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SUSPENSION AND LOOP OBJECTS AND
REPRESENTABILITY OF TRACKS
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Abstract. In the general setting of groupoid enriched categories, notions of
suspender and looper of a map are introduced, formalizing a generalization
of the classical homotopy-theoretic notions of suspension and loop space.
The formalism enables subtle analysis of these constructs. In particular, it is
shown that the suspender of a principal coaction splits as a coproduct. This
result leads to the notion of theories with suspension and to the cohomological
classification of certain groupoid enriched categories.
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A category enriched in groupoids (termed a track category for short) is a
special 2-category. A track category .7 consists of objects A, B,... and hom-
groupoids [A, B] in which the objects are maps (1-arrows or 1-cells) and the
morphisms are isomorphisms termed tracks (2-arrows or 2-cells). For each map
f:+A— Bin Z we have the group Aut(f) consisting of all tracks a : f = f
in 7. This is an automorphism group in the hom-groupoid [A, B].

Our leading example is the track category Top* consisting of spaces A, B,...
with basepoint *, pointed maps f : A — B and tracks « : f = ¢ which are
homotopy classes (relative to the boundary) of homotopies f ~ g; compare
(1.3) in [5]. For the trivial map 0 : A — % — B in Top* one has the well known
isomorphism of groups

Aut(A — x — B) = [¥A, B]. (%)

Here the left-hand side is the group of automorphisms of 0 : A — B in the
track category Top* and the right-hand side is the group of homotopy classes
of maps XA — B where XA is the suspension of A. Dually we also have the
canonical isomorphism

Aut(A — x — B) = [A,QB], (xx)

where QB is the loop space of B. Via (%) and (%) certain tracks in the track
category 7 = Top™ are represented by morphisms in the homotopy category
T~ of 7. We study in this paper the categorical aspects of such a representabil-
ity of tracks which we call ¥-representability in (x) and Q-representability in
(xx). For this we introduce the notion of suspender generalizing the notion of
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suspension above by means of a universal property. The categorical dual of a
suspender is a looper in a track category generalizing the notion of loop space.
A track category .7 is Y-representable, resp. ()-representable, if suspenders,
resp. loopers exist in .. Of course the track category Top* of pointed spaces
(more generally the track category associated to any Quillen model category)
is both Y-representable and (2-representable.

We describe basic properties of suspenders and loopers. In particular we
show that the suspender of a principal coaction splits as a coproduct. This is
a crucial result which leads to the notion of theories with suspension and the
cohomological classification of certain 3-representable track categories in [6].

In topology a typical example of a suspender of a pointed space X is the
space
Y.X =St x X/St x {x}.
Moreover a looper of X is given by the free loop space
Q.X = (X5,0)

with the function space topology and basepoint given by the trivial loop 0.
Splitting results ¥, X ~ X V XX (resp. 2.X ~ X x QX) are well known in
case X is a co-H-group (resp. H-group). For example Barcus and Barratt [5] or
Rutter [12] use implicitly the splitting to obtain basic rules of homotopy theory.
This paper and its sequel [6] specifies the categorical background of some of
these rules. Suspenders and loopers are also responsible for the properties of
partial suspensions and partial loop operations discussed in [6]; compare also
[4, 3, 2].

The theory of YX-representable track categories in this paper is also motivated
by the approach of Gabriel and Zisman [7] who consider those properties of a
track category .7 which imply existence of a Puppe sequence for mapping cones.
The suspension 3 A plays a crucial role in this sequence. Enriching the results in
[7] we show that the main categorical nature of a suspension in a track category
is described by the notion of suspender which is the link between tracks in 7
and homotopy classes of maps in 7. Such a link, for example, is needed in
results of Hardie, Kamps and Kieboom [9, 8] and Hardie, Marcum and Oda [10]
who study homotopy-theoretic secondary operations like Toda brackets in 2-
categories. This paper does not aim at combining the theory of exact sequences
in homotopy theory as considered in [7] and the theory of suspenders since the
notion of suspenders, resp. loopers, is quite sophisticated and new.

1. X-REPRESENTABLE TRACK CATEGORIES

We first introduce the following notation. In a groupoid G the composition
of morphisms
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is denoted by f + ¢g. Accordingly also the composition of tracks

o B
—

in a track category is denoted by o + 3. We also write o : a ~ b for a track
a :a = b. We say that a groupoid G is abelian if all automorphism groups of
objects in G are abelian. For #:y — y and ¢ : * — y in G we obtain the
conjugate
fr=—-p+f+piz—u

so that (—)% : Aut(y) — Aut(z) is a homomorphism. The loop groupoid G of
G is defined to have objects « : * — x, where z is an object of G; a morphism
from a : x — x to B : y — y is a morphism ¢ : * — y in G such that
a=—p+ B3+ .

