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HYPER-HOLOMORPHIC CELLS AND FREDHOLM THEORY

G. KHIMSHIASHVILI

Abstract. We deal with differentiable cells defined by solutions to certain
linear elliptic systems of first order. It turns out that in some cases families
of such cells attached to a given submanifold may be described by Fredholm
operators in appropriate function spaces. Using the previous results of the
author on the existence of elliptic Riemann–Hilbert problems for generalized
Cauchy–Riemann systems, we indicate some classes of systems which give
rise to non-linear Fredholm operators of such type.
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1. Introduction

The classical boundary value problems (BVPs) for holomorphic functions, in
particular the linear conjugation problem and the Riemann–Hilbert problem
whose comprehensive theory owes much to the works of N. Muskhelishvili and
his school (see, e.g., [24], [33], [34]), can be described by linear operators in
appropriate function spaces (cf. the abstract operatorial setting developed in
the book of S. Prössdorf [26]). Nowadays there also exist several interesting
non-linear versions of these classical problems (see, e.g., [29], [35]).

One of the most spectacular generalizations of this kind was developed in the
seminal paper of M. Gromov concerned with the pseudo-holomorphic curves
[19]. Gromov’s approach involves, in particular, two important new aspects:
generalizing the equation satisfied by functions (which is in some sense equiv-
alent to working with solutions of the Bers–Vekua equation [5], [33]) and con-
sideration of non-linear boundary conditions in the spirit of “holomorphic discs
attached to a totally real submanifold” [7].

All these results are concerned with functions which locally depend on two
real variables and one may wonder if similar results can be obtained for func-
tions of several real variables satisfying some elliptic system of equations. Such
generalizations do not seem to have attracted much attention up to now, but
the existing results about linear BVPs for elliptic systems (see [9], [31], [22])
suggested that some results of this type should be available for systems of Dirac
type [17].
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The present paper may be considered as one of the first steps in this direction.
To be more precise, we discuss some geometric properties of families of solutions
to certain elliptic first order systems of linear partial differential equations with
constant coefficients [36] (such systems are sometimes called “canonical first
order systems” (CFOS) [3]). These systems were studied in many papers and
they remain an object of a permanent interest (see [31] for a recent review of
the topic).

An especially important class of such systems is provided by the so-called
“generalized Cauchy–Riemann systems” (GCRS) [30]. Solutions to generalized
Cauchy–Riemann systems are often called hyper-holomorphic mappings [28] and
in many problems it is necessary to consider images of some standard domains
(e.g., balls) under such mappings. Standard examples of such systems in low
dimensions are the classical Cauchy–Riemann system in the plane, the Moisil–
Theodoresco system in R3 [8], and Fueter system for functions of one quater-
nionic variable [10]. There exists a vast literature devoted to such equations
(see references in [8] and [10]). In particular, some important results about
the so-called generalized analytic vectors were obtained by georgian mathemati-
cians [8], [25]. Similar systems emerged in the theory of para-analytic functions
developed by M. Frechet [14].

The main paradigm we follow in this paper, has its origin in the theory of an-
alytic (holomorphic) discs attached to a totally real submanifold [7]. One takes
a smooth bounded domain homeomorphic to a ball of appropriate dimension
and considers its images under solutions to a given CFOS. Such images (we call
them elliptic cells) are our main concern in this paper.

More concretely, inspired by the theory of attached analytic discs [7], [13] we
consider elliptic cells with boundaries in a fixed submanifold M of the target
space of the elliptic system in question. They are called elliptic cells attached to
M . For our purposes it appears useful to regard them as solutions of non-linear
boundary value problems of Riemann–Hilbert type [35]. Accepting terminology
from [35], M will be called a target manifold (for attached elliptic cells).

Actually, we only consider hyper-holomorphic cells, i.e., those which are de-
fined by solutions to a given GCRS. Notice that except the aforementioned
theory of attached analytic discs [7], there also exist important generalizations
of this classical example in the framework of symplectic geometry [19].

