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SUSPENSION AND LOOP OBJECTS AND
REPRESENTABILITY OF TRACKS
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Abstract. In the general setting of groupoid enriched categories, notions of
suspender and looper of a map are introduced, formalizing a generalization
of the classical homotopy-theoretic notions of suspension and loop space.
The formalism enables subtle analysis of these constructs. In particular, it is
shown that the suspender of a principal coaction splits as a coproduct. This
result leads to the notion of theories with suspension and to the cohomological
classification of certain groupoid enriched categories.
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A category enriched in groupoids (termed a track category for short) is a
special 2-category. A track category T consists of objects A, B,... and hom-
groupoids [[A,B]] in which the objects are maps (1-arrows or 1-cells) and the
morphisms are isomorphisms termed tracks (2-arrows or 2-cells). For each map
f : A → B in T we have the group Aut(f) consisting of all tracks α : f ⇒ f
in T . This is an automorphism group in the hom-groupoid [[A,B]].

Our leading example is the track category Top∗ consisting of spaces A, B,...
with basepoint *, pointed maps f : A → B and tracks α : f ⇒ g which are
homotopy classes (relative to the boundary) of homotopies f ' g; compare
(1.3) in [5]. For the trivial map 0 : A → ∗ → B in Top∗ one has the well known
isomorphism of groups

Aut(A → ∗ → B) = [ΣA,B]. (∗)
Here the left-hand side is the group of automorphisms of 0 : A → B in the
track category Top∗ and the right-hand side is the group of homotopy classes
of maps ΣA → B where ΣA is the suspension of A. Dually we also have the
canonical isomorphism

Aut(A → ∗ → B) = [A, ΩB], (∗∗)
where ΩB is the loop space of B. Via (∗) and (∗∗) certain tracks in the track
category T = Top∗ are represented by morphisms in the homotopy category
T' of T . We study in this paper the categorical aspects of such a representabil-
ity of tracks which we call Σ-representability in (∗) and Ω-representability in
(∗∗). For this we introduce the notion of suspender generalizing the notion of
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suspension above by means of a universal property. The categorical dual of a
suspender is a looper in a track category generalizing the notion of loop space.
A track category T is Σ-representable, resp. Ω-representable, if suspenders,
resp. loopers exist in T . Of course the track category Top∗ of pointed spaces
(more generally the track category associated to any Quillen model category)
is both Σ-representable and Ω-representable.

We describe basic properties of suspenders and loopers. In particular we
show that the suspender of a principal coaction splits as a coproduct. This is
a crucial result which leads to the notion of theories with suspension and the
cohomological classification of certain Σ-representable track categories in [6].

In topology a typical example of a suspender of a pointed space X is the
space

Σ∗X = S1 ×X/S1 × {∗}.
Moreover a looper of X is given by the free loop space

Ω∗X = (XS1

, 0)

with the function space topology and basepoint given by the trivial loop 0.
Splitting results Σ∗X ' X ∨ ΣX (resp. Ω∗X ' X × ΩX) are well known in
case X is a co-H-group (resp. H-group). For example Barcus and Barratt [5] or
Rutter [12] use implicitly the splitting to obtain basic rules of homotopy theory.
This paper and its sequel [6] specifies the categorical background of some of
these rules. Suspenders and loopers are also responsible for the properties of
partial suspensions and partial loop operations discussed in [6]; compare also
[4, 3, 2].

The theory of Σ-representable track categories in this paper is also motivated
by the approach of Gabriel and Zisman [7] who consider those properties of a
track category T which imply existence of a Puppe sequence for mapping cones.
The suspension ΣA plays a crucial rôle in this sequence. Enriching the results in
[7] we show that the main categorical nature of a suspension in a track category
is described by the notion of suspender which is the link between tracks in T
and homotopy classes of maps in T . Such a link, for example, is needed in
results of Hardie, Kamps and Kieboom [9, 8] and Hardie, Marcum and Oda [10]
who study homotopy-theoretic secondary operations like Toda brackets in 2-
categories. This paper does not aim at combining the theory of exact sequences
in homotopy theory as considered in [7] and the theory of suspenders since the
notion of suspenders, resp. loopers, is quite sophisticated and new.