Track functors between track categories and track transformations between
track functors are the enriched versions of functors and natural transforma-
tions enriched in the category &pd of groupoids. Here &po is also an example
of a track category with functors between groupoids as l-arrows and natural
transformations as 2-arrows. Each object C' in a track category 7 yields the
representable track functor

IC,—]: 7 — &po
between track categories which carries X € Ob(.7) to the hom-groupoid [C, X]
in 7.

In a track category .7, consider a map f : A — B. For any object X, denote
by G¢(X) the following groupoid: objects of G¢(X) are pairs (g, ), where
g: B — Xisamap and a : gf = gf is a track. A morphism from (¢’,a/)
to (g,a) is a track 7 : ¢’ = g such that o/ = /. Anymap h : X — Y
induces a functor Gg(h) : Gf(X) — G(Y) sending (g,a) to (hg, ha) and
~v to hy. Moreover any track 7 : h = h' induces a natural transformation
G(7) : Gy(h) — Gy(h') with components ng : hg = h'g for objects (g, ) of
G(X). Thus we have defined a track functor

Gy: T — &po.

Any object (g : B — C,a: gf = gf) of G(C) gives rise to a track transfor-
mation
(g,0)" : [C, =] — Gy
consisting of functors
[[C’ X]] - Gf (X)
which assign to h : C' — X the pair (hg, ha) and to i : b’ = h the track ng (this
indeed defines a morphism in Gy as ngf +ha = ha+ngf,i. e. h'a = (ha)"?).

1.1. Definition. For a map f: A — B in a track category .7, a suspender for

f is a triple (Xf,4f,vys) consisting of an object Xf, a map iy : B — Xy, and a

track vy : i f = iy f having the property that the induced track transformation
(i, 0p)" : [Bp, =1 = Gy

induces a bijection of isomorphism classes of objects.
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In other words, the following conditions must be satisfied:

(a) For any map g : B — C and any track n : gf = ¢f there exists a
map X, : Xy — C and a track ¢, : ¢ = ¥,i; such that n = (Z,v)%/
(surjectivity);

(b) For any h,h/ : ¥y — C and any track v : h'i; = hi; with h'v; = (hvg)?/
one has vy = diy for some track ¢ : b’ = h (injectivity).

We point out that we do not assume for a suspender 3 that the map (is, vs)*
is an equivalence of groupoids since this, in fact, does not hold in the example
of topological spaces. Hence topology forces us to think of a weaker universal
property, namely that (iy,vs)* induces only a bijection of isomorphism classes
of objects. A track category 7 is X-representable if each map f in 7 has a
suspender (X, if,vy).

1.2. Definition. The dual notion of looper is obtained as a suspender in the
opposite track category: a looper for f : A — B consists of a map py : 0y — A
and a track Ay : fpy = fpy satisfying conditions dual to the above ones for
suspenders. A track category 7 is (-representable if each map f in 7 has a

looper (Qf,pf, )\f)

Important particular cases are the suspenders and loopers for the identity
map 1=idy : A — A which will be denoted X.(A) and Q.(A) respectively;
suspender for a map 0 : A — * to the initial object will be called suspension
of A and denoted ¥o(A), or simply X(A) if the map 0 is uniquely determined
by the context; and dually the looper for a map 0 : 1 — A from the terminal
object to A will be called loop object of A and denoted 4(A) or Q(A).

These examples are important in that sometimes suspenders or loopers of all
maps can be constructed using solely ¥, and 2, — indeed sometimes just using
Yo and €2y. See below.

We consider the following examples of ()-representable and Y-representable
track categories.

1.3. Example. The track category &pd of groupoids is {2-representable. In
fact, for a functor F': G — H between groupoids the looper 2 is obtained by
the pullback diagram

QF —H

L,

G—H.
Moreover the loop groupoid H itself has the universal property for ,(H).

1.4. Example. The track category Top* of pointed topological spaces is Y-
representable. Let TA = (A x [0,1]) / ({*} x [0,1]) be the cylinder in Top*.
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Then the suspender X of a map f : A — B is obtained by the pushout
diagram

If
A\/AQB

l (G0,i1) l if

Here v; yields the track vy : iy = iy for the suspender ;. Next let PB = B!
be the space of maps [0,1] — B with the compact open topology. Then the
looper €2 of f is obtained by the pullback diagram

A
Qf*f>p3

ll’f l(%m)
A D B x B.

