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Introduction

In the present paper optimal sufficient conditions are found for the weight
functions which provide the boundedness of Calderón–Zygmund singular inte-
gral operator defined on spaces of homogeneous as well as nonhomogeneous type
in weighted Lorentz spaces. In the nonhomogeneous case the results are new
even in Lebesgue spaces.

Two-weight strong type inequalities for singular integrals in Lebesgue spaces
on spaces of homogeneous type (SHT) were established in [5] (see also [6],
Chapter 9, and [14]), while a similar problem for singular integrals defined on
homogeneous groups was considered in [16] in the case of Lorentz spaces.

Two-weight inequalities for Hilbert transforms with monotonic weights were
studied in [17]. Analogous problems for singular integrals in Euclidean spaces
were considered in [8] and generalized in [7] for singular integrals on Heisenberg
groups. Optimal conditions for a pair of weights ensuring the validity of two-
weight inequalities for Calderón–Zygmund singular integrals were obtained in
[3] (and also in [19] for the case of Lorentz spaces). The latter result was
generalized to the setting of homogeneous groups in [13], [15].

Finally, we would like to mention that singular integrals on spaces of nonho-
mogeneous type (measure spaces with a metric) were studied in [18].
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1. Preliminaries

In this section we give the notion of SHT and defined Lorentz space. The
definition of a singular integral and several well-known results concerning the
Hardy-type operators on SHT are also given.

Definition 1.1. A space of homogeneous type (SHT) (X, d, µ) is a topolog-
ical space X endowed with a complete measure µ such that: (a) the space of
compactly supported continuous functions is dense in L1(X,µ), and (b) there
exists a non-negative real-valued function (quasimetric) d : X ×X → R1 satis-
fying:

(i) d(x, x) = 0 for arbitrary x ∈ X;
(ii) d(x, y) > 0 for arbitrary x, y ∈ X, x 6= y;
(iii) there exists a positive constant a0 such that the inequality

d(x, y) ≤ a0d(y, x)

holds for all x, y ∈ X;
(iv) there exists a positive constant a1 such that the inequality

d(x, y) ≤ a1(d(x, z) + d(z, y))

holds for arbitrary x, y, z ∈ X;
(v) for every neighborhood V of any point x ∈ X there exists a number r > 0

such that the ball

B(x, r) =
{
y ∈ X : d(x, y) < r

}

with center in x and radius r is contained in V ;
(vi) the balls B(x, r) are measurable for all x ∈ X, r > 0 and, moreover,

0 < µB(x, r) < ∞;
(vii) there exists a positive constant b such that the inequality (doubling

condition)

µB(x, 2r) ≤ bµB(x, r)

is true for all x ∈ X and for all positive r.

It will be supposed that for some x0 ∈ X

µ{x0} = µ{x ∈ X : d(x0, x) = a} = 0,

where

a ≡ sup
{
d(x0, x) : x ∈ X

}
.

Note that the condition a = ∞ is equivalent to the condition µ(X) = ∞, and
if a = ∞, then µ{x ∈ X : d(x0, x) = a} = 0.

For the definitions, various examples and properties of SHT, we refer to [2],
[23] (also to [6]).

Definition 1.2. By a spaces of nonhomogeneous type we mean a measure
space with a quasimetric (X, d, µ) satisfying conditions (i)–(v) of Definition 1.1,
i.e., the doubling condition is not assumed and may fail.
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In the sequel it will be assumed that there exists a point x0 ∈ X such that

B(x0, R)\B(x0, r) 6= ∅ (1)

for all r and R provided 0 < r < R < a.
In the remaining part of this section (X, d, µ) is assumed to be a space of

nonhomogeneous type.

Definition 1.3. An almost everywhere positive, locally integrable function
w : X → R1 is called a weight.

For weight functions w, we denote by Lpq
w (X) the Lorentz space with weight

w which represents the class of all µ-measurable functions f : X → R1 for which

‖f‖Lpq
w (X) =

(
q

+∞∫

0

( ∫

{x∈X: |f(x)|>λ}
w(x) dµ

)q/p

λq−1 dλ

)1/q

< ∞

when 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and

‖f‖Lp∞
w (X) = sup

λ>0
λ

( ∫

{x∈X: |f(x)|>λ}
w(x) dµ

)1/p

< ∞

when 1 < p < ∞.
It is clear that if p = q, then Lpq

w (X) = Lp
w(X) is a Lebesgue space. If w ≡ 1,

then we put
Lp

w(X) ≡ Lp(X).

The following lemma holds.

Lemma A. Let E ⊂ X be a µ-measurable set, 1 < p, q < ∞ and suppose
that w is a weight function on X. Further, let f , f1 and f2 be µ-measurable
functions on X. Then:

(i)

‖χE(·)‖Lpq
w (X) =

( ∫

E

w(x) dµ
)1/p

;

(ii)
‖f‖L

pq1
w (X) ≤ ‖f‖L

pq2
w (X)

for fixed p and q1 ≤ q2;
(iii) there exists a positive constant c such that

‖f1f2‖Lpq
w (X) ≤ c‖f1‖L

p1q1
w (X)‖f2‖L

p2q2
w (X),

where 1
p

= 1
p1

+ 1
p2

, 1
q

= 1
q1

+ 1
q2

.

The first part of this Lemma is proved in [22], Chpater V, Section 3 and the
rest of the proof is given in [10].

Lemma B ([1], [19]). Let {Ek} be a sequence of µ-measurable subsets of
X, such that

∑
k

χ
Ek
≤ c0χ∪Ek

. Then
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(i) there exists a positive constant k1 = k1(c0), such that for arbitrary f , the
following inequality holds:

∑

k

‖f(·)χ
Ek(·)‖λ

Lrs
w (X) ≤ k1‖f(·)χ∪Ek(·)‖λ

Lrs
w (X),

where max{r, s} ≤ λ;
(ii) there exists a positive constant k2 = k2(c0), such that for every f , the

following inequality holds:

‖f(·)χ∪Ek(·)‖γ
Lpq

w (X) ≤ k2

∑

k

‖f(·)χ
Ek(·)‖γ

Lpq
w (X),

where 0 < γ ≤ min{p, q}.
Definition 1.4. If 1 < p < ∞, then Ap(X) is the set of all weights w such

that

sup
(

1

µ(B)

∫

B

w(x) dµ
)(

1

µ(B)

∫

B

w1−p′(x) dµ
)p−1

< ∞, p′ =
p

p− 1
,

where the supremum is taken over all balls B ⊂ X.

We recall that a ≡ sup{d(x0, x) : x ∈ X} for some x0 ∈ X with µ{x0} = 0.

Lemma C ([5]). Let a = ∞, 1 < p < ∞, ρ ∈ Ap(X) and 0 < c1 ≤ c2 <
c3 < ∞. Then there exists a positive constant c such that the inequality

∫

B(x0,c3t)\B(x0,c2t)

ρ(x) dµ ≤ c
∫

B(x0,c1t)

ρ(x) dµ

holds for arbtrary t > 0.

In the sequel we shall need the following results concerning the Hardy-type
operators on the measure space (X, µ)

Hf(t) =
∫

{x: d(x0,x)<t}
f(x) dµ(x), t ∈ (0, a),

and

H̃f(t) =
∫

{x: d(x0,x)>t}
f(x) dµ(x), t ∈ (0, a).

The following result is from [5].

Proposition A. Let 1 < p ≤ q < ∞, µ{x0} = 0. Then the inequality

( a∫

0

v(t)|Hf(t)|q dt
)1/q

≤ c
( ∫

X

|f(x)|pw(x) dµ
)1/p

, (1.1)

holds with some c > 0 independent of f , f ∈ Lp
w(X), if and only if

D = sup
0<t<a

( a∫

t

v(τ) dτ
)1/q( ∫

{x: d(x0,x)<t}
w1−p′(x) dµ

)1/p′

< ∞.
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Moreover, if c is the best constant in (1.2), then D ≤ c ≤ 4D.