1. Σ-representable track categories

We first introduce the following notation. In a groupoid G the composition
of morphisms

foo goo
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is denoted by f + g. Accordingly also the composition of tracks

αks βks

in a track category is denoted by α + β. We also write α : a ' b for a track
α : a ⇒ b. We say that a groupoid G is abelian if all automorphism groups of
objects in G are abelian. For β : y → y and ϕ : x → y in G we obtain the
conjugate

βϕ = −ϕ + β + ϕ : x → x

so that (−)ϕ : Aut(y) → Aut(x) is a homomorphism. The loop groupoid G	 of
G is defined to have objects α : x → x, where x is an object of G; a morphism
from α : x → x to β : y → y is a morphism ϕ : x → y in G such that
α = −ϕ + β + ϕ.

Track functors between track categories and track transformations between
track functors are the enriched versions of functors and natural transforma-
tions enriched in the category Gpd of groupoids. Here Gpd is also an example
of a track category with functors between groupoids as 1-arrows and natural
transformations as 2-arrows. Each object C in a track category T yields the
representable track functor

[[C,−]] : T → Gpd

between track categories which carries X ∈ Ob(T ) to the hom-groupoid [[C, X]]
in T .

In a track category T , consider a map f : A → B. For any object X, denote
by Gf (X) the following groupoid: objects of Gf (X) are pairs (g, α), where
g : B → X is a map and α : gf ⇒ gf is a track. A morphism from (g′, α′)
to (g, α) is a track γ : g′ ⇒ g such that α′ = αγf . Any map h : X → Y
induces a functor Gf (h) : Gf (X) → Gf (Y ) sending (g, α) to (hg, hα) and
γ to hγ. Moreover any track η : h ⇒ h′ induces a natural transformation
Gf (γ) : Gf (h) → Gf (h

′) with components ηg : hg ⇒ h′g for objects (g, α) of
Gf (X). Thus we have defined a track functor

Gf : T → Gpd.

Any object (g : B → C,α : gf ⇒ gf) of Gf (C) gives rise to a track transfor-
mation

(g, α)∗ : [[C,−]] → Gf

consisting of functors
[[C,X]] → Gf (X)

which assign to h : C → X the pair (hg, hα) and to η : h′ ⇒ h the track ηg (this
indeed defines a morphism in Gf as ηgf +h′α = hα+ηgf , i. e. h′α = (hα)ηgf ).

1.1. Definition. For a map f : A → B in a track category T , a suspender for
f is a triple (Σf , if , υf ) consisting of an object Σf , a map if : B → Σf , and a
track υf : iff ⇒ iff having the property that the induced track transformation

(if , υf )
∗ : [[Σf ,−]] → Gf

induces a bijection of isomorphism classes of objects.
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In other words, the following conditions must be satisfied:

(a) For any map g : B → C and any track η : gf ⇒ gf there exists a
map Ση : Σf → C and a track ζη : g ⇒ Σηif such that η = (Σηυf )

ζηf

(surjectivity);
(b) For any h, h′ : Σf → C and any track γ : h′if ⇒ hif with h′υf = (hυf )

γf

one has γ = δif for some track δ : h′ ⇒ h (injectivity).

We point out that we do not assume for a suspender Σf that the map (if , υf )
∗

is an equivalence of groupoids since this, in fact, does not hold in the example
of topological spaces. Hence topology forces us to think of a weaker universal
property, namely that (if , υf )

∗ induces only a bijection of isomorphism classes
of objects. A track category T is Σ-representable if each map f in T has a
suspender (Σf , if , υf ).

1.2. Definition. The dual notion of looper is obtained as a suspender in the
opposite track category: a looper for f : A → B consists of a map pf : Ωf → A
and a track λf : fpf ⇒ fpf satisfying conditions dual to the above ones for
suspenders. A track category T is Ω-representable if each map f in T has a
looper (Ωf , pf , λf ).

