us begin now to discuss a question of calculating the integral I(f) =∫ 1
−1 p(x)f(x)dx, where f(x) is a trace in the interval [−1, 1] of a function f(z),

holomorphic in an open set A ⊃ [−1, 1]. Having defined a regular domain D ⊂ A
such that D \ ∂D ⊃ [−1, 1], both the hyper-Gaussian quadrature formula and
the remainder of the same formula can be formulated by means of integrals on
+∂D; the following relations hold:

I(f) = Js,m[f ] + Rs,m[f ] ,

with

Js,m[f ] =
1

2πi

∫

+∂D

f(z)ψA(z)dz,

having set

ψA(z) =
m∑

j=1

2s∑

h=0

Ahj
h!

(z − xm,j)h+1
∀ z 6∈

m⋃

j=1

{xm,j},

and with

Rs,m[f ] =
1

2πi

∫

+∂D

f(z)Φs,m(z)dz , (6)

where Φs,m(z) is the characteristic function which is defined by

Φs,m(z) =
Qs,m(z)

[Ps,m(z)]2s+1
∀ z 6∈ [−1, 1], (7)

where

Qs,m =

1∫

−1

p(x)[Ps,m(x)]2s+1

z − x
dx, m = 1, 2, . . . , (8)
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and Ps,m(z) denotes the complex expression of Ps,m(x).2

We assume that ∂D to be one of the confocal ellipse, Eρ (ρ > 1) which have
focuses at the ends of the segment [−1, 1], and are identified by the equations

z =
1

2
(ρeiθ + ρ−1e−iθ) =

1

2
(ρ + ρ−1) cos θ +

i

2
(ρ− ρ−1) sin θ , (9)

and have the semiaxes

aρ =
1

2
(ρ + ρ−1), bρ =

1

2
(ρ− ρ−1) , (10)

an eccentric angle θ, a focal semidistance c =
√

a2
ρ − b2

ρ = 1.

The equations of Eρ can also be put in the complex form

|z ±
√

z2 − 1| = ρ±1, (11)

where the principal value is taken as a root.
For z ∈ Eρ, we have some basic inequalities

|
√

z2 − 1| =
1

2
|(z +

√
z2 − 1)− (z −

√
z2 − 1)| ≤ 1

2
(ρ + ρ−1), (12)

|z| =
1

2
|(z +

√
z2 − 1) + (z −

√
z2 − 1)| ≤ 1

2
(ρ + ρ−1). (13)

We also have:
∣∣∣∣∣

√
z ± 1

2

∣∣∣∣∣ ≤
1

2
(ρ

1
2 + ρ−

1
2 ) (14)

which can be immediately obtained by raising to square and considering (13).
Finally let us add that |z− x|, z ∈ Eρ, x ∈ [−1, 1] with Eρ ∩ [−1, 1] = ∅, has

an absolute minimum which is obtained when z coincides with a vertex of Eρ

on the major axis and x with the focus near this vertex. Hence it follows that

|z − x| ≥ aρ − 1 . (15)

2. Case in which Ps,m(x) = c∗mVm(x)

Now, putting x = cos θ, we can calculate the Chebyshev polynomials of third
and fourth kind (1):

Vm(cos θ) =
sin(2m + 1) θ

2

sin θ
2

= U2m

(
cos

θ

2

)
, (16)

Wm(cos θ) =
cos(2m + 1) θ

2

cos θ
2

=
1

cos θ
2

T2m+1

(
cos

θ

2

)
, (17)

where U2m(·) and T2m+1(·) denote respectively Chebyshev polynomials of first
and second kind.

2(6), (7), (8) correspond to (2.5), (2.8), (2.9) of [1].
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(16) and (17) allow us to construct the requested Chebyshev polynomials, s-
orthogonal with respect to the weights p(x) (see (2)), having used a “particular
normalization”

c∗m = 2−m (18)

(it should be noted that c∗mVm = xm + . . . and, likewise, c∗mWm = xm + · · · ).
Taking into account the first equality (5), we obtain the s-orthogonal Cheby-

shev polynomials of third and fourth kind:

P [1]
s,m(x) = 2−mV2m

( √
1 + x

2

)
, (19)

P [2]
s,m(x) = 2−m

√
2

1 + x
T2m+1

( √
1 + x

2

)
. (20)

Complex expressions of polynomials which appear in (19)and (20) can be
given at once if we replace x by z, whenever necessary.