Here A; yields the track Ay : py = p; for the looper {2;. In the next example
we show that the properties 1.1 are satisfied for Xy and 2, respectively.

Let C be a cofibration category in the sense of Baues [3]. For each cofibrant
object X in C we choose a cylinder

~

XVvX I'X X

which is a factorization of (1,1) : X VX — X. For a fibrant object Y the
homotopy classes relative to X V X of maps /X — Y are the tracks in C.
Therefore the full subcategory C. of cofibrant and fibrant objects in C is a
track category; see [3, 1T §5].

1.5. Lemma. For a cofibration category C the track category Cs is X-repre-
sentable.

Proof. For each cofibrant object X in C a fibrant model j: X =" RX can

be chosen. Now the suspender ¥ of f : A — B in C is obtained by a fibrant
model of the pushout X in the following diagram

Aavad g p

l push l Z} J/ if
/

v

TA ! E} = Ef.

The composite vy = ju : IA — X — 3y yields the track vy : iy = iy. We now
check that the properties (a) and (b) in 1.1 are satisfied. For amap g: B — C
in Ci let n: gf >~ gf be a homotopy n: IA — C. Then the pushout property
of ¥, yields a map g Un : ¥} — C which admits an extension %, : ¥y — C
so that X,iy = g and n = ¥, vy. Hence we can actually choose the track ¢, in
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(a) to be the identity isomorphism of g. This proves (a). Now we check (b) as
follows. Let v : h'iy >~ hiy with

Wog = (hwg)! = —yf + hf +f (%)
as in (b). Here (*) is an equation of tracks. Now (*) implies that there is a map
3 ITA — C
with §'ip = hvy, §'iy = h'vy and 0'1iy = 0'li; = vIf. Here we choose the
cylinder IB to be a fibrant object so that If : TA — IB is defined; see [3].

Now consider the following pushout diagram where I[(AV A) = [AV I A.

(If.If) v

I(AV A) B C
push J{Illf
ITA I3

Here the pushout I3} is actually a cylinder for ¥, and we define a cylinder 1%
for 3¢ by the pushout diagram

JVJ
IAVE ARELCES AEVE o

(i0,i1) l push l

IS~ I3,

Now the map ¢'Uy : I¥; — C'is defined with (6'U7)ip = h'j and (6"'U7v)iy = hj.
Hence a map § = (6’ Uy)U (W', h) : I¥; — C is defined. The track defined by §

satisfies § : b’ = h. Moreover iy =  since diy is represented by (6'U~)([i};) =
. 0

For a model category Q as in [11] let Q. and Q¢ denote the full subcategory
of cofibrant and fibrant objects, respectively. Then Q. is a cofibration category
and Qy is a fibration category in the sense of Baues [3]. Here fibration category
is the categorical dual of cofibration category. Therefore 1.5 above shows:

1.6. Corollary. Let Q. be the track category of cofibrant and fibrant objects
i a Quillen model category. Then Q¢ is Y-representable and C2-representable.

The examples in 1.4 are also consequences of 1.5 since Top* is a cofibration
category and also a fibration category in which all objects are cofibrant and
fibrant, compare [3]. Moreover using [3, Remark 1.8.15] we see that also Topj
is a fibration category in which all objects are fibrant and cofibrant. Here we
use the structure [3, 1.3.3] and [3, 1.4.6].
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2. FUNCTORIAL PROPERTIES OF SUSPENDERS

We consider functorial properties of suspenders. This implies a kind of
uniqueness and compatibility with sums. For a category T the category Pair(T)
is the usual category of pairs in T. Objects of Pair(T) are morphisms A — B
and morphisms from (A — B) to (X — Y') are commutative diagrams in T

A—X

-

B——
2.1. Lemma. For any commutative diagram of unbroken arrows
A——
B——Y
l Sl
E
SN q)
there exist a map X.(p,q) and a track (y.q) as indicated, with
Su(p, @)y = (vgp)wo’. (a)
Choosing such maps for each commutative square as above gives a functor

Y _ : Pair(.J) — Pair(I%)

carrying f : A — B to [if] € [B,Xy] and the commutative square (p,q) : f — ¢
as above to (|q], [S.(p, q)]) : [is] — lig]-