Important particular cases are the suspenders and loopers for the identity
map 1=idA : A → A which will be denoted Σ∗(A) and Ω∗(A) respectively;
suspender for a map 0 : A → ∗ to the initial object will be called suspension
of A and denoted Σ0(A), or simply Σ(A) if the map 0 is uniquely determined
by the context; and dually the looper for a map 0 : 1 → A from the terminal
object to A will be called loop object of A and denoted Ω0(A) or Ω(A).

These examples are important in that sometimes suspenders or loopers of all
maps can be constructed using solely Σ∗ and Ω∗ – indeed sometimes just using
Σ0 and Ω0. See below.

We consider the following examples of Ω-representable and Σ-representable
track categories.

1.3. Example. The track category Gpd of groupoids is Ω-representable. In
fact, for a functor F : G → H between groupoids the looper ΩF is obtained by
the pullback diagram

ΩF
//

²²

H	

²²
G

F // H.

Moreover the loop groupoid H	 itself has the universal property for Ω∗(H).

1.4. Example. The track category Top∗ of pointed topological spaces is Σ-
representable. Let IA = (A× [0, 1]) / ({∗} × [0, 1]) be the cylinder in Top∗.



SUSPENSION AND LOOP OBJECTS AND REPRESENTABILITY OF TRACKS 687

Then the suspender Σf of a map f : A → B is obtained by the pushout
diagram

A ∨ A
(f,f)

//

(i0,i1)

²²

B

if
²²

IA
υf // Σf .

Here υf yields the track υf : if ⇒ if for the suspender Σf . Next let PB = BI

be the space of maps [0, 1] → B with the compact open topology. Then the
looper Ωf of f is obtained by the pullback diagram

Ωf

λf //

pf

²²

PB

(q0,q1)

²²
A

(f,f)
// B ×B.

Here λf yields the track λf : pf ⇒ pf for the looper Ωf . In the next example
we show that the properties 1.1 are satisfied for Σf and Ωf respectively.

Let C be a cofibration category in the sense of Baues [3]. For each cofibrant
object X in C we choose a cylinder

X ∨X // // IX
∼ // X

which is a factorization of (1, 1) : X ∨ X → X. For a fibrant object Y the
homotopy classes relative to X ∨ X of maps IX → Y are the tracks in C.
Therefore the full subcategory Ccf of cofibrant and fibrant objects in C is a
track category; see [3, II §5].

1.5. Lemma. For a cofibration category C the track category Ccf is Σ-repre-
sentable.

Proof. For each cofibrant object X in C a fibrant model j : X // ∼ // RX can

be chosen. Now the suspender Σf of f : A → B in Ccf is obtained by a fibrant
model of the pushout Σ′

f in the following diagram

A ∨ A

²²

(f,f)
//

push

B

i′f
²²

B

if
²²

IA
υ′f // Σ′

f
// ∼ // Σf .

The composite υf = jυ′f : IA → Σ′
f → Σf yields the track υf : if ⇒ if . We now

check that the properties (a) and (b) in 1.1 are satisfied. For a map g : B → C
in Ccf let η : gf ' gf be a homotopy η : IA → C. Then the pushout property
of Σ′

f yields a map g ∪ η : Σ′
f → C which admits an extension Ση : Σf → C

so that Σηif = g and η = Σηυf . Hence we can actually choose the track ζη in
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(a) to be the identity isomorphism of g. This proves (a). Now we check (b) as
follows. Let γ : h′if ' hif with

h′υf = (hυf )
γf = −γf + hf + γf (∗)

as in (b). Here (*) is an equation of tracks. Now (*) implies that there is a map

δ′ : IIA → C

with δ′i0 = hυf , δ′i1 = h′υf and δ′Ii0 = δ′Ii1 = γIf . Here we choose the
cylinder IB to be a fibrant object so that If : IA → IB is defined; see [3].
Now consider the following pushout diagram where I(A ∨ A) = IA ∨ IA.