Recently, similar objects appeared in mathematical physics under the name of
D-branes. D-branes have already found interesting applications in topological
field theory and string theory [6], [15]. It is worthy of noting that in those
physical contexts there also appear D-branes attached to certain submanifolds.
This confirms our trust that such objects deserve some attention by their own.

With this in mind, we investigate some situations where families of attached
hyper-holomorphic cells can be locally described as kernels of some (non-linear)
Fredholm operators. Such a phenomenon is well known in the case of analytic
discs [2] and it plays an important role in M. Gromov’s studies on pseudo-
holomorphic curves [19]. In particular, one becomes able to use the well known
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concepts and techniques of Fredholm theory, which reveals some important
topological aspects of the situation. We mimic Gromov’s approach and establish
some properties of emerging non-linear operators using the Fredholm theory of
elliptic Riemann–Hilbert problems (RHPs) for GCRS developed in [31], [21].

In particular, we show that, for certain values of dimensions n, k, and m,
there exist non-compact k-submanifolds in affine m-space such that families of
hyper-holomorphic n-cells attached to such submanifolds are locally described
by Fredholm operators. Borrowing again terminology from [35], such submani-
folds are called admissible targets (for a given GCRS). Existence of admissible
targets and Fredholmness of arising non-linear operators are derived from the
recent results on the existence of elliptic boundary value problems for GCRS
[31], [22] (cf. also [28]).

Such aspects of generalized Cauchy–Riemann systems seem to have never
been discussed in the literature, so in this paper we pursue but a modest goal
of describing and illustrating the framework which naturally stems from our
previous results on generalized Cauchy–Riemann systems. Since the subject
has many natural connections with other topics we give a sufficiently long list
of references in order to indicate some of the related concepts and techniques.

2. Generalized Cauchy–Riemann Systems

We present here some relevant notions from [30] and [36].

Definition 1 ([30], cf. [17]). An elliptic system of first order with constant
coefficients is called a generalized Cauchy–Riemann system (GCRS) if it is in-
variant under the natural action of the orthogonal group on the source space
and all components of its differentiable solutions are harmonic functions. Solu-
tions of such systems are called hyper-holomorphic (hh) mappings. For a given
such system S, its solutions will be also called S-mappings.

It is well known (see, e.g., [31]) that, without loss of generality, one may
always assume that such a system in Rn+1 may be written in a canonical form:

E
∂w

∂x0

+ A1
∂w

∂x1

+ . . . + An
∂w

∂xn

+ Dw = f, (1)

where Aj, D are constant complex (m×m) matrices, E = A0 is the identity
matrix, and for all i, j = 1, . . . , n, one has:

AiAj + AjAi = −2δijE. (2)

We will consider such system in a smooth domain U ∈ Rn+1 and assume that
the unknown vector-function w belongs to class C1(U,Cm).

It is also well known that system (1) is elliptic, in the usual sense [36], i.e.,

det(t0E + t1A1 + . . . + tnAn) 6= 0,

for all (t0, . . . , tn) ∈ Rn+1 − {0}.
From (2) it is clear that such a system defines a representation of Clifford

algebra Cln on Cm [17]. So the (complex) target dimension m, being the sum of
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dimensions of irreducible representations of Cln, is an integer multiple of 2[n/2]

[9]. If for a given system S this dimension is the minimal possible, m(n) = 2[n/2],
we will say that system S is irreducible. In many situations it is sufficient to
consider only irreducible GCRSs.

For the sake of visuality, we explicitly write down some examples of such
systems in low dimensions. For n = 1, one has m(1) = 1 and the corresponding
irreducible system is just the classical Cauchy–Riemann system for two real
functions u(x, y), v(x, y) of two real variables:

ux − vy = 0,
uy + vx = 0.

For n = 2, one has m(2) = 2, and the corresponding irreducible systems
for four real functions s, u, v, w of three real variables is the well-known Moisil-
Theodoresco system which may be written using standard operators on vector-
functions in R3 [17]:

div (u, v, w) = 0,
grad s + rot (u, v, w) = 0.