In the case of polynomials P [1]
s,m(x) we will give (Theorem 2.1) an estimate

of the remainder Rs,m[f ] of (6). First we will establish the upper bounds of
|Qs,m(z)| of (8), and of |Φs,m(z)| of (7).

Lemma 2.1. For the function Φs,m(z) given by (7) the following inequality
holds on the family of ellipses Eρ (ρ > 1) given by (9) and (10):

|Φ[1]
s,m(z)| ≤ 2s+2 1

aρ − 1

(2s)!!

(2s + 1)!!

(
ρ

1
2 + ρ−

1
2

ρm+ 1
2 − ρ−m− 1

2

)2s+1

. 3 (21)

Proof. Having taken care of (15), from (8) it follows that

|Q[1]
s,m(z)| ≤ 1

aρ − 1

1∫

−1

(1− x)
1
2
+s(1 + x)−

1
2 |c∗mVm(x)|2s+1dx.

Putting x = cos θ and keeping in mind (16) and (18), we obtain

|Q[1]
s,m(z)| ≤ 1

aρ − 1

π∫

0

(1− cos θ)
1
2
+s(1 + cos θ)−

1
2 sin θ

∣∣∣∣∣2
−m sin 2m+1

2
θ

sin θ
2

∣∣∣∣∣

2s+1

dθ .

The above expression is reduced by the use of (5) to

|Q[1]
s,m(z)| ≤ 2s+1

2m(2s+1)

1

aρ − 1

π∫

0

sin
θ

2

∣∣∣∣sin
2m + 1

2
θ

∣∣∣∣
2s+1

dθ ,

and further to

|Q[1]
s,m(z)| ≤ 2s+1

2m(2s+1)

1

aρ − 1

π∫

0

∣∣∣∣sin
2m + 1

2
θ

∣∣∣∣
2s+1

dθ . (22)

3Analogously to what it has been done in (2), we supply with superscripts [1] and [2] the
entities relevant respectively to P

[1]
s,m and to P

[2]
s,m.
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In order to evaluate the integral in (22) let us carry out the substitution
ϕ = 2m+1

2
θ. Then the considered integral becomes

2

2m + 1

(2m+1)π/2∫

0

| sin ϕ|2s+1dϕ . (23)

Having divided the integration interval [0, (2m + 1)π/2] into 2m + 1 intervals
of length π/2 and taken into account periodicity of the integrand function,

we obtain
∫ (2m+1)π/2
0 | sin ϕ|2s+1dϕ = (2m + 1)

∫ π/2
0 | sin ϕ|2s+1dϕ. Hence after

substituting (23) into (22), we have the following upper bound of |Q[1]
s,m(z)|:

|Q[1]
s,m(z)| ≤ 2s+2

2m(2s+1)

1

aρ − 1

π/2∫

0

(sin ϕ)2s+1dϕ=
2s+2

2m(2s+1) (aρ − 1)

(2s)!!

(2s + 1)!!
. (24)

Let us now proceed to proving (21) using (7) and (24). We obtain

|Φ[1]
s,m(z)|z∈Eρ ≤

2s+2

2m(2s+1)

1

aρ − 1

(2s)!!

(2s + 1)!!

1

min |Ps,m(z)|2s+1
z∈Eρ

. (25)

Consider now the polynomial P [1]
s,m from (19), after using its complex expres-

sion and its modulus, i.e., 2−m|V2m(
√

1+z
2

)|.
Recalling the well-known formula

V2m(ζ) =
1

2
√

ζ2 − 1
[(ζ +

√
ζ2 − 1)2m+1 − (ζ −

√
ζ2 − 1)2m+1] (26)

with the complex variable ζ and putting ζ2 = z+1
2

and ζ2 − 1 = z−1
2

, we have

|P [1]
s,m(z)|z∈Eρ = 2−m−1

∣∣∣∣∣

√
2

z − 1

∣∣∣∣∣

∣∣∣∣∣

(√
z + 1

2
+

√
z − 1

2

)2m+1

−
( √

z + 1

2
−

√
z − 1

2

)2m+1∣∣∣∣∣ . (27)

Now, due to (14), from (27), on account of the following relation for z ∈ Eρ

∣∣∣∣∣∣

√
z + 1

2
±

√
z − 1

2

∣∣∣∣∣∣
= ρ±

1
2 , 4 (28)

we have:

|P [1]
s,m(z)|z∈Eρ ≥ 2−m ρm+ 1

2 − ρ−m− 1
2

ρ
1
2 + ρ−

1
2

. (29)

Having stated that, from (25) the assertion follows.