I(A ∨ A)
(If,If)

//

²²
push

IB
γ //

Ii′f
²²

C

IIA // IΣ′
f .

Here the pushout IΣ′
f is actually a cylinder for Σ′

f and we define a cylinder IΣf

for Σf by the pushout diagram

Σ′
f ∨ Σ′

f
// j∨j //

(i0,i1)
²²

push

Σf ∨ Σf

²²
IΣ′

f
// ∼ // IΣf .

Now the map δ′∪γ : IΣ′
f → C is defined with (δ′∪γ)i0 = h′j and (δ′∪γ)i1 = hj.

Hence a map δ = (δ′ ∪ γ)∪ (h′, h) : IΣf → C is defined. The track defined by δ
satisfies δ : h′ ⇒ h. Moreover δif = γ since δif is represented by (δ′∪ γ)(Ii′f ) =
γ. ¤

For a model category Q as in [11] let Qc and Qf denote the full subcategory
of cofibrant and fibrant objects, respectively. Then Qc is a cofibration category
and Qf is a fibration category in the sense of Baues [3]. Here fibration category
is the categorical dual of cofibration category. Therefore 1.5 above shows:

1.6. Corollary. Let Qcf be the track category of cofibrant and fibrant objects
in a Quillen model category. Then Qcf is Σ-representable and Ω-representable.

The examples in 1.4 are also consequences of 1.5 since Top∗ is a cofibration
category and also a fibration category in which all objects are cofibrant and
fibrant, compare [3]. Moreover using [3, Remark I.8.15] we see that also Top∗0
is a fibration category in which all objects are fibrant and cofibrant. Here we
use the structure [3, I.3.3] and [3, I.4.6].
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2. Functorial properties of suspenders

We consider functorial properties of suspenders. This implies a kind of
uniqueness and compatibility with sums. For a category T the category Pair(T)
is the usual category of pairs in T. Objects of Pair(T) are morphisms A → B
and morphisms from (A → B) to (X → Y ) are commutative diagrams in T

A //

²²

X

²²
B // Y.

2.1. Lemma. For any commutative diagram of unbroken arrows

A

f
²²

p // X

g

²²
B

if
²²

q // Y

ig
²²

Σf
Σ∗(p,q)

//___
ζ(p,q)

:B|
|

|
|

|
|

|
|

Σg

there exist a map Σ∗(p, q) and a track ζ(p,q) as indicated, with

Σ∗(p, q)υf = (υgp)ζ(p,q)f . (a)

Choosing such maps for each commutative square as above gives a functor

Σ− : Pair(T ) → Pair(T')

carrying f : A → B to [if ] ∈ [B, Σf ] and the commutative square (p, q) : f → g
as above to ([q], [Σ∗(p, q)]) : [if ] → [ig].

Proof. By the definition of suspenders, the track υgp considered as an au-
tomorphism of iggp = igqf produces a map Συgp : Σf → Σg and a track
ζυgp : Συgpif ⇒ igq such that (a) holds. So one can define

Σ∗(p, q) = Συgp, ζ(p,q) = ζυgp.

Then the injectivity condition for suspenders guarantees that there are tracks

Σ∗(idA, idB) ' idΣf

and

Σ∗(p, q)Σ∗(p′, q′) ' Σ∗(pp′, qq′)

for any two matching commutative squares. The lemma follows. ¤
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2.2. Lemma. Let (Σf , if , υf ) and (Σ′
f , i

′
f , υ

′
f ) be two suspenders of a map

f : A → B. Then they are equivalent in T . More precisely, there exist maps
l : Σf → Σ′

f and l′ : Σ′
f → Σf such that lif = i′f , l′i′f = if , lυf = υ′f , and

l′υ′f = υf . Moreover there exist tracks λ : l′l ' idΣf
, λ′ : ll′ ' idΣ′f with

λif = idif , λ′i′f = idi′f .