Proposition B ([5]). Let 1 < p ≤ q < ∞, µ{x : d(x0, x) = a} = 0. Then
the inequality

( a∫

0

v(t)|H̃f(t)|q dt
)1/q

≤ c
( ∫

X

|f(x)|pw(x) dµ
)1/p

(1.2)

holds with a constant c independent of f , f ∈ Lp
w(X), if and only if

D̃ = sup
0<t<a

( t∫

0

v(τ) dτ
)1/q( ∫

{x: d(x0,x)>t}
w1−p′(x) dµ

)1/p′

< ∞.

Moreover, if c is the best constant in (1.3), then D̃ ≤ c ≤ 4D̃1.

Let f be a µ-measurable function defined on X and suppose that

Hϕψf(x) = ϕ(x)
∫

B(x0,d(x0,x))

f(y)ψ(y)w(y) dµ(y)

is a Hardy-type operator on X, where ϕ and ψ are positive µ-measurable func-
tions on X.

The following proposition is true (see Theorem 2.4 of [4] for a = ∞. The case
a < ∞ can be obtained similarly).

Proposition C. Let r = s = 1 or r ∈ (0,∞] and s ∈ [1,∞], p = q = 1 or
p ∈ (1,∞), q ∈ [1,∞], max{r, s} ≤ min{p, q}. The operator Hϕψ is bounded
from Lrs

w (X) to Lpq
v (X) if and only if

A ≡ sup
0<t<a

∥∥∥ϕ(·)χ{d(x0,y)>t}(·)
∥∥∥

Lpq
v (X)

∥∥∥ψ(·)χ{d(x0,y)≤t}(·)
∥∥∥

Lr′s′
w (X)

< ∞

with ‖Hϕψ‖ ≈ A.

Let

H ′
ϕψf(x) = ϕ(x)

∫

{y: d(x0,y)>d(x0,x)}
f(y)ψ(y) dµ(y).

By the dual arguments we deduce the following result:

Proposition D. Let r, s, p and q satisfy the conditions of Proposition C.
The operator H ′

ϕ,ψ is bounded from Lrs
w (X) to Lpq

v (X) if and only if:

A′ = sup
t>0

∥∥∥ϕ(·)χ{d(x0,y)≤t}(·)
∥∥∥

Lpq
v (X)

∥∥∥ψ(·)χ{d(x0,y)>t}(·)
∥∥∥

Lr′s′
w (X)

< ∞

with ‖H ′
ϕψ‖ ≈ A′.
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2. Singular integrals on SHT

In this section the existence of singular integrals is investigated and opti-
mal sufficient conditions for the boundedness of singular integral operators in
weighted Lorentz spaces defined on SHT (X, d, µ) are established.

Let k : X × X\{(x, x) : x ∈ X} → R1 be a measurable function satisfying
the condition

|k(x, y)| ≤ c

µB(x, d(x, y))
,

for all x, y ∈ X, x 6= y, and

|k(x1, y)− k(x2, y)|+ |k(y, x1)− k(y, x2)| ≤ cω
(

d(x2, x1)

d(x2, y)

)
1

µ(B(x2, d(x2, y)))
,

for all x1, x2, y ∈ X provided that d(x2, y) > bd(x1, x2), where ω is a positive
non-decreasing function on (0,∞) satisfying the ∆2-condition (i.e., ω(2t) ≤
cω(t) for all t ∈ (0,∞)) and the Dini condition

1∫

0

ω(t)

t
dt < ∞.

We shall also suppose that for some p0, 1 < p0 < ∞, and all f ∈ Lp0(X), the
limit

Kf(x) = lim
ε→0+

∫

X\B(x,ε)

k(x, y)f(y) dµ

exists a.e. on X and that the operatorK is bounded in Lp
w(X).

For the definition of singular integrals and for other related remarks see, e.g.,
[21], Chapter I, pp. 29–36, also [6], p. 295, and [5].

Theorem A ([9]). Let 1 < p < ∞. If w ∈ Ap(X), then the operator K is
bounded in Lp

w(X).

Theorem B ([12], p. 207). Let 1 < p, q < ∞. If w ∈ Ap(X), then the
operator K is bounded in Lpq

w (X). If the Hilbert transform H,

Hf(x) = p.v.

+∞∫

−∞
f(t)(x− t)−1 dt,

is bounded in Lpq
w (R), then w ∈ Ap(R).

The following Lemma holds.

Lemma 2.1. Let 1 < s ≤ p < ∞, ρ ∈ Ap(X). Suppose that for weight
functions w and w1 the following conditions hold:

(1) there exist a positive increasing function σ defined on (0, 4a1a) and a
positive constant b such that

σ(d(x0, x))ρ(x) ≤ bw(x)w1(x)

for almost all x ∈ X;
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(2) for all t, 0 < t < a, we have

∥∥∥∥
1

w(·)w1(·) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then Kg(x) exists a.e. on X for any g satisfying the condition

‖g(·)w1(·)‖Lps
w (X) < ∞.

Proof. Let us fix some positive α satisfying 0 < α < α
α1

and put

Sα =
{
x ∈ X : d(x0, x) ≥ α

2

}
.

Assume that ‖g(·)w1(·)‖Lps
w (X) < ∞. Introduce g in the following way:

g(x) = g1(x) + g2(x),

where g1(x) = g(x) · χ
Sa

(x), g2(x) = g(x)− g1(x).
For g1 we have

∫

X

|g1(x)|pρ(x) dµ =
σ(α/2)

σ(α/2)

∫

Sa

|g(x)|pρ(x) dµ

≤ 1

σ(α/2)

∫

Sa

|g(x)|pρ(x)σ(2a1d(x0, x)) dµ ≤ b

σ(α/2)

∫

Sa

|g(x)|pwp
1(X)w(x) dµ

=
b1

σ(α/2)
‖g(·)w1(·)‖p

Lp
w(X) ≤

b

σ(α/2)
‖g(·)w1(·)‖p

Lps
w (X).

(In the latter inequality we have used Lemma B, part (ii).) Hence g1 ∈ Lp
ρ(X)

and, according to Theorem A, Kg ∈ Lp
ρ(X) and consequently Kg(x) exists a.e.

on X.
Now, let d(x0, x) > αa1, and let d(x0, y) < α/2. We have

d(x0, x) ≤ a1(d(x0, y) + d(y, x)) ≤ a1(d(x0, y) + a0d(x, y)).

Hence

d(x, y) ≥ d(x0, x)

a1a0

− 1

a0

d(x0, y) ≥ α

a0

− α

2a0

=
α

2a0

.

Moreover,

B(x0, d(x, y)) ⊂ B
(
x, a1(1 + a1(1 + a2

0))d(x, y)
)

and consequently we obtain the inequality

µB(x0, α/2) ≤ c1µB(x, d(x, y)),
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where c1 is independent of x. So, for Kg2, using the latter estimate and the
Hölder’s inequality, we have

|Kg2(x)| =
∣∣∣∣
∫

X

g(y)k(x, y) dµ

∣∣∣∣ ≤ c2

∫

B(x0,α/2)

|g(y)|
µB(x, d(x, y))

dµ

≤ c3

µB(x0,
α

2c0
)

∫

B(x0,α/2)

|g(y)| dµ

≤ c3

µB(x0,
α

2c0
)

∫

B(x0,α/2)

|g(y)| 1

w(y)w1(y)
w1(y)w(y) dµ

≤ c3

µB(x0,
α

2c0
)

∥∥∥∥χB(x0, α
2 )

(·) 1

w(·)w1(·)
∥∥∥∥

Lp′s′
w (X)

‖g(·)w1(·)‖Lps
w (X) < ∞.

