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PERTURBATION OF A FREDHOLM COMPLEX BY
INESSENTIAL OPERATORS
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Abstract. The work of Ambrozie and Vasilescu on perturbations of Fred-
holm complexes is generalized by discussing the stability theory of Banach
space complexes under inessential perturbations.
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1. Introduction

The aim of this paper is to show that a Banach space complex over the
complex numbers which is a perturbation of a Fredholm complex by inessential
operators is also Fredholm. This problem arises naturally as an extension of
the problem of finding the largest ideal P such that the Fredholmness of an
operator is stable under perturbations by elements of P . This ideal is the ideal
of inessential operators [1].

Definition 1. An operator S ∈ B(E, F ) belongs to the ideal of inessential
operators, P (E, F ), if for each L ∈ B(F, E) there exist U ∈ B(E, E) and
X ∈ K(E, E) such that

U(IE − LS) = IE −X.

Remark: If we let K(E,F ) be the ideal of compact operators from E to F ,
then K(E, F ) ⊆ P (E, F ) with strict inclusion in general with an example given
in [5] using the space E = lq × Lp, where Lp = Lp(−1, 1) and 1 < p < q < 2.
However, in the case where H is a Hilbert space, by looking at the real and
imaginary parts of an inessential operator, we find that K(H) = P (H). In
the following, we will show that these results can be extended to the realm of
Banach space complexes.

Notation: A Banach space complex is a sequence (X, δ) = (Xp, δp)p∈Z, where
X = (Xp)p∈Z are Banach spaces, and δ = (δp)p∈Z are continuous linear maps
such that δp : Xp → Xp+1 and δp+1δp = 0 for all p ∈ Z (in other words, R(δp) is
contained in N(δp+1) where R(T ) and N(T ) are the image of T and the kernel
of T respectively).
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Since the domain of definition Xp of δp is uniquely determined by δp, we will
usually identify the complex (X, δ) with the sequence δ, which is also called a
complex.

We will also identify the Banach spaces Xp with closed subspaces of

X := {(xp)p∈Z ∈
∏

p∈Z
Xp :

∑

p∈Z
‖xp‖2 < ∞}.

Then a complex (X, δ) as above will be called a complex in X and the class
of complexes in X will be denoted by ∂(X ).

Let δ = (δp)p∈Z be a complex. The homology, H(δ), of δ is the sequence of
linear spaces (Hp(δ))p∈Z, where

Hp(δ) := N(δp)/R(δp−1), p ∈ Z.

Let δ = (δp)p∈Z be a complex. We say that δ is Fredholm if dim Hp(δ) < ∞
for all p ∈ Z and dim Hp(δ) = 0 for all except a finite number of indices. For a
Fredholm complex δ, we define the index of δ by the formula

ind δ :=
∑

p∈Z

(−1)p dim Hp(δ).

In order to check that this is a generalization of Fredholm operators, let
δ0 : X0 → X1 be a bounded linear operator, and let δ be the complex asso-
ciated with δ0. Note that δ is Fredholm if and only if dim N(δ0) < ∞ and
dim X1/R(δ0) < ∞. Thus, δ0 is Fredholm in the usual context if and only if δ
is Fredholm and R(δ0) is closed (which in fact follows from the property that
dim X1/R(δ0) < ∞) [1, p. 50].

Much of the following is based on the book by Ambrozie and Vasilescu [1]
where the authors prove the following result.

Theorem 1 ([1, II.3.22]). Let

0 → X0 α0−→ X1 α1−→ · · · αn−1−→ Xn → 0

be a Fredholm complex of Banach spaces and continuous operators. If

0 → X0 α̃0−→ X1 α̃1−→ · · · α̃n−1−→ Xn → 0

is another complex such that αp − α̃p ∈ K(Xp, Xp+1) for all p = 0, 1, . . . , n,
then the latter complex is also Fredholm.

In this paper, we wish to generalize this theorem from a perturbation in the
ideal of compact operators to the ideal of inessential operators.
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2. Main Results

Following the ideas in [1] and [2], we will work with a class of operators larger
than B(Z,X). These will be the homogeneous operators which we will denote by
H(Z, X). An operator 1 T : Z → X is called homogeneous if T (λx) = λT (x) for
all complex numbers λ and all x ∈ X. A homogeneous operator φ ∈ H(Z, X) is
called compact if φ(A) is relatively compact in X for every bounded A ⊂ Z. The
compact homogeneous operators will be denoted by Kh(Z,X). Furthermore,
we have the following extension of the inessential operators:

Definition 2. An operator θ ∈ H(E, F ) belongs to the ideal of homogeneous
inessential operators, Ph(E, F ), if for each L ∈ H(F,E) there exist U ∈ H(E, E)
and X ∈ Kh(E, E) such that

(IE − θL)U = IE −X.

Clearly we have that Kh(Z,X) ⊃ K(Z, X) and Ph(E,F ) ⊃ P (E, F ).
In order to complete the desired proofs, the following lemma regarding ho-

mogeneous inessential operators and their invariant subspaces.