For n = 3, one has m(3) = 2, and the corresponding irreducible system is the
so-called Fueter system for four real functions fi of four real variables xj [17]:

∂f0

∂x0

− ∂f1

∂x1

− ∂f2

∂x2

− ∂f3

∂x3

= 0,

∂f0

∂x1

+
∂f1

∂x0

− ∂f2

∂x3

+
∂f3

∂x2

= 0,

∂f0

∂x2

+
∂f1

∂x3

+
∂f2

∂x0

− ∂f3

∂x1

= 0,

∂f0

∂x3

− ∂f1

∂x2

+
∂f2

∂x1

+
∂f3

∂x0

= 0.

As is well known, this system is a natural counterpart of Cauchy–Riemann
system for a function of one quaternionic variable. Its solutions, called quater-
nionic-regular functions, have many interesting properties similar to those of
usual holomorphic functions of one complex variable [17], [28].

The general theory of PDE yields that one can formulate various reasonable
boundary value problems (BVPs) for such systems in bounded domains [36],
[32]. For our purposes the most relevant are the classical local boundary value
problems of Riemann–Hilbert type defined as follows. One searches for solutions
of (1) satisfying a boundary condition of the form:

(B1B2) · w = g, (3)

where B1, B2 are continuous complex (m
2
× m

2
)-matrix-functions on bU such that

the rows of (m
2
×m)-matrix-function (B1, B2) are linearly independent at every

boundary point, and g is a continuous vector-function with values in Cm.
For our purposes especially appropriate are those RHPs which are elliptic in

the usual sense (i.e., satisfy Shapiro-Lopatinski condition [36]) because then the
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problem (1), (3) is described by a Fredholm operator in appropriate function
spaces [36]. It is well-known that not all systems of the type (1) admit elliptic
boundary conditions (3) [8], [36], so the first natural problem is to investigate
which GCRSs possess elliptic RHPs. We give an answer to this question in
Section 4, which enables us to indicate cases in which hyper-holomorphic cells
are described by Fredholm operators.

Remark 1. An important class of GCRS is associated with Euclidean Dirac
operators [9]. The corresponding systems of the first order are called systems
of Dirac type and their solutions are called monogenic mappings [17].

For notational convenience, in the sequel we denote by V the target space
Cm of system (1).

3. Hyper-Holomorphic Cells

We fix a GCRS of the form (1) and denote by B a (n + 1)-ball in its source
space. We also take some submanifold M in V and refer to it as a target.

Definition 2. A hyper-holomorphic (hh) cell attached to M is defined as
(the image of) a hyper-holomorphic mapping u : B → V such that u(bB) ∈ M .
For a fixed GCRS S, we will speak of S-cells attached to M .

The usual way of dealing with hh cells attached to a given submanifold is
to consider families of cells attached at a given point. Such families may be
described by certain non-linear operators in appropriate function spaces and if
these operators appear to be Fredholm, then one may obtain a reasonable struc-
tural theory of such cells, as it happens, for example, for pseudo-holomorphic
discs and curves [19], [2]. So it is natural to begin with looking for such situ-
ations where hh cells may be related to Fredholm operators. In order to make
this idea precise, we need some constructions and definitions.

To this end, consider an irreducible GCRS S in Rn+1 with values in V . Con-
sider also some smooth (C∞) submanifold M of V of the real dimension equal
to the complex dimension m(n) of V (in such case we speak of a submanifold of
middle dimension). Let B denote an (n + 1)-ball centered at the origin of the
source space of S and let q be some fixed point on its boundary n-sphere bB.
Furthermore, we fix a point p ∈ M and a non-integer number r > 1, and let Hr

denote the usual Hölder class.
Let F be the space of Hr+1 maps f : (B, bB, q) → (V, M, p) which are

homotopic to the constant map fp = p in πn+1(V, M, p) (such maps will be
called homotopically trivial). In a standard way one checks that F is a smooth
complex-Banach manifold (cf. [2]). Let G be the complex Banach space of all
Hr maps g : B → V . Define also a submanifold in F ×G by putting

H = {(f, g) ∈ F ×G : D(f) = g}, (4)

where by D is denoted the matricial partial differential operator defined by the
left-hand-side of (1).
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Then it is easy to see that H is a connected submanifold of F × G and one
may define the projection map Lp : H → G given by Lp(f, g) = g. It is also
easy to check that Lp is a smooth map of H into Banach space G.