Proof. Existence of l = Συ′f and l′ = Συf
satisfying the required identities

is clear from the definition of suspenders. Then further by the uniqueness
property of suspenders, for the identity track Συ′f Συf

if = Συ′f i
′
f = if = idΣf

if
one has Συ′f Συf

υf = Συ′f υ
′
f = υf , hence there is a track λ : Συ′f Συf

' idΣf
with

λif = idif . In an exactly symmetric way one has λ′ with required properties. ¤

Also the converse is true:

2.3. Lemma. Let (Σf , if , υf ) be a suspender for the map f : A → B and let
the maps l : Σf → Σ, l′ : Σ → Σf and tracks λ : l′l ' idΣf

, λ′ : ll′ ' idΣ realise
a homotopy equivalence. Then (Σ, lif , lυf ) is another suspender for f .

Proof. Consider the composite functor

[[Σ,−]]
[[l,−]]

// [[Σf ,−]]
(if ,υf )∗

// Gf .

Clearly it coincides with (lif , lυf )
∗. Moreover (if , υf )

∗ induces bijection on
isomorphism classes by the universal property of suspenders, and so does [[l,−]]
– in fact the latter is an equivalence, with inverse [[l′,−]]. Hence the lemma. ¤

2.4. Lemma. For any object A, a suspender for the map !A : ∗ → A from the
(possibly weak) initial object to A is given by (A, idA, id!A). Given suspenders
(Σf , if , υf ) and (Σf ′ , if ′ , υf ′) for the maps f : A → B and f ′ : A′ → B′,
respectively, (Σf∨Σf ′ , if∨if ′ , υf∨υf ′) is a suspender for f∨f ′ : A∨A′ → B∨B′.

Proof. The first assertion follows easily from the fact that the functor G!A co-
incides with the covariant representable functor [[A,−]].

For the second, consider the functors

[[Σf ∨ Σf ′ ,−]]
' // [[Σf ,−]]× [[Σf ′ ,−]]

(if ,υf )∗×(if ′ ,υf ′ )
∗

// Gf ×Gf ′ // Gf∨f ′ ,

where the rightmost functor is the one assigning to ((g, α), (g′, α′)) with g :
B → C, α : gf ' gf , g′ : B′ → C ′, α′ : g′f ′ ' g′f ′ the pair (

(
g
g′
)
,
(

α
α′

)
), where(

g
g′
)

: B ∨ B′ → C and
(

α
α′

)
:

(
gf

g′f ′
) ' (

gf
g′f ′

) ' (
g
g′
)
(f ∨ f ′) are obtained from

the equivalences [[B ∨B′, C]] ' [[B, C]] × [[B′, C]]. It is clear how to define this
functor on morphisms. One sees directly that this functor induces bijection on
isomorphism classes of objects; hence so does the composite, which is easily
seen to coincide with (if ∨ if ′ , υf ∨ υf ′)

∗. The lemma follows. ¤
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3. Suspensions

Let ∗ be the initial object of a track category T in the strong sense so that
the hom-groupoid [[∗, X]] is the trivial groupoid for any X. Then the suspender
Σ0A of a map 0 : A → ∗ is termed a suspension (associated to 0) of A.

3.1. Proposition. For any map 0 : A → ∗ to the initial object, the correspond-
ing suspension Σ0(A) is canonically equipped with a cogroup structure in the
homotopy category T'. Moreover for any a : A′ → A the induced map (see 2.1)
Σ∗(f, id∗) : Σ0a(A) → Σ0(A) respects this cogroup structure.