Thus Kg2(x) converges absolutely for all x with d(x0, x) > αa1. Since we can
choose α arbitrarily small and µ{x0} = 0, we conclude that Kg(x) exists µ- a.e.
on X.

From Lemma 2.1 it is easy to derive

Lemma 2.2. Let 1 < s ≤ p < ∞. If u and u1are positive increasing func-
tions on (0, 4a1a) and

∥∥∥∥
1

u(d(x0, ·))u1(d(x0, ·)) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′
u(d(x0,·))(X)

< ∞

for all t satisfying 0 < t < a, then for arbitrary g satisfying the condition

‖ϕ(·)u1(d(x0, ·))‖Lps
u(d(x0,·))(X) < ∞,

Kϕ(x) exists a.e. on X.

The following lemma is proved in the same way as Lemma 2.1.

Lemma 2.3. Let a = ∞, 1 < s ≤ p < ∞, ρ ∈ Ap(X). If the weight
functions w and w1 satisfy the conditions:

(1) there exists a decreasing positive function σ on (0,∞) such that for almost
all x ∈ X we have

σ(d(x0, ·))ρ(x) ≤ bw(x)wp
1(x),

where the positive constant b does not depend on x ∈ X;
(2) if for every t > 0

∥∥∥∥
µB(d(x0, ·))−1

w(·)w1(·) χ{d(x0,y)>t}(·)
∥∥∥∥

Lp′s′
w (X)

< ∞,

then Kg(x) exists a.e. on X for arbitrary g provided that ‖g(·)w1(·)‖Lps
w (X) < ∞.

From Lemma 2.3 the next lemma follows easily:
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Lemma 2.4. Let a = ∞, 1 < s ≤ p < ∞. Assume that u and u1 are positive
decreasing functions on (0,∞) and the condition

∥∥∥∥
µB(d(x0, ·))−1

u(d(x0, ·))u1(d(x0, ·)) χ{d(x0,y)>t}(·)
∥∥∥∥

Lp′s′
u(d(x0,·)(X)

< ∞

holds for any t > 0. Then Kg(x) exists a.e. on X for arbitrary g satisfying the
condition g(·)u1(d(x0, ·)) ∈ Lps

u(d(x0,·))(X).

Now we pass to the weight inequalities for the operator K.

Theorem 2.1. Let 1 < s ≤ p ≤ q < ∞, let w be a weight function on
X, suppose that σ is a positive increasing continuous function on (0, 4a1a),
ρ ∈ Ap(X) and v(x) = σ(d(x0, x))ρ(x). Suppose the following conditions are
satisfied:

(a) there exists a positive constant b such that the inequality

σ(2a1d(x0, x))ρ(x) ≤ bw(x)

holds for almost every x ∈ X;
(b)

B ≡ sup
0<t<a

∥∥∥µB(x0, d(x0, ·))−1χ{d(x0,y)>t}

∥∥∥
Lpq

v (X)

∥∥∥∥
1

w(·) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then there exists a positive constant c such that

‖Kf(·)‖Lpq
v (X) ≤ c‖f(·)‖Lps

w (X) (2.1)

for all f , f ∈ Lps
w (X).

Proof. First, let us assume that σ is of the kind

σ(t) = σ(0+) +

t∫

0

ϕ(τ) dτ, ϕ ≥ 0.

Then we have

‖Kf(·)‖Lpq
v (X) ≤ c1

(
q

∞∫

0

λq−1
( ∫

{x∈X: |Kf(x)|>λ}
ρ(x)σ(0+) dµ

)q/p

dλ

)1/q

+c1

(
q

∞∫

0

λq−1

( ∫

{x∈X: |Kf(x)|>λ}
ρ(x)

( d(x0,x)∫

0

ϕ(t) dt
)

dµ

)q/p

dλ

)1/q

≡ I1 + I2.

In the case, where σ(0+) = 0, we have I1 = 0; otherwise, by Theorem B and
Lemma A (part (ii)), we have

I1 = c1σ(0+)1/p‖Kf(·)‖Lpq
ρ (X) ≤ c2σ

1/p(0+)‖f(·)‖Lpq
ρ (X)

≤ c2σ
1/p(0+)‖f(·)‖Lps

ρ (X) ≤ c2‖f(·)‖Lps
w (X).
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Now, let us estimate I2. Set

f1t(x) = f(x)χ{d(x0,x)> t
2a1

} , f2t(x) = f(x)− f1t(x).

We have

I2 = c1

(
q

∞∫

0

λq−1

( a∫

0

ϕ(t)
( ∫

{x: d(x0,x)>t,|Kf(x)|>λ}
ρ(x) dµ

)
dt

)q/p

dλ

)1/q

≤ c3

(
q

∞∫

0

λq−1

( a∫

0

ϕ(t)
( ∫

{x: d(x0,x)>t}
χ
{x: |Kf1t(x)|> λ

2 }
ρ(x) dµ

)
dt

)q/p

dλ

)1/q

+c3

(
q

∞∫

0

λq−1

( a∫

0

ϕ(t)
( ∫

{x: d(x0,x)>t}
χ
{x: |Kf2t(x)|> λ

2 }
ρ(x) dµ

)
dt

)q/p

dλ

)1/q

≡ I21 + I22.

Applying the Minkowki’s inequality twice ( q
p
≥ 1, p

s
≥ 1) and using Theorem B

and Lemma A (part (ii)), we obtain

I21 ≤ c4

( a∫

0

ϕ(t)

( ∞∫

0

λq−1
( ∫

{x∈X: |Kf1t(x)|> λ
2
}

ρ(x) dµ
)q/p

dλ

)p/q

dt

)1/p

≤ c5

( a∫

0

ϕ(t)‖f1t(·)‖p
Lpq

ρ (X) dt
)1/p

≤ c5

( a∫

0

ϕ(t)‖f1t(·)‖p
Lps

ρ (X) dt
)1/p

≤ c5

( ∞∫

0

λs−1

( ∫

{x∈X: |f(x)|>λ}
ρ(x)

( 2a1d(x0,x)∫

0

ϕ(t) dt
)

dµ

)s/p

dλ

)1/s

≤ c5‖f(·)‖Lps
w (X) ≤ c6‖f(·)‖Lps

w (X).

Next we shall estimate I22. Note that if d(x0, x) > t and d(x0, y) < t
2a1

, then

d(x0, x) ≤ a1(d(x0, y) + d(y, x)) ≤ a1(d(x0, y) + a0d(x, y))

≤ a1

(
t

2a1

+ a0d(x, y)
)
≤ a1

(
d(x0, x)

2a1

+ a0d(x, y)
)
.

Hence
d(x0, x)

2a1a0

≤ d(x, y),

and we also have

µ(B(x, d(x0, x))) ≤ bµ
(
B

(
x,

d(x0, x)

2a1a0

))
≤ bµ(B(x, d(x, y))).

Moreover, it is easy to show that

µB(x0, d(x0, x)) ≤ b1µB(x, d(x0, x)).

Hence
µB(x0, d(x0, x)) ≤ b2µB(x, d(x, y)).
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Taking into account this inequality and using Proposition C we see that

I22 ≤ c7

∥∥∥∥
1

µB(x0, d(x0, ·))
∫

{d(x0,y)<d(x0,·)}
|f(y)| dy

∥∥∥∥
Lpq

v (X)
≤ c9‖f(·)‖Lps

w (X).

