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MULTIPLE SOLUTIONS OF GENERALIZED MULTIPOINT
CONJUGATE BOUNDARY VALUE PROBLEMS

PATRICIA J. Y. WONG AND RAVI P. AGARWAL

Abstract. We consider the boundary value problem

y(n)(t) = P (t, y), t ∈ (0, 1)

y(j)(ti) = 0, j = 0, . . . , ni − 1, i = 1, . . . , r,

where r ≥ 2, ni ≥ 1 for i = 1, . . . , r,
∑r

i=1 ni = n and 0 = t1 <
t2 < · · · < tr = 1. Criteria are offered for the existence of double
and triple ‘positive’ (in some sense) solutions of the boundary value
problem. Further investigation on the upper and lower bounds for
the norms of these solutions is carried out for special cases. We also
include several examples to illustrate the importance of the results
obtained.

1. Introduction

Let 0 = t1 < t2 < · · · < tr = 1 be r (≥ 2) fixed points and let ni (≥
1), i = 1, . . . , r, be integers with

∑r
i=1 ni = n. In this paper we shall

consider the multipoint conjugate boundary value problem

y(n)(t) = P (t, y), t ∈ (0, 1),

y(j)(ti) = 0, j = 0, . . . , ni − 1, i = 1, . . . , r,
(M)

where P is continuous at least in the interior of the domain of definition.
We shall define a positive solution y of (M) as follows: y ∈ C(n)(0, 1)

is a nontrivial function that fulfills (M) and for each 1 ≤ i ≤ r − 1,
(−1)ni+1+···+nr y is nonnegative on [ti, ti+1]. Our first task is to develop
criteria for the existence of double positive solutions of (M). Next, we shall
consider two special cases of (M), namely,

y(3)(t)=q(t)
[

|y(t)|α + |y(t)|β
]

, t ∈ (0, 1), y(0)=y(c)=y(1)=0 (M1)
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and

y(3)(t) = q(t)eγ|y(t)|, t ∈ (0, 1), y(0) = y(c) = y(1) = 0, (M2)

where 0 < c < 1, 0 ≤ α < 1 < β, γ > 0 and q is continuous at least in
the interior of the domain of definition. It is noted that the importance of
(M1) is well illustrated in [1, 2] and that of (M2) is related to the analysis
of diffusion of heat generated by positive temperature-dependent sources
[3]. In addition to providing conditions for the existence of double positive
solutions of (M1) and (M2), we also derive upper and lower bounds for the
norms of these solutions. Finally, we shall examine the existence of triple
positive solutions of a ‘separable’ case of (M), namely,

y(n)(t) = b(t)f(y), t ∈ (0, 1),

y(j)(ti) = 0, j = 0, . . . , ni − 1, i = 1, . . . , r,
(M3)

where b and f are continuous at least in the interior of the domain of
definition. The criterion established will also provide estimates on the norms
of these positive solutions.

The present work is motivated by the fact that a multipoint boundary
value problem of the type (M) models various dynamical systems with n
degrees of freedom in which n states are observed at n times, see Meyer [4].
In particular, when n = r = 2 the boundary value problem (M) describes a
vast spectrum of nonlinear phenomena which include gas diffusion through
porous media, nonlinear diffusion generated by nonlinear sources, thermal
self ignition of a chemically active mixture of gases in a vessel, catalysis
theory, chemically reacting systems, adiabatic tubular reactor processes, as
well as concentration in chemical or biological problems, e.g., see [5–11]. It
is important to note that in most of these models, only positive solutions are
meaningful. Recently, special cases of (M), namely, second order problem
(n = r = 2) and two-point problem (r = 2), have been tackled by several
authors [12–15]. Further, related investigations on other boundary value
problems such as Sturm–Liouville type, focal type, Lidstone type as well as
(n, p) type are documented in the monographs [3, 16–18, 1]. Our results,
besides complement and extend the literature to multipoint problem, also
improve the work of Eloe and Henderson [19].

The paper is organized as follows. In Section 2, we shall state the fixed
point theorems required, and provide some properties of certain Green’s
functions which are needed later. By defining an appropriate Banach space
and cone, in Section 3 we shall establish existence criteria for double positive
solutions of (M). The cases (M1) and (M2) are respectively treated in
Sections 4 and 5. Finally, in Section 6 we shall discuss the existence of
triple positive solutions of (M3).
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2. Preliminaries

Let B be a Banach space equipped with the norm ‖ · ‖.
Definition 2.1. Let C(⊂ B) be a nonempty closed convex set. We say

that C is a cone provided the following conditions are satisfied:
(a) If y ∈ C and ` ≥ 0, then `y ∈ C;
(b) If y ∈ C and −y ∈ C, then y = 0.