Proof. By the definition of suspenders, the track vyp considered as an au-
tomorphism of izgp = i4,qf produces a map ¥, , : Xy — X, and a track
Cugp © Zwypls = 1gq such that (a) holds. So one can define

E*(p, Q) = ng;m C(M) = C’ng‘

Then the injectivity condition for suspenders guarantees that there are tracks
Y. (id, idp) ~ ids;,

and
Y, )2 (P ) = Zu(pp', qd')

for any two matching commutative squares. The lemma follows. O
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2.2. Lemma.  Let (Xy,if,vf) and (X},i},0}) be two suspenders of a map
f A — B. Then they are equivalent in 7. More precisely, there exist maps
L2 Xy — X and I 2 Xy — By such that liy = iy, Il = ip, lup = v}, and
I'vy = vy. Moreover there exist tracks A : 'l ~ 1dgf, N o~ idz} with
Nip = id;,, Ny = idi}.

Proof. Existence of | = Ev} and ' = %,
is clear from the definition of suspenders. Then further by the uniqueness
property of suspenders for the identity track X, Evfif =X Zlf =iy = idy,if
one has >,/ E =X /vf = vy, hence there is a track Ay E ~ idy, with
Aty =id;, In an exactly symmetric way one has A’ with requlred propertles 0

satisfying the required identities

Also the converse is true:

2.3. Lemma. Let (Xg,i7,v5) be a suspender for the map f: A — B and let
the maps = Xy — 5, 1" : X — ¥y and tracks X : 'l = ids,, X' : [I' ~idy realise
a homotopy equivalence. Then (X,lif,lvy) is another suspender for f.

Proof. Consider the composite functor

b1 (ig0p)"
[Z, -] —=[En -] — G/
Clearly it coincides with (lif,lvg)*. Moreover (if,v¢)* induces bijection on
isomorphism classes by the universal property of suspenders, and so does [I, —]

— in fact the latter is an equivalence, with inverse [I’, —]. Hence the lemma. O

2.4. Lemma. For any object A, a suspender for the map !4 : x — A from the
(possibly weak) initial object to A is given by (A,ida,id,,). Given suspenders
(Xg,ip,vp) and (Ep,ip,vp) for the maps f + A — B and f' :+ A — B,
respectively, (X Vg, ifVip, vV ) is a suspender for fV f': AVA' — BVB'.

Proof. The first assertion follows easily from the fact that the functor G, co-
incides with the covariant representable functor [A, —].
For the second, consider the functors

(if,vf)*x(if/,vf/)*

[[vazf’v_]] > Hzﬁ_]] X [[Zf’v_]]

where the rightmost functor is the one assigning to ((g,«), (¢’,’)) with ¢ :
B—C a:gf~gf,¢d:B —C, d:qgf ~gf the pair ((;’,), (2)), where

Gy x Gy — Gy,

(gg,) - BV B — C and (;‘,) : (gg,ji,) ~ (g‘f;,) ~ (;’,)(f V f") are obtained from
the equivalences [BV B',C] ~ [B,C] x [B’,C]. It is clear how to define this
functor on morphisms. One sees directly that this functor induces bijection on
isomorphism classes of objects; hence so does the composite, which is easily

seen to coincide with (if V ip, vy V vp)*. The lemma follows. O
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3. SUSPENSIONS

Let % be the initial object of a track category .7 in the strong sense so that
the hom-groupoid [*, X] is the trivial groupoid for any X. Then the suspender
YA of amap 0: A — x is termed a suspension (associated to 0) of A.

3.1. Proposition. For any map 0 : A — % to the initial object, the correspond-
ing suspension Yo(A) is canonically equipped with a cogroup structure in the
homotopy category J~. Moreover for any a : A" — A the induced map (see 2.1)
Y.(f,idy) - Xoa(A) — Xo(A) respects this cogroup structure.

Proof. Recall that the initial object is understood in the strong sense, so that
[+, X] is a trivial groupoid for any X. It then follows that the groupoid Go(X)
has as many objects as there are tracks o :!x0 ~!x0, and only identity mor-
phisms. In other words, it is the discrete groupoid on the set Aut(!x0). Let us
equip this set with a group structure coming from the obvious one on Aut(!x0).
Then moreover the functor Go(X) — Go(Y) induced by a map f : X — Y
is given on objects by a — fa, hence is a homomorphism of groups. One so
obtains a lifting of the functor Gy to groups. But by the universal property
of the suspender, this functor coincides with [Xg, —]. So considered as an ob-
ject of 7., the suspension Y, has the property that its covariant representable
functor lifts to the category of groups. It then follows by the standard cate-
gorical argument that this object has a cogroup structure in J.. Explicitly,
the cozero of this cogroup is Yig,, i. e. the map ¥y — * induced by the pair
(ids : % — *,idg : 0id, = 0 ~ 0 = 0id,). The coaddition map + : 3y — Xg V X
is induced by the pair (s ys, : * — Xo V X, 109 + i20p), where vg € Aut(!y,0)
is the universal track and 1,79 : 2o — X V 2o are the coproduct inclusions.
The inverse map ¥y — X is induced by (!s,0, —vyp).