Now, let σ be a positive continuous, but not absolutely continuous, increasing
function on (0, 4a1a); then there exists a sequence of absolutely continuous
functions σn such that σn(t) ≤ σ(t) and lim

n→∞σn(t) = σ(t) for arbitrary t ∈
(0, 4a1a). For these functions, we can take σn(t) = σ(0+) + n

t∫
0
[σ(τ) − σ(τ −

1
n
)] dτ .
Denote vn(x) = ρ(x)σn(d(x0, x)); then Bn < B, where

Bn ≡ sup
t>0

∥∥∥χ{d(x0,y)>t}(·)µ(B(x0, d(x0, ·)))−1
∥∥∥

Lpq
vn(X)

∥∥∥∥
1

w(·) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′
w (X)

.

By virtue of what has been proved, if B < ∞, then the following inequality
holds:

‖Kf(·)‖Lpq
vn(X) ≤ c‖f(·)‖Lps

w (X),

where the constant c > 0 does not depend on n.
By passing to the limit as n →∞, we obtain inequality (2.1).

Using the representation σ(t) = σ(+∞)+
∞∫
t

ψ(τ) dτ , where σ(+∞) = lim
t→∞σ(t)

and ψ ≥ 0 on (0,∞) and Proposition D, we obtain the following result.

Theorem 2.2. Let a = ∞, 1 < s ≤ p ≤ q < ∞, and suppose that σ is a
positive decreasing continuous function on (0,∞). Assume that ρ ∈ Ap(X) and
v(X) = σ(d(x0, x))ρ(x). Suppose the following conditions are satisfied:

(a) there exists a positive constant b such that the inequality

ρ(x)σ
(

d(x0, x)

2a1

)
≤ bw(x)

is true for almost every x ∈ X;
(b)

B′ = sup
t>0

‖χ{d(x0,y)≤t}(·)‖Lpq
v (X)

∥∥∥∥
(µB(x0, d(x0, x)))−1

w(·) χ{d(x0,y)>t}(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then inequality (2.1) holds.

Now let us consider the particular cases of Theorems 2.1 and 2.2.

Theorem 2.3. Let a = ∞, 1 < p ≤ q < ∞, suppose σ1 and σ2 are positive,
increasing functions on (0,∞), let σ1 be a continuous function and suppose that
ρ ∈ Ap(X). Put v(x) = σ2(d(x0, x))ρ(x), w(x) = σ1(d(x0, x))ρ(x). If

sup
t>0

∥∥∥(µB(x0, d(x0, ·)))−1χ{d(x0,y)>t}(·)
∥∥∥

Lpq
v (X)

∥∥∥∥
1

w(·) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′
w (X)

< ∞,
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then there exists a positive constant c such that

‖Kf(·)‖Lpq
v (X) ≤ c‖f(·)‖Lp

w(X)

for all f ∈ Lp
w(X).

Proof. By Theorem 2.1 it is sufficient to show that there exists a positive
constant b such that σ2(2a1t) ≤ bσ1(t) for all t ∈ (0,∞).

From the doubling condition (see (vii) in Definition 1.1) and the condition
(1.1) it follows that the measure µ satisfies the reverse doubling condition at
the point x0 (see, e.g., [20] and [23], Lemma 20). In other words, there exist
constants η1 > 1 and η2 > 1 such that

µ(B(x0, η1r)) ≥ η2µ(B(x0, r))

for all r > 0.
Applying the Hölder’s inequality and using Lemma C, the reverse doubling

condition and the fact that ρ1−p′ ∈ Ap′(X), we obtain

σ2(2a1t)

σ1(t)
≤

(
µ(B(x0, 2a1η1t)\B(x0, 2a1t))

)−p
( ∫

B(x0,2a1η1t)\B(x0,2a1t)

ρ(x) dµ
)

×
( ∫

B(x0,2a1η1t)\B(x0,2a1t)

ρ1−p′(x) dµ
)p−1σ2(2a1t)

σ1(t)

≤
((

1− 1

η2

)
µB(x0, 2a1ηt)

)−p( ∫

B(x0,2a1η1t)\B(x0,2a1t)

ρ(x) dµ
)

×
( ∫

B(x0,t)

ρ1−p′(x) dµ
)p−1σ2(2a1t)

σ1(t)

≤ c1(µB(x0, 2a1ηt))−p
∥∥∥χ

(B(x0,2a1η1t)\B(x0,2a1t))
(·)

∥∥∥
p

Lpq
v (X)

∥∥∥∥
1

w(·) χ
B(x0,t)

(·)
∥∥∥∥

p

Lp′
w (X)

≤ c2

∥∥∥
(
µB(x0, d(x0, ·))

)−1
χ{d(x0,y)>t}(·)

∥∥∥
p

Lpq
v (X)

∥∥∥∥
1

w(·) χ
B(x0,t)

(·)
∥∥∥∥

p

Lp′
w (X)

≤ c.

An analogous theorem dealing with singular integrals on homogeneous groups
was proved in [16], and for singular integrals on SHT in the Lebesgue space in [5].

Theorem 2.4. Let a = ∞, 1 < s ≤ p ≤ q < ∞; suppose σ1, σ2, u1 and
u2 are weight functions defined on X. Let ρ ∈ Ap(X), and suppose v = σ2ρ,
w = σ1ρ. Assume that the following conditions are fulfilled:

(1) there exists a positive constant b such that for all t > 0

sup
Ft

σ
1/p
2 (x) sup

Ft

u2(x) ≤ b inf
Ft

σ
1/p
1 (x) inf

Ft

u1(x)

holds, where Ft = {x ∈ X : t
a1
≤ d(x0, x) < 8a1t};
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(2)

sup
t>0

∥∥∥u2(·)
(
µ(B(x0, d(x0, ·)))

)−1
χ{d(x0,t)>t}(·)

∥∥∥
Lpq

v (X)

×
∥∥∥∥

1

u1(·)w(·) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′
w (X)

< ∞;

(3)

sup
t>0

∥∥∥u2(·)χ{d(x0,t)≤t}(·)
∥∥∥

Lpq
v (X)

∥∥∥∥
(µB(x0, d(x0, ·)))−1

u1(·)w(·) χ{d(x0,y)>t}(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then

‖u2(·)Kf(·)‖Lpq
v (X) ≤ c‖u1(·)f(·)‖Lps

w (X), (2.2)

where the positive constant c does not depend on f .

Proof. Let

Ek ≡ B(x0, 2
k+1)\B(x0, 2

k), Gk,1 ≡ B(x0, 2
k−1/a1),

Gk,2 ≡ B(x0, a12
k+2)\B(x0, 2

k−1/a1), Gk,3 ≡ X\B(x0, a12
k+2).

We obtain

‖u2(·)Kf(·)‖p
Lpq

v (X) ≤ c1

∥∥∥∥
∑

k∈Z

u2(·)K(fχ
Gk,1

)(·)χ
Ek

(·)
∥∥∥∥

p

Lpq
v (X)

+c1

∥∥∥∥
∑

k∈Z

u2(·)K(fχ
Gk,2

)(·)χ
Ek

(·)
∥∥∥∥

p

Lpq
v (X)

+c1

∥∥∥∥
∑

k∈Z

u2(·)K(fχ
Gk,3

)(·)χ
Ek

(·)
∥∥∥∥

p

Lpq
v (X)

≡ c1(S
p
1 + Sp

2 + Sp
3).

Now we estimate S1. Note that

d(x0, y) <
2k−1

a1

≤ d(x0, x)

2a1

when x ∈ Ek, and y ∈ Gk,1. From the latter inequality we have

µB(x, d(x0, x)) ≤ b1µB(x, d(x, y)).