Definition 2.2. Let C(⊂ B) be a cone. A map ψ is a nonnegative
continuous concave functional on C if the following conditions are satisfied:

(a) ψ : C → [0,∞) is continuous;
(b) ψ(`x+(1− `)y) ≥ `ψ(x)+ (1− `)ψ(y) for all x, y ∈ C and 0 ≤ ` ≤ 1.

With C and ψ defined as above, we shall introduce the following nota-
tions. For k, `,m > 0, we shall denote

C(k) = {y ∈ C | ‖y‖ < k} and C(ψ, `,m) = {y ∈ C | ψ(y) ≥ `, ‖y‖ ≤ m}.

The following fixed point theorems are needed later.

Theorem 2.1 ([20]). Let C(⊂ B) be a cone. Assume Ω1, Ω2 are open
subsets of B with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

S : C ∩ (Ω̄2\Ω1) → C

be a completely continuous operator such that either
(a) ‖Sy‖ ≤ ‖y‖, y ∈ C ∩ ∂Ω1, and ‖Sy‖ ≥ ‖y‖, y ∈ C ∩ ∂Ω2, or
(b) ‖Sy‖ ≥ ‖y‖, y ∈ C ∩ ∂Ω1, and ‖Sy‖ ≤ ‖y‖, y ∈ C ∩ ∂Ω2.
Then S has a fixed point in C ∩ (Ω̄2\Ω1).

Theorem 2.2 ([2, 21]). Let C(⊂ B) be a cone and let ν > 0 be given.
Assume that ψ is a nonnegative continuous concave functional on C such
that ψ(y) ≤ ‖y‖ for all y ∈ C̄(ν), and let S : C̄(ν) → C̄(ν) be a completely
continuous operator. Suppose that there exist numbers k, `, m, where 0 <
k < ` < m ≤ ν, such that

(a) {y∈C(ψ, `, m) | ψ(y) > `} 6=∅, and ψ(Sy)>` for all y∈C(ψ, `,m);
(b) ‖Sy‖ < k for all y ∈ C̄(k);
(c) ψ(Sy) > ` for all y ∈ C(ψ, `, ν) with ‖Sy‖ > m.
Then S has (at least) three fixed points y1, y2 and y3 in C̄(ν). Further

we have

y1 ∈ C(k), y2 ∈
{

y ∈ C(ψ, `, ν)|ψ(y) > `
}

,

y3 ∈ C̄(ν)\
(

C(ψ, `, ν) ∪ C̄(k)
)

.
(2.1)

To obtain a solution for (M), we require a mapping whose kernel G(t, s)
is the Green’s function of the boundary value problem

y(n)(t) = 0, t ∈ [0, 1] y(j)(ti) = 0, j = 0, . . . , ni − 1, i = 1, . . . . (2.2)
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We shall use the following notation. For each 1 ≤ i ≤ r − 1, we shall
denote αi =

∑r
j=i+1 nj and Ii =

[

(3ti + ti+1)/4, (ti + 3ti+1)/4
]

. Further,
for each s ∈ (0, 1), we define

‖G(·, s)‖ = sup
t∈[0,1]

|G(t, s)|. (2.3)

It is well known [3, 22–24] that

(−1)αiG(t, s) > 0, (t, s) ∈ (ti, ti+1)× (0, 1), i = 1, . . . , r − 1. (2.4)

In view of (2.3) we readily obtain

(−1)αiG(t, s)≤‖G(·, s)‖, (t, s)∈ [ti, ti+1]× [0, 1], i=1, . . . , r−1. (2.5)

Moreover, we have the following lemma which improves the result of Eloe
and Henderson [23].

Lemma 2.1 ([24]). For (t, s) ∈ Ii × (0, 1), i = 1, . . . , r − 1, we have

(−1)αiG(t, s) ≥ Li‖G(·, s)‖,

where 0 < Li ≤ 1 is a constant defined by

Li = min
{

min
{

g
(3ti + ti+1

4

)

, g
( ti + 3ti+1

4

)}/

max
t∈[0,1]

g(t),

min
{

h
(3ti + ti+1

4

)

, h
( ti + 3ti+1

4

)}/

max
t∈[0,1]

h(t)
}

, (2.6)

where g(t) =
∏r−1

j=1 |t− tj |nj (1− t)nr−1 and h(t) = tn1−1 ∏r
j=2 |t− tj |nj .