Now given any a : A — A, it obviously respects counit. To show that it re-
spects coaddition, one must find a track +3,(a, id.) ~ (X.(a,id.)VE.(a,id,))+
According to the uniqueness property of the suspender g, for this it is enough
to find a track a @ +X.(a,id,)igs ~ (Xi(a,idy) V Xi(a,id,)) + do, satisfying
+34(a,1dy)vee = ((Bi(a,idy) V Zi(a,idy)) + voa)**®. There is a unique choice
for such « — namely the identity track, as * is initial in the strong sense. Then
+¥.(a,idy)ve, = +vea = (1109 + igvo)a = 110pa + iavpa = 1124 (a,id,)ve, +
193 (a,idy)voe = ((Zs(a,ids) V Ei(a,idy))irvee + (Bi(a,idy) V Ei(a,ids))izvo,
= (Zu(a,ids) V Xi(a,idy)) (1000 + Zzan) = (Xi(a,ids) V Xi(a,id,)) + vo, as re-
quired. O

3.2. Corollary. Suppose that an object A has a co-H-structure, i. e. a coad-
dition a : A — AN A with o two-sided cozero 0 : A — x in .. Then the above
canonical cogroup structure on Xo (see 3.1) is coabelian.

Proof. By 2.1 and 2.4, there are maps 0/ = %,(0,id,) : ¥y — * and 4+’ =
Yi(a,idy) @ Xy — Xy V ¢ which equip ¥y with a co-H-structure in J~. On
the other hand it has a canonical cogroup structure (Xiq,, +, —) in J~ by 3.1.
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But in fact ¥4, and ¥,(0,id,) coincide in I+, so it follows that these cogroup
structures have the same cozero.

Moreover the fact that 4+ respects the cogroup structure means commutativ-
ity of

o RIS »MRVE o

+ l l+/v+’

)IRVE JNERLIE SNRVE SNRVE SRRVE o

in ., where 4 is the coaddition for the canonical cogroup structure on ¥qV X
considered as E(O). It is clear that this cogroup structure coincides with the

0
coproduct of cogroup structures on ¥y. In general, for two cogroups X and Y
the coaddition on their coproduct is given by

ix
FxVty XV( X )VvY

XVY = XVXVYVY —>XVYVXVY,
so that +5 is given by the composite

VR NRAGEE SHRVE SHRVE SAEVE SR GNS s IRVE VS  RRVE

where (23) denotes the map permuting second and third summands.
Composing the above diagram with

O/
idgo\/< )\/idgoiEQ\/E()\/ZO\/EOHEQV*\/*\/EOgZO\/ZO

O/
then gives that there is a track +' ~ +, whereas composing it with
0’ vid
) U IED VA SARVE SRVE SNENIRVE SRV SARVAUR-S YAV YN
ldg0 v
gives that there is a track +' ~ (12)+. This means that + is coabelian in
T O

4. SUSPENDERS OF COACTIONS

We show that the suspender ¥; of a map f : A — B splits as a coproduct
if A has the structure of a principal coaction in the homotopy category. Recall
that a theory C is a category with finite sums AV B.

4.1. Definition. A principal coaction in a theory C consists of an object A
together with a cogroup object S in C and a right coaction

a:A— AVS
on A such that the map
(1a,q) :AVA—AVS

is an isomorphism in C. The cogroup structure of S is given by maps p : S —
SvS v:S — Sande: S — % The inverse of (is,a) yields the map
d:S— AV A.
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A principal coaction is trivial if A is isomorphic to S in such a way that p
corresponds to the cogroup structure of S. It is well known that a principal
coaction (A, a) is trivial if and only if there exists a map A — * in C, where
is the initial object of C.

4.2. Remark. A principal action in a category with finite products consists
of an object T" together with an internal group G in this category and a right
action a : T'x G — T of G on T such that the map (pr,a): T xG —T x T is
an isomorphism (pr being the product projection). Of course a principal action
is the categorical dual of a principal coaction.