Indeed,

d(x0, x) ≤ a1(d(x0, y) + d(y, x)) ≤ a1

(
d(x0, x)

2a1

+ a0d(x, y)
)
.

Hence
1

2a1a0

d(x0, x) ≤ d(x, y).

Correspondingly,

µB(x, d(x0, x)) ≤ b2µB
(
x,

d(x0, x)

2a1a0

)
≤ b2µB(x, d(x, y)).
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It is easy to see that

µB(x0, d(x0, x)) ≤ b3µB(x, d(x0, x))

and, finally, we obtain

µB(x0, d(x0, x)) ≤ b4µB(x, d(x, y)).

By considering the latter inequality we have

∣∣∣K(fχ
Gk1

)(x)
∣∣∣ ≤ b5

∫

X

|f(y)|χ
Gk1

(y)

µB(x, d(x, y))
dµ

≤ b6

µB(x0, d(x0, x))

∫

B(x0,d(x0,x))

|f(y)| dµ,

when x ∈ Ek, and by Proposition C we obtain

Sp
1 ≤ c2

∥∥∥∥u2(·)
(
µB(x0, d(x0, ·))

)−1
∫

B(x0,d(x0,x))

|f(y)| dµ

∥∥∥∥
p

Lpq
v (X)

≤ c3‖u1(·)f(·)‖p
Lps

w (X).

Now we shall estimate Sp
3 . It is easy to check that if x ∈ Ek and y ∈ Gk,3, then

d(x0, y) ≤ d(x, y) and

µB(x0, d(x0, y)) ≤ b7µB(x, d(x, y)).

By virtue of Proposition D we obtain

Sp
3 ≤ c4

∥∥∥∥u2(·)
∫

{d(x0,y)>d(x0,x)}

|f(y)|
µB(x0, d(x0, y))

dµ

∥∥∥∥
p

Lpq
v (X)

≤ c5‖u1(·)f(·)‖p
Lpq

w (X).

Now let us estimate Sp
2 . By Lemma B (part (ii)),

Sp
2 ≤

∑

k∈u

∥∥∥u2(·)K(fχ
Gk,2

)(·)χ
Ek

(·)
∥∥∥

p

Lpq
v (X)

≡ ∑

k∈u

Sp
k,2.

We shall use the following notation:

u2,k ≡ sup
x∈Ek

u2(x), σ2,k ≡ sup
x∈Ek

σ2(x), u1,k ≡ inf
x∈Gk,2

u1(x), σ1,k ≡ inf
x∈Gk,2

σ1(x).

By Theorem C and Lemma A we have

Sk,2 ≤ u2,kσ
1/p
2,k

∥∥∥K(fχ
Gk,2

)(·)
∥∥∥

Lpq
ρ (X)

≤ c6u2,kσ
1/p
2,k

∥∥∥f(·)χ
Gk,2

(·)
∥∥∥

Lpq
ρ (X)

≤ c6u2,kσ
1/p
2,k

∥∥∥f(·)χ
Gk,2

(·)
∥∥∥

Lps
ρ (X)

≤ c7u1,kσ
1/p
1,k

∥∥∥f(·)χ
Gk,2

(·)
∥∥∥

p

Lps
ρ (X)

≤ c8

∥∥∥u1(·)f(·)χ
Gk,2

(·)
∥∥∥

Lps
w (X)

.

By Lemma B (part (i)) we finally obtain

Sp
2 ≤ c9‖u1(·)f(·)‖Lps

w (X).
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Remark 2.1. It is easy to check that Theorem 2.4 is still valid if we replace
condition (1) by the condition

(1′)

sup
Ex

σ2(y) sup
Ex

up
2(y) ≤ bσ1(x)up

1(x),

where b > 0 does not depend on x ∈ X and where

Ex =
{
y :

d(x0, x)

4a1

≤ d(x0, y) < 4a1d(x0, x)
}
.

Indeed, we have

Sk,2 ≤ σ
1/p
2,k u2,k‖T (fχ

Gk,2
)(·)‖Lpq

ρ (X) ≤ σ
1/p
2,k u2,k‖T (fχGk,2

)(·)‖Lp
ρ(X)

≤ b1σ
1/p
2,k u2,k‖f(·)χ

Gk,2
(·)‖Lp

ρ(X)

= b1

∫

Gk,2

(
sup

2k≤d(x0,y)<2k+1

σ2(y)
)(

sup
2k≤d(x0,y)<2k+1

up
2(y)

)
|f(x)|pρ(x) dµ

)1/p

≤ b1

( ∫

Gk,2

(
sup
Ex

σ2(y)
)(

sup
Ex

up
2(y)

)
|f(x)|pρ(x) dµ

)1/p

≤ b2

( ∫

Gk,2

σ1(x)up
1(x)ρ(x)|f(x)|p dµ

)1/p

= b2

∥∥∥f(·)u1(·)χGk,2
(·)

∥∥∥
Lp

w(X)
≤ b2

∥∥∥f(·)u1(·)χGk,2
(·)

∥∥∥
Lsp

w (X)
.

In [19] it is proved that conditions (2) and (3) of Theorem 2.4 are also neces-
sary for equality (2.2) to be fulfilled when K is the Hilbert transform.

Theorem 2.5. Let µ(X) = ∞, 1 < s ≤ p ≤ q and suppose ϕ1, ϕ2, and v
are positive increasing functions on (0,∞).

If the condition

sup
t>0

B(t) ≡ sup
t>0

∥∥∥ϕ2(d(x0, ·))
(
µB(x0, d(x0, x))

)−1
χ{d(x0,y)>t}(·)

∥∥∥
Lpq

v(d(x0,·))(X)

×
∥∥∥∥

1

ϕ1(d(x0, ·)) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′ (X)
< ∞

is fulfilled, then the following weighted inequality holds:
∥∥∥Kf(·)ϕ2(d(x0, ·))

∥∥∥
Lpq

v(d(x0,·))(X)
≤ c

∥∥∥f(·)ϕ1(d(x0, ·))
∥∥∥

Lps(X)
. (2.3)

Proof. First, let us prove the inequality

ϕ2(8a1t)v
1/p(8a1t) ≤ b1ϕ1

(
t

a1

)
,



48 D. E. EDMUNDS, V. KOKILASHVILI, AND A. MESKHI

where the positive constant b1 does not depend on t > 0. Indeed, by Lemma A
(part (i)) and by the reverse doubling condition for µ we have

c ≥ B(t) ≥
∥∥∥ϕ2(d(x0, ·))(µB(x0, d(x0, ·))−1χ{t<d(x0,y)<η1t}(·)

∥∥∥
Lps

v(d(x0,·))(X)

×
∥∥∥∥

1

ϕ1(d(x0, ·)) χ{d(x0,y)≤ t
8a2

1

}(·)
∥∥∥∥

Lp′s′ (X)

≥ c1(µB(x0, η1t))
−1ϕ2(t)

( ∫

{t<d(x0,y)<η1t}
v(d(x0, y)) dµ

)1/p

× ϕ−1
1

(
t

8a2
1

)(
µB

(
x0,

t

8a2
1

))1/p

≥ c2ϕ2(t)v
1/p(t)µB(x0, t)

−1µB(x0, t)
1/p′ϕ−1

1

(
t

8a2
1

)
µB(x0, t)

1/p′

= c2
ϕ2(t)v

1/p(t)

ϕ1(
t

8a2
1
)

.

Now, we are to show that the following condition is fulfilled:

sup
t>0

B1(t) ≡ sup
t>0

∥∥∥ϕ2(d(x0, ·)) χ{d(x0,y)≤t}(·)
∥∥∥

Lpq
v (X)

×
∥∥∥∥
µB(x0, d(x0, ·))−1

ϕ1(d(x0, ·)) χ{d(x0,y)>t}(·)
∥∥∥∥

Lp′s′ (X)
< ∞.