Definition 3. Mapping Lp is called Gromov’s operator of the pair (S,M)
at point p. Manifold M is called an S-admissible target if Gromov’s operator
Lp(S, M) is a Fredholm operator (mapping) for every p ∈ M .

Similar operators were introduced by M. Gromov for analytic discs [19] (cf.
also [2]). General techniques of functional analysis (Fredholm theory, Sard-
Smale theorem, theory of Fredholm structures) suggest that if this operator
appears to be Fredholm, one may count for a reasonable structural theory for
attached elliptic cells. In some sense this is the most natural way of formulating
a version of Fredholm theory for elliptic cells.

We now present a typical result of this type available in our context. For us,
of a special importance are those targets M for which Lp is Fredholm at any
point p ∈ M , so we introduce a short-hand admissible targets for the targets
possessing this property.

Recall that we are given an irreducible GCRS S in Rn+1 with values in V .
Construct another GCRS D(S) with values in W = V × V which is a sort of
“double” of S. If n is even, than D(S) simply consists of two identical copies
of S. If n is odd, then one adds to S the canonical GCRS corresponding to the
second irreducible representation of Cln. Thus the complex dimension of the
target space of D(S) is 2m(n).

Remark 2. Consideration of such “doubles” is suggested by the results of
Section 4. From the viewpoint of K-theory this may be considered as a sort
of “stabilization” and it is quite natural that this operation improves certain
properties of the system (see [9]).

We construct now non-compact admissible targets M in W as images of ap-
propriate embeddings of R2m(n). We assume that all spaces of smooth mappings
are endowed with Whitney topology [20].

Theorem 1. There exists an open set of embeddings f : R2m(n) → W
such that, for every point p of M = f(R2m(n)), Gromov’s operator of the pair
(D(S),M) at point p is a (non-linear) Fredholm operator of index zero.

In other words, non-compact admissible targets exist for systems of the form
D(S). At the moment we do not have any general existence results for compact
admissible targets. Notice that for every (compact or non-compact) admissible
target, Fredholmness of Gromov’s operators combined with a standard applica-
tion of implicit function theorem for Banach spaces in the spirit of [20] implies
that the homotopically trivial families of attached elliptic cells are locally finite-
dimensional. Notice that here one need not restrict himself to systems of the
form D(S).

Corollary 1. If M is a S-admissible target, then the family of homotopically
trivial S-hyper-holomorphic cells attached to M at p is finite-dimensional.
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This result can be considered as a description of the subset of all hh cells
attached to M which are close to a “degenerate” cell fp = p. One obtains its
natural generalization by considering the subset of all hh cells atached to M
which are sufficiently close to an arbitrary given cell g attached to M . One need
not even assume vanishing of the class of g in πn+1(V, M).

Corollary 2. For a given S-cell g attached to an S-admissible target M , the
set of all S-cells attached to M near g is finite-dimensional.

In both these cases one encounters a natural problem of computing the “vir-
tual dimension of nearby attached hh cells” (see [20]) in terms of S, M , and
of the given cell g. Such formulae are available for (pseudo-)analytic discs
(or Cauchy–Riemann cells, in our terminology) and they involve the notion of
Maslov index of a curve along a totally real submanifold M [13], [19].

Up to the author’s knowledge, in the general case this is an unsolved problem.
As one can see from the discussion presented in the next section, progress in this
problem depends on the availability of explicit index formulae for elliptic linear
Riemann–Hilbert problems for GCRSs. Apparently in concrete cases one can
successfully apply the analytic formulae for indices of elliptic boundary value
problems in Euclidean space obtained by A.Dynin [11] and B.Fedosov [12].

The proof of Theorem 1 is presented in the next section. Using a natural
linearization procedure it can be derived from general results on existence of
elliptic boundary value problems for GCRSs which are also presented in the
next section. An examination of the proof shows that for GCRSs in spaces
of odd dimension (in our notation this means that n should be even) the same
result can be obtained without passing to doubles, which yields the second main
result of this paper.