4See [4]. On the other hand, (28) can be immediately verified by raising to square and
taking into account (8).
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Theorem 2.1. Having fixed an integer s, the following asymptotic property
holds with respect to (6) :

lim
m→∞Rs,m[f ] = 0

and, more precisely, Rs,m[f ] = O(ρ−m(2s+1)), m →∞ .

Proof. Let us denote by Lρ the length of the ellipse Eρ = ∂D and by Mρ the
maximum of |f(z)| on Eρ. Then (6) and Lemma 2.1 imply

|Rs,m[f ]| ≤ 1

π
LρMρ

2s+1

aρ − 1

(2s)!!

(2s + 1)!!


 ρ

1
2 + ρ−

1
2

ρm+ 1
2 − ρ−m− 1

2




2s+1

.

3. Case in which Ps,m(x) = c∗mPmWm(x)

In this case Lemma 2.1 and Theorem 2.1 are formulated in the same way, with
proofs similar to those in Section 2, related however to (20); we will provide the
details only concerning those steps which are different in the two cases.

From (2) it follows that

|Q[2]
s,m(z)| ≤ 1

aρ − 1

1∫

−1

(1− x)−
1
2 (1 + x)

1
2
+s|c∗mWm(x)|2s+1dx .

Putting x = cos θ in the integral, (5) gives

|Q[2]
s,m(z)| ≤ 2s+1

2m(2s+1)

1

aρ − 1

π∫

0

cos
θ

2

∣∣∣∣cos
2m + 1

2
θ

∣∣∣∣
2s+1

dθ .

Then, repeating the procedure used to find (23), (24), it follows that

|Q[2]
s,m(z)| ≤ 2s+2

2m(2s+1)

1

aρ − 1

π/2∫

0

(cos ϕ)2s+1dϕ =
2s+2

2m(2s+1)

1

aρ − 1

(2s)!!

(2s + 1)!!
.

In the case which we are now handling, |Ps,m(z)| has to be considered as given
by (20), subject to the complex expression and modulus, i.e.,

2−m

∣∣∣∣∣

√
2

1 + z
T2m+1

( √
1 + z

2

)∣∣∣∣∣ .

We apply the analogous formula of (26), i.e., the well-known formula:

T2m+1(ζ) =
1

2
[(ζ +

√
ζ2 − 1)2m+1 + (ζ −

√
ζ2 − 1)2m+1] ,

which for ζ =
√

z+1
2

, due to (20) and with transformations analogous to those
of Section 2, gives

|P [2]
s,m(z)|z∈Eρ = 2−m−1

∣∣∣∣∣
2√

z + 1

∣∣∣∣∣

∣∣∣∣∣

[(√
z + 1

2
+

√
z − 1

2

)2m+1
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+

(√
z + 1

2
−

√
z − 1

2

)2m+1]∣∣∣∣∣ .

Then we obtain a formula analogous to (29)

|P [2]
s,m(z)|z∈Eρ ≥ 2−m ρm+ 1

2 − ρ−m− 1
2

ρ
1
2 + ρ−

1
2

.
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Scientifica Tecnologica.

References

1. A. Ossicini, M. R. Martinelli, and F. Rosati, Funzioni caratteristiche e polinomi
s-ortogonali. Rend. Mat. Appl. (7) 14(1994), 355–366.

2. G. E. Andrews, R. Askey, and R. Roy, Special functions. Encyclopedia of Mathematics
and its Applications 71. Cambridge University Press, Cambridge, 1999.

3. A. Ossicini and F. Rosati, Funzioni caratteristiche nelle formule di quadratura gaussiana
con nodi multipli. Boll. Un. Mat. Ital. (4) 11(1975), No. 3, suppl., 224–237.

4. A. Ossicini and F. Rosati, Procedimenti interpolatori nella valutazione gaussiana di
integrali a valore principale. Matematiche (Catania), 31(1976), No. 1, 193–213.

5. A. Ghizzetti and A. Ossicini, Polinomi s-ortogonali e sviluppi in serie ad essi collegati.
Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (4) (1974), No. 18, 1–16.

6. A. Ghizzetti and A. Ossicini, Sull’esistenza e unicità delle formule di quadratura gaus-
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Facoltà di Ingegneria
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