Indeed, by the monotonic property of the functions ϕ1, ϕ2, and v and by Lemma
A (part (i)), we obtain:

B1(t) ≤ c3ϕ2(t)(µB(x0, t))
1/pv1/p(t)ϕ−1

1

(
t

8a2
1

)

×
∥∥∥(µB(x0, d(x0, ·))−1χ{d(x0,y)>t}(·)

∥∥∥
Lp′s′ (X)

.

On the other hand, we have

∥∥∥(µB(x0, d(x0, ·))−1χ{d(x0,y)>t}(·)
∥∥∥

Lp′s′ (X)

=

(
s′

∞∫

0

λs′−1
(
µ

{
x :

(
µB(x0, d(x0, x))−1 > λ

}
∩ {d(x0, x) ≥ t}

))s′/p′
dλ

)1/s′

=

(
s′

(µB(x0,t))−1∫

0

λs′−1
(
µ

{
x : µB(x0, d(x0, x)) < λ−1

})s′/p′
dλ

)1/s′

≤ c4

( (µB(x0,t))−1∫

0

λs′−1λ−s′/p′ dλ

)1/s′

= c5(µB(x0, t))
−1/p.
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Here we have used the inequality

µ
{
x : µB(x0, d(x0, x)) < λ−1

}
≤ bλ−1,

where the positive constant b is from the doubling condition for µ. Thus we
obtain

B1(t) ≤ c6ϕ2(t)v
1/p(t)ϕ−1

1

(
t

8a2
1

)
≤ c7

for arbitrary t > 0.
By Theorem 2.4 we conclude that inequality (2.3) holds.

Remark 2.2. All results of this section remain valid if we omit the continuity
of σ, but require that µB(x0, r) be continuous with respect to r, where x0 is
the same fixed point as above. This follows from the fact that in this case
the sequence σn(d(x0, x)), where σn are absolutely continuous functions (see
the proof of Theorem 2.1.), converges to σ(d(x0, x)) a.e. on X. On the other
hand, the continuity of µB(x0, r) with respect to r is equivalent to the condition
µ{x : d(x0, x) = r} = 0 for all r > 0.

3. Singular Integrals on Spaces of Nonhomogeneous Type

In this section we present weighted inequalities for Calderón–Zygmund sin-
gular integrals defined on spaces of nonhomogeneous type.

Let (X, d, µ) be a spaces of nonhomogeneous type with metric d and measure
µ (i.e., a0 = 1, a1 = 1, we have equality instead of the inequality in (iii) and
(vii) need not be valid in Definition 1.1) satisfying the condition

µB(x, r) ≤ rα, x ∈ X, r > 0,

for some α > 0, where B(x, r) ≡ {y : d(x, y) ≤ r}.
Let the kernel k satisfy the following conditions:
(1)

|k(x, y)| ≤ c1d(x, y)−α,

for all x, y ∈ X, x 6= y;
(2) there exist c2 > 0 and ε ∈ (0, 1] such that

max
{
|k(x, y)− k(x1, y)|, |k(y, x)− k(y, x1)|

}
≤ c2

d(x, x1)
ε

d(x, y)α+ε

whenever d(x, x1) ≤ 2−1d(x, y), x 6= y. Assume also that the integral operator

Tf(x) = lim
ε→0

∫

X\B(x0,ε)

f(y)k(x, y) dµ

is bounded in L2(X).
The following theorem is valid.

Theorem C ([18]). The operator T is bounded in Lp(X) for 1 < p < ∞
and is of weak type (1, 1).
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Recall that a ≡ sup{d(x0, x) : x ∈ X}, where x0 is a given point of X and
B(x0, R)\B(x0, r) 6= ∅ whenever 0 < r < R < a.

We remark that the condition µ{x} = 0 is automatically satisfied for all
x ∈ X.

Lemma 3.1. Let 1 < p < ∞, and let w be a weight function on X. Assume
that the following two conditions are satisfied:

(i) there exists a positive increasing function v on (0, 4a) such that for almost
all x ∈ X the inequality

v(2d(x0, x)) ≤ b1w(x)

holds, where the positive constant b1 does not depend on x;

(ii)

I(t) ≡
∫

B(x0,t)

w1−p′(x) dµ < ∞

for all t > 0. Then Tϕ(x) exists µ-a.e. for any ϕ ∈ Lp
w(X).

Proof. Let 0 < α < a and let us denote

Sβ =
{
x ∈ X : d(x0, x) ≥ β/2

}
.

Suppose ϕ ∈ Lp
w(X) and represent ϕ as follows:

ϕ(x) = ϕ1(x) + ϕ2(x),

where ϕ1 = ϕχ
Sβ

and ϕ2 = ϕ− ϕ1. Due to condition (i) we see that

∫

X

|ϕ1(x)|p dµ =
v(β

2
)

v(β
2
)

∫

Sβ

|ϕ(x)|p dµ

≤ 1

v(β
2
)

∫

Sβ

|ϕ(x)|pv(2d(x0, x)) dµ ≤ c1

v(β
2
)

∫

Sβ

|ϕ(x)|pw(x) dµ < ∞

for arbitrary β, 0 < β < a. Consequently Tϕ1 ∈ Lp(X) and, according to
Theorem C, Tϕ1(x) exists µ-a.e. on X.

Now let x be such that d(x0, x) > β. If y ∈ X and d(x0, y) < β
2
, then

d(x0, x) ≤ d(x0, y) + d(x, y) ≤ d(x0, x)

2
+ d(x, y).
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Hence β/2 < d(x0,x)
2

≤ d(x, y) and we obtain

|Tϕ2(x)| =
∣∣∣∣
∫

X

ϕ2(y)k(x, y) dµ

∣∣∣∣ ≤ c2

∫

B(x0, β
2
)

|ϕ(y)|
d(x, y)α

dµ

≤ c3

∫

B(x0, β
2
)

|ϕ(y)|
d(x, y)α

dµ ≤ c4β
−α

∫

B(x0, β
2
)

|ϕ(y)| dµ

≤ c4β
−α

( ∫

B(x0, β
2
)

|ϕ(y)|pw(y) dµ
)1/p( ∫

B(x0, β
2
)

w1−p′(y) dµ
)1/p′

< ∞.

Thus Tϕ(x) is absolutely convergent for arbitrary x such that d(x0, x) > β. As
we can take β arbitrarily small and µ{x0} = 0, we conclude that Tϕ(x) exists
µ-a.e. on X.

Theorem 3.1. Let 1 < p < ∞. Assume that v is a positive increasing
continuous function on (0, 4a). Suppose that w is a weight on X. Let the
following two conditions hold:

(i) there exists a constant b1 > 0 such that the inequality

v(2d(x0, x)) ≤ b1w(x)

is fulfilled for µ-almost all x ∈ X;
(ii)

sup
0<t<a

( ∫

X\B(x0,t)

v(d(x0, x))

d(x0, x)αp
dµ

)1/p( ∫

B(x0,t)

w1−p′(x) dµ
)1/p′

< ∞.

Then T is bounded from Lp
w(X) to Lp

v(d(x0,·))(X).

Proof. Without loss of generality we can suppose that v has the form

v(t) = v(0+) +

t∫

0

φ(τ) dτ, φ ≥ 0.

We have
∫

X

|Tf(x)|pv(d(x0, x)) dµ = v(0+)
∫

X

|Tf(x)|p dµ

+
∫

X

|Tf(x)|p
( d(x0,x)∫

0

φ(t) dt
)

dµ ≡ I1 + I2.