Theorem 2. For every irreducible GCRS on a space of odd dimension dif-
ferent from 5 and 7, there exists an open set of embeddings of Rm(n) into Cm(n)

such that their images are admissible targets for attached S-cells.

4. Elliptic Riemann–Hilbert Problems

We give now a comprehensive description of those GCRS which possess ellip-
tic local boundary value problems. The results of this section were obtained in
[31], [22] so in order to distinguish them from the results of the present paper,
we present them as “statements”.

By definition with every GCRS S there are associated integers m and n. Since
the target Cm is a representation space for Clifford algebra Cln, its dimension m
is an integer multiple l of the dimension of irreducible representations m(n) =
2[n

2
] [31]. Thus there appears the third integer l (of course it is completely

determined by m and n). For odd n, there also appear integers l1, l2 (l1 + l2 =
l) showing how many irreducible representations of every of the two possible
non-isomorphic types do participate in the direct sum decomposition of the
representation defined by system S [31]. It turns out that these parameters
completely determine existence of elliptic BVPs.
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Statement 1 ([22]). Suppose that n is odd and n ≥ 3. If l is also odd,
then there exist no elliptic RHPs for the given GCRS. If l is even, then elliptic
RHPs exist if and only if l1 = l2. In the latter case, the set of elliptic boundary
conditons is open and dense in the space of all local boundary conditions of the
form (3).

Statement 2 ([31], [22]). If n ≥ 2 is even, n 6= 4, 6, then there always exist
elliptic RHPs for GCRS as above and the set of elliptic boundary conditions is
open and dense in the space of all local boundary conditions of the form (3).

We do not make here any comments on the proofs of these two results be-
cause they involve several non-trivial techniques from K-theory and differential
equations (see [22]). We only mention that the basic technical tool is provided
by K-homology theory developed in [4]. Both these theorems follow from the
homological criterion for the existence of local boundary value problems for first
order systems (which was first formulated P.Baum and R.Douglas as a conjec-
ture and then proved by G.Gong in [18]). We had also to use a description of
K-homological classes of Euclidean Dirac operators obtained in [4].

Remark 3. The restriction that n 6= 4, 6 results from the method of proof
used in [22]. It comes from the paper [18] and it is related to some delicate
questions of K-theory. At the moment it still remains unclear for us if this
restriction is essential indeed.

Taking into account these results we can now prove Theorem 1 and in course
of proving it we will also see the way of generalizing it to arbitrary GCRSs on
odd-dimensional spaces, which is the second main result of this paper.

Proof of Theorem 1. Let us first determine the derivative (differential) of Lp at
some point (f0, g0) and show that it may be interpreted as a boundary value
problem (1),(3) for system D(S), i.e., that it is an RHP for the GCRS D(S).

Using the usual description of the tangent space to a manifold of mappings
in terms of vector fields along a given mapping, it is easy to see that T(f0,g0)H
may be identified with the space

Z = {f : B → W : f ∈ Hr+1(B, W ), f(x) ∈ Tf0(x)M, ∀x ∈ bB, f(q) = p}.
Granted that, it becomes clear that the derivative of Lp at (f0, g0) may be

identified with the map δ : Z → G given by δ(f) = Df .
Let NM denote the (geometric) normal bundle of M . This is a real vector

bundle with fibre dimension k = 2m(n). Consider its pull-back E0 = (f0 |
bB)∗(NM). From the homotopy condition in the definition of F it follows that
E0 is a trivial bundle over bB, generated by k global sections, say, p1, . . . , pk.
Using Pj as rows we may form the (k × 2k)-matrix-function p ∈ Hr+1(bB).
By the very construction of P , Tf0(x)M = {w ∈ W : P (x)w = 0} and one
immediately observes that matrix P has exactly the same form as the matrix
of boundary condition (3) for system D(S).
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Let us set X = Hr+1(B,W ), Y = Hr(B, W )×Hr+1(bB,Cm(n)) and define a
map R : X → Y by R(f) = (D(f), (Pf)|bB). It is obvious that R is exactly
the operator of a Riemann–Hilbert problem (1),(3) for system D(S).