For our purposes we need a weaker notion which we call principal quast action
or quasi torsor. It consists of objects T', G and morphisms T"x G — T, d :
TxT — G,1— G, denoted via (x,g) — x-g, (z,y) — z\y, and e respectively,
for z,y :? — T, g :7 — G, such that the following identities hold:

o x\xr =c¢;
o o (2\y) =
(Note that the above conditions imply also = - e = z.)

Clearly, any principal action is a particular case of this, as one can define d
to be the composite map

-1
Tx TN T a2

The categorical dual of a principal quasi action is a principal quast coaction

which generalizes the principal coaction in 4.1.

Recall that a track theory is a track category with coproducts A V B in the
weak sense (see [5]) so that for all X one has the equivalence of hom-groupoids

[Av B, X] —[A, X] x [B, X].
Let w be an inverse of this equivalence.

4.3. Theorem. Let 7 be a track theory and let f : A — B be a map in
T . Assume A has the structure of a principal (quasi)coaction in the homotopy
category I~ represented by a map a: A — AV S in T, where S is a cogroup in
T. Let ¥.S = X.S be a suspension of S in 7 associated to a map e : S — %
in T representing the counit of S. Then there is a suspender of [ with

Yy=BVXS
and iy =ip: B — BVXS the coproduct inclusion and vy :ipf = ipf a certain

canonically defined track.

The theorem shows that existence of certain suspensions in a track category
implies existence of a wider class of suspenders. Moreover by 2.2 we get the
following corollary.
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4.4. Corollary. Let 7 be a X-representable track theory and let f : A — B
be a map in J where A admits the structure of a principal (quasi)coaction
A — AV S in J.. Then there exists a homotopy equivalence ¥y ~ BV XS
where 3.5 is a suspension associated to a map S — * representing the counit of

S.

Proof of 4.3. To simplify exposition, let us introduce the following notation.
The given principal coaction gives rise, for each object X, to functors

[[a X]

[A, X] x [S, X] —“~[AV S, X] L[4, X]

and

[[d X]

A, X] x [A, X] =~ [4v 4, x] 2 15, x],

whose actions on both objects and morphisms will be denoted by
(1‘78)’_)@'87 (Iay>'_>x\yv

respectively. The principal coaction structure in 7. implies existence of tracks
2, X\ which for any x,y : A — X induce tracks

rx e = x\r,

(Do) =,

Let us define another track ¢ by

- (z\x) ()
/ R
xT-e x.

We now turn to the construction of the universal track vy. It is the composite
track in the diagram

R

BV
idgV!sg
1dB\/e
BvVvXS idiap Vve
1d Ve
idpV!ss
B \/ x*x<—2D ’

where the two parallelograms commute. More formally, v; = (va)~*8/*, where
the track

v = (ididB V Ue)(f V ldS) € Aut((idB vV ('256))(f V lds))
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is considered as an automorphism of the map
(Y Y
B | = (1 BV-ZS)<f V 6)
.BE

= (idB\/!Es)(idB V 6)(f V lds)
(ldB V ( Es(i))(f V lds)

To show that vy is indeed universal, we must show that, for each object X,
the functor

[B,X] x [25,X] = [Bv %S, X[ G, (x)

induces bijection on isomorphism classes of objects. Now vy is chosen in such
a way that given z : B — X and a track ¢ € Aut(!xe) with the corresponding
map 2. : X5 — X, one has

(ig,vp)" (2, %) = (idpf - &)™ af ~ xf.

Taking into account the universal property of 3.5, we may replace isomorphism
classes of [X.5, X] by those of G.(X). We thus must show

e For any = : B — X and any track a € Aut(zf) there is a track ¢ €
Aut(!xe) such that id,f - € = a®/;
e For any z,2' : B — X, any ¢, € Aut(!ye) and any x : x ~ 2’ with
idy s - & = (idys - €)X/ there is a track n: Yo — X..
For the first, define, for a € Aut(zf), the track ¢ = (id,f\a)*{. Then
because of our special choice of ¢ the required identity will be satisfied.
For the second, note that if x : x ~ ' satisfies the hypothesis, then in the
diagram

e\ f - ] LLY P\ e)
€ xzf\(zf-€) z' f\(z' f-e) e
sf\(f ) ELY P\ (' f - e)
v %A (f)\ v

all inner squares commute, hence the outer square commutes too, i. e. actually
/
e=¢. 0
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