If v(0+) = 0, then I1 = 0. If v(0+) 6= 0, by Theorem C we obtain

I1 ≤ c1v(0+)
∫

X

|f(x)|p dµ ≤ c1

∫

X

|f(x)|pv(d(x0, x)) dµ ≤ c2

∫

X

|f(x)|pw(x) dx.
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Changing the order of integration in I2, we have

I2 =

a∫

0

φ(t)
( ∫

{x: d(x0,x)>t}
|Tf(x)|p dµ

)
dt

≤ c3

a∫

0

φ(t)

( ∫

{x: d(x0,x)>t}

∣∣∣∣
∫

{y: d(x0,y)> t
2
}

f(y)k(x, y) dµ

∣∣∣∣
p

dµ

)
dt

+c3

a∫

0

φ(t)

( ∫

{x: d(x0,x)>t}

∣∣∣∣
∫

{y: d(x0,y)≤ t
2
}

f(y)k(x, y) dµ

∣∣∣∣
p

dµ

)
dt ≡ I21 + I22.

Using again the boundedness of T in Lp(X) we obtain

I21 ≤ c4

a∫

0

φ(t)
( ∫

{y: d(x0,y)> t
2
}
|f(y)|p dµ

)
dt = c4

∫

X

|f(y)|p
( 2d(x0,y)∫

0

φ(t) dt
)

dµ

≤ c4

∫

X

|f(y)|pv(2a1d(x0, y)) dµ ≤ c5

∫

X

|f(y)|pw(y) dµ.

Now let us estimate I22. When d(x0, x) > t and d(x0, y) ≤ t
2

we have

d(x0, x) ≤ d(x0, y) + d(y, x) = d(x0, y) + d(x, y)

≤ t

2
+ d(x, y) ≤ d(x0, x)

2
+ d(x, y).

Hence
d(x0, x)

2
≤ d(x, y).

Consequently,

I22 ≤ c6

a∫

0

φ(t)

( ∫

{x: d(x0,y)>t}

( ∫

{y: d(x0,y)≤ t
2
}

|f(y)|
d(x, y)α

dµ(y)
)p

dµ(x)

)
dt

≤ c7

a∫

0

φ(t)
( ∫

{x: d(x0,x)>t}

1

d(x0, x)αp
dµ

)( ∫

B(x0,t)

|f(y)| dµ
)p

dt.

It is easy to see that for any s, 0 < s < a, we have

a∫

s

φ(t)
( ∫

{x: d(x0,x)>t}

1

d(x0, x)αp
dµ

)
dt

≤
∫

{x: d(x0,x)≥s}

1

d(x0, x)αp

( d(x0,x)∫

s

φ(t) dt
)

dµ ≤
∫

{x: d(x0,x)≥s}

v(d(x0, x))

d(x0, x)αp
dµ.
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Finally, using Proposition A, we obtain

I22 ≤ c8

∫

X

|f(x)|pw(x) dµ.

Lemma 3.2. Let a = ∞, 1 < p < ∞, and let w be a weight function on X.
Suppose the following conditions are fulfilled:

(i) there exists a positive decreasing function v on (0,∞) such that

v
(

d(x0, x)

2

)
≤ cw(x) a.e.;

(ii) for all t > 0
∫

X\B(x0,t)

w1−p′(x)(d(x0, x))−αp′ dµ < ∞.

Then Tϕ(x) exists µ-a.e. for arbitrary ϕ ∈ Lp
w(X).

Proof. Fix arbitrarily β > 0 and let

Sβ =
{
x : d(x0, x) ≥ β

}
.

Represent ϕ as follows:

ϕ(x) = ϕ1(x) + ϕ2(x),

where ϕ1(x) = ϕ(x)χ
Sβ

(x) and ϕ2(x) = ϕ(x)− ϕ1(x).

For ϕ2 we have
∫

X

|ϕ2(x)|p dµ =
v(β)

v(β)

∫

B(x0,β)

|ϕ(x)|p dµ

≤ 1

v(β)

∫

B(x0,β)

|ϕ(x)|pv(d(x0, x)) dµ ≤ c1

v(β)

∫

B(x,β)

|ϕ(x)|pw(x) dµ < ∞.

Consequently, ϕ2 ∈ Lp(X) and by Theorem C we have Tϕ2 ∈ Lp(X). Hence
Tϕ2(x) exists a.e. on X.

Now let x ∈ X and let d(x0, x) < β/2. If d(x0, y) ≥ β, then

d(x0, y)

2
≥ d(x, y).

Using this inequality, we obtain

|Tϕ1(x)| ≤ c2

∫

Sβ

|ϕ(y)|
d(x, y)α

dµ ≤ c3

∫

Sβ

|ϕ(y)|
d(x0, y)α

dµ

≤ c3

( ∫

Sβ

|ϕ(y)|pw(y) dµ
)1/p( ∫

Sβ

w1−p′(y)d(x0, y)−αp′ dµ
)1/p′

< ∞.

As we may take β arbitrarily large, we conclude that Tϕ(x) exists a.e.
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Theorem 3.2. Let a = ∞, 1 < p < ∞ and let v be a positive continuous
decreasing function (0,∞). Suppose that w is a weight function on X and the
following conditions are satisfied:

(i) for almost all x

v(d(x0, x)/2) ≤ cw(x);

(ii)

sup
t>0

( ∫

B(x0,t)

v(d(x0, x)) dµ
)1/p( ∫

X\B(x0,t)

w1−p′(x)d(x0, x)−αp′ dµ
)1/p′

< ∞.

Then the operator T is bounded from Lp
w(X) to Lp

v(d(x0,·))(X).

Proof. Without loss of generality we can represent v as

v(t) = v(+∞) +

∞∫

t

φ(τ) dτ, φ ≥ 0.

Further,
∫

X

|Tf(x)|pv(d(x0, x)) dx

= v(+∞)
∫

X

|Tf(x)|p dµ +
∫

X

|Tf(x)|p
( ∞∫

d(x0,x)

φ(t)dt
)

dµ ≡ I1 + I2.

If v(+∞) = 0, then I1 = 0. But if v(+∞) 6= 0, then by virtue of the bound-
edness of T in Lp(X) we have

I1 ≤ c1v(+∞)
∫

X

|f(x)|p dµ ≤ c1

∫

X

|f(x)|pv(d(x0, x)) dµ ≤ c2

∫

X

|f(x)|pw(x) dµ.

Now we pass to I2 :

I2 =

∞∫

0

φ(t)
( ∫

B(x0,t)

|Tf(x)|p dµ
)

dt ≤ c3

∞∫

0

φ(t)
( ∫

B(x0,t)

|Tf
(1)
t (x)|p dµ

)
dt

+ c3

∞∫

0

φ(t)
( ∫

B(x0,t)

|Tf
(2)
t (x)|p dµ

)
dt = I21 + I22,

where f
(1)
t = fχ

B(x0,2t)
and f

(2)
t = f − f

(1)
t . Again using Theorem C we have

I21 ≤ c4

∞∫

0

φ(t)
( ∫

B(x0,2t)

|f(y)|p dµ
)

dt

= c4

∫

X

|f(y)|p
( ∞∫

d(x0,x)

2

φ(t) dt
)

dµ ≤ c5

∫

X

|f(y)|pw(y) dµ.
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It remains to estimate I22. If x ∈ B(x0, t) and y ∈ X\B(x0, 2t), then

d(x0, y)

2
≤ d(x, y).

Consequently,

I22 ≤ c5

∞∫

0

φ(t)
( ∫

B(x0,t)

dµ
)( ∫

X\B(x0,2a1t)

|f(y)|d(x0, y)−α dµ
)p

dt.