Our next goal is to understand under which conditions one may guarantee
that R is a Fredholm operator. Notice that if the corresponding RHP is elliptic
(i.e., satisfies the Shapiro-Lopatinski condition [36]), then R is a Fredholm op-
erator in virtue of the general theory of elliptic linear boundary value problems
[36]. So we should only arrange that matrix P defines an elliptic boundary
condition for D(S).

Statement 2 shows that in our situation (this is the crucial place where it
is important that D(S) is a “double”) there is a plenty of elliptic boundary
conditions. In particular, there exist constant matrices P0 which define elliptic
RHPs (1),(3). Let us embed R2m(n) in W in such a way that the normal
space of the image M is orthogonal to the subspace spanned by rows of such
a P0. For such target M , R is obviously Fredholm, so Lp is also Fredholm
at any p ∈ M . Taking into account the stability of Fredholm property under
small perturbations, we see that all sufficiently small perturbations of M will
be admissible targets. The homotopy invariance ofthe Fredholm index implies
that the index vanishes, which completes the proof.

Remark 4. We used the fact that systems of the form D(S) possess elliptic
boundary conditions (3) defined by constant matrix-functions B1, B2. This fact
is not self-evident but it follows from the results of [21]. The “raison d’être”
of this result is the fact (see [21]) that RHPs for systems of the form D(S)
are equivalent to so-called transmission problems (also called linear conjuga-
tion problems) for system S [21]. Existence of constant elliptic coefficients for
transmission problems was established in [21]. For n = 1 this is just a trivial
consequence of the classical theory of linear conjugation problems for holomor-
phic functions [24] (actually every non-degenerate constant matrix generates an
elliptic conjugation problem because its partial indices obviously vanish). For
irreducible systems with n = 2 (Moisil-Theodoresco system) and n = 3 (Fueter
system), existence of constant elliptic transmission conditions follows from the
criteria of fredholmness for such problems obtained in [28] (cf. [32]).

Remark 5. The situation with compact admissible targets remains unclear.
It is well known that there might be topological obstructions to existence of such
targets, which happens already for the classical Cauchy–Riemann system [13].
In order to clarify this issue it is necessary to achieve better understanding of ge-
ometric conditions on admissible targets, which can be hopefully done in terms
of transversality to certain subspace of the Grassmanian G(2m(n), 4m(n)). This
may be done in some simple cases, for example, the necessary “algebraic anal-
ysis” of the Moisil-Theodoresco system is presented in [27]. In the general case
this seems to be quite difficult and it is even unclear what is the dimension of
the subset of “prohibited” 2m(n)-subspaces. This point of view is related to
some other approachs to the construction of admissible targets which will be
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mentioned in the last section.

Analyzing the proof of Theorem 1 and taking into account the previous re-
mark, one sees that it may be extended to certain irreducible systems without
taking their doubles, which leads to Theorem 2.

For “exceptional” values n = 4 and n = 6 the situation remains unclear, but
we feel the statement of Theorem 2 should remain valid. This suggests that
one should try to invent an explicit construction of constant elliptic boundary
conditions (3) for irreducible systems in R5 and R7.

We would like to point our that despite certain analogies with analytic discs,
the situation with hh cells is much more subtle. In particular, the restriction
to systems of the D(S) type cannot be just ommited.

For example, the most straightforward generalization of analytic discs at-
tached to totally real surfaces [13] would be to consider the Fueter system in
R4 = H (quaternionic regular functions [9]) and try to construct Fueter cells
attached to 4-dimensional submanifolds in R8. However, it turns out that in
this way one cannot obtain a reasonable Fredholm theory for such cells, since
in this situation Gromov’s operator is never Fredholm. The latter fact follows
directly from Statement 1 because the resulting system has 2 = l1 6= l2 = 0.

We conclude the paper by discussing some geometric problems suggested by
our approach.