Lemma 2. If θ ∈ Ph(X) and if Y is a closed linear subspace of X such that
θY ⊂ Y then θ restricted to Y is a homogeneous inessential operator on Y .

Proof. Let L ∈ H(Y ). By Theorem I.5.9 and Lemma I.5.8 in [1], we know that
there exists a homogeneous projection P ∈ H(X,Y ) of X onto Y such that

P (x + y) = P (x) + y, x ∈ X, y ∈ Y.

If we define L̃ = LP , then L̃|Y = L. Since θ ∈ Ph(X), we have that there exists
a U ∈ H(X) and a K ∈ Kh(X) such that

(IX − θL̃)U = IX −K.

Thus

(IY − θ|Y L)PU |Y = IY − PK|Y .

Therefore, θ|Y is inessential on Y .

Definition 3. We say a complex α = (αp)p∈Z with αp ∈ B(Xp, Xp+1) for
all p ∈ Z has a homogeneous splitting if there exists a collection of operators
θ(θp)p∈Z and ν = (νp)p∈Z with θp ∈ H(Xp, Xp−1) and νp ∈ Ph(X

p) for all p ∈ Z
such that

αp−1θp + θp+1αp = 1p − νp (1)

for all p ∈ Z.

1Note: We will continue to use the notation of operators for these functions even though
we may not have linearity.
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We say that α is an essential complex in X if αp+1αp ∈ K(Xp, Xp+2) for all
p ∈ Z, and Xp 6= {0} only for a finite number of indices. The family of all
essential complexes in X will be denoted by ∂e(X ). We will also define ∂c(X )
as ∂e(X )

⋂
∂(X ).

It is clear that α = (αp)p∈Z is an element of ∂c(X ) if and only if α is a complex
of finite length in X, with the domain of αp a closed subspace of X for all p ∈ Z.
This leads us to the following characterizations of Fredholm complexes.

Theorem 3. A complex α ∈ ∂c(X ) is Fredholm if and only if α has a homo-
geneous splitting.

Proof. Necessity (Adapted from the proof of Theorem II.3.14 in [1]): Assume
first that α is Fredholm. Hence dim Hp(α) < ∞ for all p ∈ Z. We fix an index
p. Since R(αp−1) is the range of a closed operator and has finite codimension
is N(αp), then it is closed and we can choose a linear projection πp

1 of N(αp)
onto R(αp−1). Let also πp

2 be a homogeneous projection of Xp := D(αp) onto
N(αp). Then πp = πp

1π
p
2 is a homogeneous projection of Xp onto R(αp−1). Let

cp : Xp → Xp/N(αp) be the canonical projection, and let ρp : Xp/N(αp) → Xp

be the homogeneous lifting associated with πp
2. In other words, πp

2 = 1p − ρpcp,
where 1p is the identity of Xp. We define a mapping θp ∈ H(Xp, Xp−1) in the
following way.

Let αp−1
0 : Xp−1/N(αp−1) → R(αp−1) be the bijective operator induced by

αp−1. We set

θp := ρp−1(αp−1
0 )−1πp ∈ H(Xp, Xp−1).

We shall show that the mapping θp satisfy (1) for appropriate νp. Indeed, let
x ∈ Xp be given. Then we have:

θp+1αp(x) = (ρp(αp
0)
−1πp+1)(αpx)

= ρp(αp
0)
−1(αpx) = ρpcp(x) = x− πp

2(x).

Since πp(x) ∈ R(αp−1), and so πp(x) = αp−1(v) for some v ∈ Xp−1, we also
have:

αp−1θp(x) = αp−1ρp−1(αp−1
0 )−1πp(x)

= αp−1ρp−1(αp−1
0 )−1(αp−1(v)) = αp−1ρp−1cp−1(v)

= αp−1(v − πp−1
2 (v)) = αp−1v = πp(x).

Therefore

θp+1αp(x) + αp−1θp(x) = x− πp
2(x) + πp(x),

and

νp := πp
2 − π = (1p|N(αp) − πp

1)π
p
2

is inessential, since the linear operator induced by 1p|N(αp) − πp
1 is a finite rank

projection. Hence α has a homogeneous splitting.
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Sufficiency: Assume that α has a homogeneous splitting. Thus for each
p ∈ Z we can find θp ∈ H(Xp, Xp−1) and νp ∈ Ph(X

p, Xp), where, as above,
Xp = D(αp), such that

θp+1αp + αp−1θp = 1p − νp. (2)

Let p be fixed.
Since αp−1θpN(αp) ⊆ R(αp−1) ⊆ N(αp), we can consider αp−1θp as a homo-

geneous operator on N(αp). Also, on N(αp), we have that αp−1θp = 1p − νp.
And so νp can also be considered as a homogeneous operator on N(αp). Since
N(αp) is a closed subspace of Xp, the hypothesis of lemma 2 are satisfied with
νp restricted to N(αp). Hence, νp ∈ Ph(N(αp), N(αp)).

By the definition of a homogeneous inessential operator, we know that there
exists a homogeneous operator, Up, and a compact homogeneous operator, Kp,
such that (1N(αp) − νp)Up = 1N(αp) −Kp. So,

αp−1θpUp = 1N(αp) −Kp.