Moreover,
s∫

0

φ(t)
( ∫

B(x0,t)

dµ
)

dt =
∫

B(x0,s)

( s∫

d(x0,x)

φ(t) dt
)

dµ ≤
∫

B(x0,s)

v(d(x0, x)) dµ

and due to Proposition B we finally obtain the boundedness of T .

Now we are going to establish weighted estimates for the operator T in
Lorentz spaces defined on spaces of nonhomogeneous type. Theorem C and
the interpolation theorem imply

Proposition E. Let 1 < p, q < ∞. Then T is bounded in Lpq(X).

The following lemmas are obtained in the same way as in the homogeneous
case. Instead of Theorem A we need to use Theorem C.

Lemma 3.3. Let 1 < s ≤ p < ∞. Let the weight functions w and w1 satisfy
the conditions:

(1) there exists an increasing function v on (0, 4a) such that the inequality

v(d(x0, x)) ≤ bw(x)w1(x)

holds for almost all x ∈ X;
(2) for every t, 0 < t < a, the norm

∥∥∥∥
1

w(·)w1(·) χ{d(x0,y)≤t}(·)
∥∥∥∥

Lp′s′
w (X)

is finite.
Then Tg(x) exists a.e. on X for any g satisfying the condition

‖g(·)w1(·)‖Lps
w (X) < ∞.

Lemma 3.4. Let 1 < s ≤ p < ∞. Suppose also that u and u1 are positive
increasing functions on (0, 4a1a) and

∥∥∥∥
1

u(d(x0, ·))u1(d(x0, ·)) χ
B(x0,t)

(·)
∥∥∥∥

Lp′s′
u(d(x0,·))(X)

< ∞

for all t satisfying the condition 0 < t < a. Then for arbitrary ϕ with
∥∥∥ϕ(·)u1(d(x0, ·))‖Lps

u(d(x0,·))(X) < ∞,

Tϕ(x) exists a.e. on X.
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The following lemmas are also true.

Lemma 3.5. Let a = ∞, 1 < s ≤ p < ∞. Suppose that for weights w and
w1 the following conditions are satisfied:

(1) there exists a decreasing positive function v on (0,∞) such that

v(d(x0, ·)) ≤ bw(x)wp
1(x)

for almost all x ∈ X;
(2) for every t > 0,

∥∥∥∥
d(x0, ·)−α

w(·)w1(·) χ
X\B(x0,t)

(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then Tg(x) exists a.e. on X for arbitrary g satisfying ‖g(·)w1(·)‖Lps
w (X) < ∞.

From the previous lemmas easily follows

Lemma 3.6. Let a = ∞, 1 < s ≤ p < ∞. Suppose also that for the
decreasing functions u and u1 on (0,∞) the following condition is satisfied

∥∥∥∥
d(x0, ·)−α

u(d(x0, ·))u1(d(x0, ·)) χ
X\B(x0,t)

(·)
∥∥∥∥

Lp′s′
u(d(x0,·))(X)

< ∞,

for all t > 0. Then Tg(x) exists a.e. on X for g satisfying the condition

g(·)u1(d(x0, ·)) ∈ Lps
u(d(x0,·))(X).

Using Propositions E and C, we obtain the following result in the same way
as Theorem 2.1.

Theorem 3.3. Let 1 < s ≤ p ≤ q < ∞, and let w be a weight function
on X. Assume that v is a positive increasing continuous function on (0, 4a).
Suppose also that the following two conditions are satisfied:

(1) there exists a positive constant c such that the inequality

v(2a1d(x0, x)) ≤ cw(x)

holds for almost every x ∈ X;
(2)

sup
0<t<a

∥∥∥(d(x0, ·))−αχ
X\B(x0,t)

∥∥∥
Lpq

v (X)

∥∥∥∥
1

w(·) χ
B(x0,t)

(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then the operator T is bounded from Lps
w (X) to Lpq

v(d(x0,·)(X).

Theorem 3.4. Let a = ∞, and let 1 < s ≤ p ≤ q < ∞; suppose that v is a
positive decreasing continuous function on (0,∞). Assume also that:

(i) there exists a positive constant b such that the inequality

v
(

d(x0, x)

2a1

)
≤ bw(x)

is true for a.e. x ∈ X;
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(ii)

sup
t>0

‖χ
B(x0,t)

(·)‖Lpq
v (X)

∥∥∥∥
(d(x0, ·))−α

w(·) χ
X\B(x0,t)

(·)
∥∥∥∥

Lp′s′
w (X)

< ∞.

Then T acts boundedly from Lps
w (X) into Lpq

v(d(x0,·)(X).

Finally, we formulate the following result:

Theorem 3.5. Let a = ∞, 1 < s ≤ p ≤ q < ∞. Suppose that v, w, u1 and
u2 are weights on X. Assume that the following conditions are fulfilled:

(1) there exists a positive constant b such that for all t > 0

sup
Ft

v1/p(x) sup
Ft

u2(x) ≤ b inf
Ft

w1/p(x) inf
Ft

u1(x)

holds, where Ft = {x ∈ X : t
a1
≤ d(x0, x) < 8a1t};

(2)

sup
t>0

∥∥∥u2(·)(d(x0, ·))−αχ
X\B(x0,t)

(·)
∥∥∥

Lpq
v (X)

∥∥∥∥
1

u1(·)w(·) χ
B(x0,t)

(·)
∥∥∥∥

Lp′s′
w (X)

< ∞;

(3)

sup
t>0

∥∥∥u2(·)χ
B(x0,t)

(·)
∥∥∥

Lpq
v (X)

∥∥∥(d(x0, ·))−α(u1(·)w(·))−1χ
X\B(x0,t)

(·)
∥∥∥

Lp′s′
w (X)

< ∞.

Then the following inequality holds:

‖u2(·)Tf(·)‖Lpq
v (X) ≤ c‖u1(·)f(·)‖Lps

w (X),

where the positive constant c does not depend on f .

Remark 3.1. The results of this section remain valid if we do not require the
continuity of v, but assume that µB(x0, r) is continuous with respect to r.

4. Examples of weight functions

Let (X, dµ) be an SHT such that the condition µ(B(x, r)) ≈ r holds (if
a < ∞, then we assume that this condition is fulfilled for 0 < r ≤ 1). It is
known (see [5]) that if µ(X) < ∞, then

∫

X

|Kf(x)|p(d(x0, x))p−1 dµ ≤ c
∫

X

|f(x)|p(d(x0, x))p−1 logp b

d(x0, x)
dµ,

where x0 ∈ X, 1 < p < ∞, and b = 8a1aep′ and the positive constant c does
not depend on f .

Example 4.1. Let 1 < p < q < ∞, and let a < ∞; put v(t) = tp−1,

w(t) = tp−1 lnγ b
t

for t ∈ (0, 4a1a), where b = 8a1ae
γ

p−1 , γ = p
q

+ p − 1, and a1

is the positive constant from Definition 1.1. Then from Theorem 2.1 it follows
that

‖Kf(·)‖Lpq
v(d(x0,·))(X) ≤ c‖f(·)‖Lp

w(d(x0,·))(X), (4.1)

where the positive constant c does not depend on f .
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Example 4.2. Let 1 < p < q < ∞, a = ∞, v(t) = tp−1 when 0 < t ≤ 1

and v(t) = tα when t > 1, and let w(t) = tp−1 lnγ 2e
γ

p−1

t
when t ≤ 1, and

w(t) = tβ lnβ(2e
γ

p−1 ) when t > 1, where γ = p
q
+ p− 1, 0 < α ≤ β < p− 1. Then

inequality (4.1) holds.

An appropriate example for the conjugate function

f̃(x) =
1

π

π∫

−π

f(x + t)

2 tg t
2

dt

is presented in [11].
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