Proof. Recall that the initial object is understood in the strong sense, so that
[[∗, X]] is a trivial groupoid for any X. It then follows that the groupoid G0(X)
has as many objects as there are tracks α :!X0 '!X0, and only identity mor-
phisms. In other words, it is the discrete groupoid on the set Aut(!X0). Let us
equip this set with a group structure coming from the obvious one on Aut(!X0).
Then moreover the functor G0(X) → G0(Y ) induced by a map f : X → Y
is given on objects by α 7→ fα, hence is a homomorphism of groups. One so
obtains a lifting of the functor G0 to groups. But by the universal property
of the suspender, this functor coincides with [Σ0,−]. So considered as an ob-
ject of T', the suspension Σ0 has the property that its covariant representable
functor lifts to the category of groups. It then follows by the standard cate-
gorical argument that this object has a cogroup structure in T'. Explicitly,
the cozero of this cogroup is Σid0 , i. e. the map Σ0 → ∗ induced by the pair
(id∗ : ∗ → ∗, id0 : 0id∗ = 0 ' 0 = 0id∗). The coaddition map + : Σ0 → Σ0 ∨ Σ0

is induced by the pair (!Σ0∨Σ0 : ∗ → Σ0 ∨Σ0, i1υ0 + i2υ0), where υ0 ∈ Aut(!Σ00)
is the universal track and i1, i2 : Σ0 → Σ0 ∨ Σ0 are the coproduct inclusions.
The inverse map Σ0 → Σ0 is induced by (!Σ00,−υ0).

Now given any a : A′ → A, it obviously respects counit. To show that it re-
spects coaddition, one must find a track +Σ∗(a, id∗) ' (Σ∗(a, id∗)∨Σ∗(a, id∗))+.
According to the uniqueness property of the suspender Σ0a, for this it is enough
to find a track α : +Σ∗(a, id∗)i0a ' (Σ∗(a, id∗) ∨ Σ∗(a, id∗)) + i0a satisfying
+Σ∗(a, id∗)υ0a = ((Σ∗(a, id∗) ∨ Σ∗(a, id∗)) + υ0a)

α0a. There is a unique choice
for such α – namely the identity track, as * is initial in the strong sense. Then
+Σ∗(a, id∗)υ0a = +υ0a = (i1υ0 + i2υ0)a = i1υ0a + i2υ0a = i1Σ∗(a, id∗)υ0a +
i2Σ∗(a, id∗)υ0a = ((Σ∗(a, id∗) ∨ Σ∗(a, id∗))i1υ0a + (Σ∗(a, id∗) ∨ Σ∗(a, id∗))i2υ0a

= (Σ∗(a, id∗) ∨ Σ∗(a, id∗))(i1υ0a + i2υ0a) = (Σ∗(a, id∗) ∨ Σ∗(a, id∗)) + υ0a as re-
quired. ¤

3.2. Corollary. Suppose that an object A has a co-H-structure, i. e. a coad-
dition a : A → A∨A with a two-sided cozero 0 : A → ∗ in T'. Then the above
canonical cogroup structure on Σ0 (see 3.1) is coabelian.

Proof. By 2.1 and 2.4, there are maps 0′ = Σ∗(0, id∗) : Σ0 → ∗ and +′ =
Σ∗(a, id∗) : Σ0 → Σ0 ∨ Σ0 which equip Σ0 with a co-H-structure in T'. On
the other hand it has a canonical cogroup structure (Σid0 , +,−) in T' by 3.1.
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But in fact Σid0 and Σ∗(0, id∗) coincide in T', so it follows that these cogroup
structures have the same cozero.

Moreover the fact that +′ respects the cogroup structure means commutativ-
ity of

Σ0
+ //

+′
²²

Σ0 ∨ Σ0

+′∨+′
²²

Σ0 ∨ Σ0
+2 // Σ0 ∨ Σ0 ∨ Σ0 ∨ Σ0

in T', where +2 is the coaddition for the canonical cogroup structure on Σ0∨Σ0

considered as Σ(0
0)

. It is clear that this cogroup structure coincides with the

coproduct of cogroup structures on Σ0. In general, for two cogroups X and Y
the coaddition on their coproduct is given by