5. Special Grassmanians

A natural problem raised by our results is to understand how can one charac-
terize admissible targets geometrically. Gromov’s general approach to solving
of under-determinate systems [20], suggests that this issue should be related to
certain special subsets of appropriate Grassmanians. Indeed, some first steps
in this direction can be done in a quite natural way and we proceed by a brief
discussion of these matters.

Actually, a more comprehensive investigation of these connections shows that
they may be conveniently described in terms of so-called Grassmanian geome-
tries and calibrations, in the sense of [16]. We do not describe relations to
calibrated geometries in detail, but some of those ideas are implicitly present
in the discussion below.

For a given GCRS, it is also interesting to investigate what can be the minimal
possible dimensions k of target manifolds for which one can derive Fredholmness
of Gromov’s operators. Gromov’s h-principle suggests that admissible targets
should satisfy some transversality condition with respect to certain special sub-
set of Grassmanian Gr(k, 2m) defined by the characteristic matrix of the system
in question.

In order to make this idea more precise let us first re-examine the classical
case of analytic discs. Results of Gromov [20] and Alexander [2] translated to
our language mean that admissible targets for analytic discs are precisely totally
real submanifolds of Ck. For k = 2, the condition of total reality means that the
image of Gauss mapping ΓM of a submanifold M does not intersect the subset
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of complex lines in GrR(2, 4). Since target M is in this case two-dimensional,
this suggests to consider generic targets M , such that ΓM is transversal to
the two-dimensional subset of complex lines GrC(1, 2) in four-dimensional real
grassmanian GrR(2, 4).

For such generic targets, their tangent planes can coincide with complex lines
only at isolated points and one may wish to eliminate these points by deforming
M . For compact M , it is well known [7] that the only obstruction for elimination
of points with complex tangencies is given by the Euler characteristic χ(M). It
may be also shown that, for non-compact contractible M homeomorphic to R2,
the set of embeddings into R4 without complex tangencies is open and dense in
the set of all such embeddings. The latter statement is exactly the special case
of Theorem 1 for the classical Cauchy–Riemann system in R2.

Thus it becomes clear that admissible targets may admit characterization by
some genericity conditions like transversality and in order to find such conditions
one should try to describe the subset of n-planes in Ck which can be represented
as images of differentials of solutions to system S. Notice first that this is exactly
what happens in the classical case, since for the usual Cauchy–Riemann systems
these images are the complex lines.

Indeed, it is immediate to see that the most general form of a Jacobian matrix
of a CR-solution (analytic disc) with values in C2 is:




a −b
b a
c −d
d c




where a, b, c, d are arbitrary real numbers. It is also clear that a vector expressed
by the second column of this matrix is equal to i times vector expressed by the
first column. So the image of the corresponding operator is a complex line and
it is clear that every compex line may be obtained in this way. Of course the
same holds for arbitrary value of the complex dimension k: the set of tangent
planes to analytic discs coincides with the subset of complex lines in GrR(2, 2k)
and has codimension 2k − 2.

Admissible targets in this case coincide with totally real (2k-dimensional) sub-
manifolds. Notice that they are not generic 2k-dimensional manifolds because
those may have complex tangencies and actually homological properties of the
set of complex tangencies are closely related to the topology of the submanifold
considered [13].

Similar considerations for the Fueter system show that tangent planes of its
solutions are exactly invariant modules of the left action of H on Hk. It is also
instructive to have a look at the first irreducible system with non-equal (real)
dimensions of the source and the target (i.e., n + 1 6= 2m in our notation).
This is of course the Moisil-Theodoresco system (n = 2, m = 2). A simple
calculation shows that tangents to its solutions are precisely the 3-dimensional
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subspaces in R4 generated by columns of matrices of the form




a b e− k
−l − r e f

k l a + q
b + f q r




Now it is quite simple to verify that every 3-dimensional subspace in R4

may be obtained as the tangent space of a MTS-solution. Obtaining a precise
description of MTS-tangents in R4k for k ≥ 2 is a more delicate task. A
further analysis of this problem shows that explicit description of this subset is
closely related to certain homological problems. Similar problems are considered
in see [27] where Gröbner bases and first syzygies for the Moisil-Theodoresco
system are computed using computer programme CoCoA (cf. [1] where the
same problems are studied in the case of Fueter system).