We will use this identity to prove by contradiction that dim N(αp)
R(αp−1)

< ∞.

Assume that there exists an orthonormal sequence (xn)∞n=1 in N(αp) which
is orthogonal to αp−1θpN(αp). Since Kp is compact, (Kpxn) must have a con-
vergent subsequence. So we can assume without any loss of generality that
Kpxn → 0. However, since xn is orthogonal to αp−1θpUpxn, we have a contra-
dictions.

Therefore, dim Hp(α) is finite and since p was arbitrary, the complex α must
be Fredholm.

By defining the following functor, we get a further characterization of Fred-
holm complexes in terms of inessential operators.

Definition 4. If Z,X,X1, X2 are Banach spaces, we set

γZ(X) := H(Z,X)/Ph(Z, X).

For every S ∈ B(X1, X2), we define γZ(S) ∈ B(γZ(X1), γZ(X2)) by the formula

γZ(S)(θ + Ph(Z, X1)) := Sθ + Ph(Z,X2)

for all θ ∈ H(Z, X1) (clearly, SPh(Z, X1) ⊂ Ph(Z,X2)).
If α ∈ ∂e(X ), then γZ(α) := (γZ(αp))p∈Z .

Lemma 4. Let α, β ∈ ∂e(X ) be such that αp ∈ B(Xp, Xp+1), βp ∈
B(Xp, Xp+1) and αp − βp ∈ P (Xp, Xp+1) for all p ∈ Z. Then γZ(α) = γZ(β)
for each Banach space Z.

Proof. Let θ ∈ H(Z, Xp). Then

γZ(αp)(θ + Ph(Z, Xp) = αpθ + Ph(Z,Xp+1) = (αp − α̃p)θ + α̃pθ + Ph(Z,Xp+1)

= α̃pθ + Ph(Z, Xp+1) = γZ(α̃p)(θ + Ph(Z, Xp)).
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Therefore, γZ(αp) = γZ(α̃p) for all p ∈ Z. So the two complexes are the
same.

Theorem 5. Let α = (αp)p∈Z ∈ ∂e(X ). The complex γZ(α) is exact for each
Banach space Z if and only if α has a homogeneous splitting.

Proof. “⇐” Assume there exists θ = (θp)p∈Z and ν = (νp)p∈Z with θp ∈
H(Xp, Xp−1) and νp ∈ Ph(X

p) for all p ∈ Z such that

αp−1θp + θp+1αp = 1p − νp, ∀p ∈ Z.

For each p, let ϕp ∈ H(Z, Xp) be such that αpϕp ∈ Ph(Z, Xp+1). Then

(αp−1θp + θp+1αp)(ϕp) = (1p − νp)(ϕp),

ϕp = αp−1(θpϕp) + (θp+1αpϕp + νpϕp) ∈ αp−1(θpϕp) + Ph(Z,Xp).

Thus, ϕp + Ph(Z, Xp) ∈ R(γZ(αp−1)). Therefore, the complex γZ(α) is exact.
“⇒” Assume that γZ(α) is exact. If Xp = D(αp) is a closed subspace of X,

we may assume, Xp = {0} for all p < 0.
Let also n ≥ 0 be the least integer with the property Xp = {0} for all p > n.

We shall show that for each 0 ≤ p ≤ n, we can find operators θp ∈ H(Xp, Xp−1)
and νp ∈ Ph(X

p) which satisfy (1).
If p = n, from the exactness of the complex γZ(α) for Z := Xn, we obtain the

existence of an operator θn ∈ H(Xn, Xn−1) such that αn−1θn − 1n ∈ Ph(X
n).

Then we set νn := 1n − αn−1θn.
Assume that we have found mappings θq, νq for all q ≥ p, q ≤ n. Note that

αp−1(1p−1 − θpαp−1) = αp−1 − (1p − νp − θp+1αp)αp−1

= νpαp−1 + θp+1αpαp−1 ∈ Ph(X
p),

in virtue of (1). From the exactness of the complex γZ(α) for Z := Xp−1, we
deduce the existence of an operator θp−1 ∈ H(Xp−1, Xp−2) such that

αp−2θp−1 = 1p−1 − θpαp−1 − νp−1,

where νp−1 ∈ Ph(X
p−1). Thus α has a homogeneous splitting.

Let’s put all of these results together in the following corollary.

Corollary 6. The following are equivalent for a complex α ∈ ∂c(X ).
(a) α is Fredholm
(b) α has a homogeneous splitting
(c) The complex γZ(α) is exact for each Banach space Z .

Theorem 7. Let

0 → X0 α0−→ X1 α1−→ · · · αn−1−→ Xn → 0

be a Fredholm complex of Banach spaces and continuous operators. If

0 → X0 α̃0−→ X1 α̃1−→ · · · α̃n−1−→ Xn → 0
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is another complex such that αp − α̃p ∈ P (Xp, Xp+1) for all p = 0, 1, . . . , n,
then the latter complex is also Fredholm.

Proof. Since the complexes γZ(α) and γZ(α̃) are the same, we have that if one
is Fredholm, then so is the other.
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