X ∨ Y
+X∨+Y// X ∨X ∨ Y ∨ Y

X∨(iX
iY

)∨Y
// X ∨ Y ∨X ∨ Y,

so that +2 is given by the composite

Σ0 ∨ Σ0
+∨+ // Σ0 ∨ Σ0 ∨ Σ0 ∨ Σ0

(23)
// Σ0 ∨ Σ0 ∨ Σ0 ∨ Σ0,

where (23) denotes the map permuting second and third summands.
Composing the above diagram with

idΣ0 ∨
(

0′

0′

)
∨ idΣ0 : Σ0 ∨ Σ0 ∨ Σ0 ∨ Σ0 → Σ0 ∨ ∗ ∨ ∗ ∨ Σ0

∼= Σ0 ∨ Σ0

then gives that there is a track +′ ' +, whereas composing it with(
0′ ∨ idΣ0

idΣ0 ∨ 0′

)
: Σ0 ∨ Σ0 ∨ Σ0 ∨ Σ0 → ∗ ∨ Σ0 ∨ Σ0 ∨ ∗ ∼= Σ0 ∨ Σ0

gives that there is a track +′ ' (12)+. This means that + is coabelian in
T'. ¤

4. Suspenders of coactions

We show that the suspender Σf of a map f : A → B splits as a coproduct
if A has the structure of a principal coaction in the homotopy category. Recall
that a theory C is a category with finite sums A ∨B.

4.1. Definition. A principal coaction in a theory C consists of an object A
together with a cogroup object S in C and a right coaction

a : A → A ∨ S

on A such that the map

(iA, q) : A ∨ A → A ∨ S

is an isomorphism in C. The cogroup structure of S is given by maps µ : S →
S ∨ S, ν : S → S and e : S → ∗. The inverse of (iA, a) yields the map
d : S → A ∨ A.
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A principal coaction is trivial if A is isomorphic to S in such a way that µ
corresponds to the cogroup structure of S. It is well known that a principal
coaction (A, a) is trivial if and only if there exists a map A → ∗ in C, where ∗
is the initial object of C.

4.2. Remark. A principal action in a category with finite products consists
of an object T together with an internal group G in this category and a right
action a : T ×G → T of G on T such that the map (pT , a) : T ×G → T × T is
an isomorphism (pT being the product projection). Of course a principal action
is the categorical dual of a principal coaction.

For our purposes we need a weaker notion which we call principal quasi action
or quasi torsor. It consists of objects T , G and morphisms T × G → T , d :
T ×T → G, 1 → G, denoted via (x, g) 7→ x ·g, (x, y) 7→ x\y, and e respectively,
for x, y :? → T , g :? → G, such that the following identities hold:

• x\x = e;
• x · (x\y) = y.

(Note that the above conditions imply also x · e = x.)
Clearly, any principal action is a particular case of this, as one can define d

to be the composite map

T × T
(pT ,a)−1

// T ×G
pG // G .

The categorical dual of a principal quasi action is a principal quasi coaction
which generalizes the principal coaction in 4.1.

Recall that a track theory is a track category with coproducts A ∨ B in the
weak sense (see [5]) so that for all X one has the equivalence of hom-groupoids

[[A ∨B, X]]
∼ // [[A,X]]× [[B, X]].

Let ω be an inverse of this equivalence.

4.3. Theorem. Let T be a track theory and let f : A → B be a map in
T . Assume A has the structure of a principal (quasi)coaction in the homotopy
category T' represented by a map a : A → A∨S in T , where S is a cogroup in
T'. Let ΣS = ΣeS be a suspension of S in T associated to a map e : S → ∗
in T representing the counit of S. Then there is a suspender of f with

Σf = B ∨ ΣS

and if = iB : B → B∨ΣS the coproduct inclusion and υf : iBf ⇒ iBf a certain
canonically defined track.

The theorem shows that existence of certain suspensions in a track category
implies existence of a wider class of suspenders. Moreover by 2.2 we get the
following corollary.
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4.4. Corollary. Let T be a Σ-representable track theory and let f : A → B
be a map in T where A admits the structure of a principal (quasi)coaction
A → A ∨ S in T'. Then there exists a homotopy equivalence Σf ' B ∨ ΣS
where ΣS is a suspension associated to a map S → ∗ representing the counit of
S.