As was already noticed, for n = 2, 3 one can indicate explicit geometric
conditions on TpM for a target manifold M to be admissible. This follows from
explicit criteria of Fredholmness for RHPs for Moisil-Theodoresco and Fueter
systems obtained in [28]. It would be interesting to obtain similar results for
general GCRSs.

We would like to mention also the general problem of computing the index of
an elliptic RHP for GCRS. In principle this is possible using general results of
Atiyah and Bott, which should lead to explicit formulae of Dynin-Fedosov type
[11], [12], but it does not seem that somebody have ever written down those
explicit formulae in terms of the characteristic matrix and boundary condition.
Thus it would be illuminating to obtain an exact recipe, or even an algorithm
applicable in concrete situations. In low dimensions, some useful preparatory
work for developing such an algorithm was done in [28].

We conclude by mentioning another promising perspective which emerges
from the aforementioned connection between special grassmanians and cali-
brated geometries. It is concerned with finding a proper calibration for a given
GCRS. For the classical Cauchy–Riemann system this may be worked out in full
detail and it turns out that the desired calibration is provided by the properly
normalized Kähler form on the target space [16]. In fact, many properties of
families of analytic discs may be derived directly from this interpretation, so
one may hope that finding a proper calibration will be also useful in other cases.
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Birkhäuser, Boston, 1992.
10. F. Bracks, R. Delange, and F. Sommen, Clifford analysis. Pitman, 1982.
11. A. S. Dynin, To the theory of pseudo-differential operators on a manifold with boundary.

(Russian) Dokl. Akad. Nauk SSSR 186(1969), 251–253.
12. B. V. Fedosov, Analytic formulae for the index of elliptic operators. Trans. Moscow

Math. Soc. 30(1974), 159–240.
13. F. Forstneric, Complex tangents of real surfaces in complex surfaces. Duke Math. J.

67(1992), 353–376.
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26. S. Prössdorf, Einige Klassen singulärer Gleichungen. Akademie Verlag, Berlin, 1974.
27. I. Sabadini, M. Shapiro, and D. Struppa, Algebraic analysis of the Moisil–

Theodorescu system. Complex Variables 40(2000), 333–357.
28. M. Shapiro and N. Vasilevski, Quaternionic hyper-holomorphic functions, singular

integral operators and boundary value problems. I, II. Complex Variables 27(1995), 17–
44, 67–96.

29. A. I. Shnirelman, The degree of a quasi-ruled mapping and the nonlinear Hilbert
problem. (Russian) Mat. Sbornik, n. Ser. 89(131)(1972), 366–389; English transl.: Math.
USSR, Sbornik 18(1972)(1974), 373–396.

30. E. Stein and G. Weiss, Generalization of Cauchy–Riemann equations and representa-
tions of the rotation group. Amer. J. Math. 90(1968), 163–196.

31. I. Stern, On the existence of Fredholm boundary value problems for generalized Cauchy–
Riemann systems. Complex Variables 21(1993), 19–38.

32. N. N. Tarkhanov, A remark on Moisil–Theodorescu system. (Russian) Sibirsk. Mat.
Zh. 28(1987), No. 3, 208–213; English transl.: Sib. Math. J. 28(1987), No. 3, 518–522.

33. I. N. Vekua, Generalized analytic functions. (Russian) GITTL, Moscow, 1959; Enslish
transl.: International Series of Monographs on Pure and Applied Mathematics, vol. 25,
Pergamon Press, Oxford etc., Addison-Wesley, Reading, Mass. etc., 1962.

34. N. P. Vekua, Systems of singular integral equations. P.Noordhoff, Groningen, 1967.
35. E. Wegert, Non-linear boundary value problems for holomorphic functions and singular

integral equations. Akademie Verlag, Berlin, 1992.
36. E. Wloka, Boundary value problems for partial differential equations. Vieweg, Braun-

schweig, 1992.

(Received 1.05.2001)

Author’s address:
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia
E-mail: khimsh@rmi.acnet.ge