Proof of 4.3. To simplify exposition, let us introduce the following notation.
The given principal coaction gives rise, for each object X, to functors

[[A,X]]× [[S, X]]
ω // [[A ∨ S,X]]

[[a,X]]
// [[A,X]]

and

[[A,X]]× [[A,X]]
ω // [[A ∨ A,X]]

[[d,X]]
// [[S,X]],

whose actions on both objects and morphisms will be denoted by

(x, s) 7→ a · s, (x, y) 7→ x\y,

respectively. The principal coaction structure in T' implies existence of tracks
κ, λ which for any x, y : A → X induce tracks

xκ : e ⇒ x\x,
(

x

y

)
λ : x · (x\y) ⇒ y.

Let us define another track ι by

x · (x\x)
x(idA

idA
)λ

Ã(III
III

III

III
III

III

x · e

idx·{
5=sssssssss

sssssssss xι +3 x.

We now turn to the construction of the universal track υf . It is the composite
track in the diagram

B ∨ ∗
idB∨!ΣS

¡¡

B
∼=oo

ididB
∨υe

®¶

−fι
®¶

B ∨ ΣS B ∨ S

idB∨e;;;;;;;

]];;;;;;;

idB∨e
¤¤

¤¤
¤¤

¤

¢¢¤¤
¤¤

¤¤
¤

A ∨ S

fι

®¶

( f
!Be);;;;;;

]];;;;;;

( f
!Be)

¤¤
¤¤

¤¤

¢¢¤¤
¤¤

¤¤

f∨idSoo A

f

hh

aoo

f

vv
B ∨ ∗

idB∨!ΣS

^^

B
∼=oo ,

where the two parallelograms commute. More formally, υf = (υa)−iBfι, where
the track

υ = (ididB
∨ υe)(f ∨ idS) ∈ Aut((idB ∨ (!ΣSe))(f ∨ idS))
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is considered as an automorphism of the map

iB

(
f

!Be

)
= (idB∨!ΣS)(f ∨ e)

= (idB∨!ΣS)(idB ∨ e)(f ∨ idS)

= (idB ∨ (!ΣSe))(f ∨ idS).

To show that υf is indeed universal, we must show that, for each object X,
the functor

[[B, X]]× [[ΣS, X]] ∼= [[B ∨ ΣS, X]]
(iB ,υf )∗

// Gf (X)

induces bijection on isomorphism classes of objects. Now υf is chosen in such
a way that given x : B → X and a track ε ∈ Aut(!Xe) with the corresponding
map Σε : ΣS → X, one has

(iB, υf )
∗(x, Σε) = (idxf · ε)−xfι : xf ' xf.

Taking into account the universal property of ΣS, we may replace isomorphism
classes of [[ΣS, X]] by those of Ge(X). We thus must show

• For any x : B → X and any track α ∈ Aut(xf) there is a track ε ∈
Aut(!Xe) such that idxf · ε = αxfι;

• For any x, x′ : B → X, any ε, ε′ ∈ Aut(!Xe) and any χ : x ' x′ with
idx′f · ε′ = (idxf · ε)χf there is a track η : Σε′ → Σε.

For the first, define, for α ∈ Aut(xf), the track ε = (idxf\α)xf{. Then
because of our special choice of ι the required identity will be satisfied.

For the second, note that if χ : x ' x′ satisfies the hypothesis, then in the
diagram

e

ε

®¶

e

ε′

®¶

xf\(xf · e)

(xf
e )λ

ai KKKKKKKKKK

KKKKKKKKKK
χf\(χf ·e)

+3

xf\(xf ·ε)
®¶

x′f\(x′f · e)

(x′f
e )λ

5=ssssssssss

ssssssssss

x′f\(x′f ·ε′)
®¶

xf\(xf · e)

(xf
e )λu} ssssssssss

ssssssssss

χf\(χf ·e)
+3 x′f\(x′f · e)

(x′f
e )λ !)KKKKKKKKKK

KKKKKKKKKK

e e

all inner squares commute, hence the outer square commutes too, i. e. actually
ε = ε′. ¤
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