Lemma 2.2. Let 0 < c < 1 be fixed. Consider the following special case
of (2.2):

cy(3)(t) = 0, t ∈ [0, 1], y(0) = y(c) = y(1) = 0. (2.7)

Let G1 denote the Green’s function of (2.7). We have

‖G1(·, s)‖≤φ(s)≡







1
2(1−c) (1−s)2 max{c, 1−c}, c≤s ≤ 1

1
2cs2 max{c, 1−c}, 0≤s ≤ c.

(2.8)

Further, the constants L1 and L2 in (2.6) are respectively given as

L1 =min
{

3c2

16

/

max
{c2

4
, 1−c

}

,
c(4−3c)

16

/

max
{ (1−c)2

4
, c

}

}

, (2.9)

L2 =min
{

(3c+1)(1−c)
16

/

max
{c2

4
, 1−c

}

,
3(1−c)2

16

/

max
{(1−c)2

4
, c

}

}

. (2.10)
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Proof. Here n = r = 3, n1 = n2 = n3 = 1, t1 = 0, t2 = c and t3 = 1. The
explicit expression of the Green’s function G1 is given by [25]

−G1(t, s)=























1
2(1−c) (1−s)2t(t−c), c≤s≤1, 0≤ t≤s

1
2(1−c) (1−s)2t(t−c)− 1

2 (t−s)2, c≤s≤1, s≤ t≤1
1
2cs2(t−c)(1−t)+ 1

2 (s−t)2, 0≤s≤c, 0≤ t≤s
1
2cs2(t−c)(1−t), 0≤s≤c, s≤ t≤1

(2.11)

from which we find

‖G1(·, s)‖ ≤























1
2(1−c) (1−s)2s max{s−c, c}, c≤s≤1, 0≤ t≤s

1
2(1−c) (1−s)2(1−c), c≤s≤1, s≤ t≤1
1
2cs2c, 0≤s≤c, 0≤ t≤s
1
2c s2 max{c−s, 1−c}(1−s), 0≤s≤c, s≤ t≤1

≤

≤

{

1
2(1−c) (1−s)2 max{c, 1−c}, c≤s≤1, 0≤ t≤1
1
2cs2 max{c, 1−c}, 0≤s≤c, 0≤ t≤1

= φ(s).

The constants L1 and L2 are obtained by direct computation.

For clarity, we shall list the conditions that are needed later. In these
conditions it is assumed that the functions f : IR → [0,∞) and a, b : (0, 1) →
IR are continuous.

(A1) If |u1| ≥ |u2|, then f(u1) ≥ f(u2).
(A2) For (t, u) ∈ (0, 1)× IR, a(t) ≤ P (t, u)/f(u) ≤ b(t).
(A3) The function a is nonnegative and not identically zero on any non-

degenerate subinterval of (0, 1); and there exists a number 0 < ρ ≤ 1 such
that a(t) ≥ ρb(t) for t ∈ (0, 1).

(A4)
∫ 1

0
‖G(·, s)‖b(s)ds < ∞.

(A5) Functions a, b : [0, 1] → IR are continuous; and (A2) and (A3) hold
with (0, 1) replaced by [0, 1].

Further, we introduce the notation f0 = lim|u|→0+ f(u)/|u| and f∞ =
lim|u|→∞ f(u)/|u|.

3. Double Positive Solutions of (M)

For y ∈ C[0, 1] let

θ =
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds (3.1)

and

Γ =
∫ 1

0
‖G(·, s)‖a(s)f(y(s))ds. (3.2)
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If (A2) and (A3) hold, then it is clear that

θ ≥ Γ ≥ ρθ ≥ 0. (3.3)

Further, we define the constants

σi = ρLi, i = 1, . . . , r − 1, (3.4)

where Li is given in (2.6) and ρ appears in (A3). It is noted that 0 < σi ≤ 1
for each 1 ≤ i ≤ r − 1.

Let the Banach space B = {y | y ∈ C[0, 1]} be equipped with the norm
‖y‖ = supt∈[0,1] |y(t)|. Define

C =
{

y ∈ B
∣

∣ for each 1 ≤ i ≤ r − 1, (−1)αiy(t) ≥ 0 for t ∈ [ti, ti+1]

and min
t∈Ii

(−1)αiy(t) ≥ σi‖y‖
}

.

Clearly, C is a cone in B.
We define the operator S : C → B by

Sy(t) =
∫ 1

0
G(t, s)P (s, y(s))ds, t ∈ [0, 1]. (3.5)

To obtain a positive solution of (M), we shall seek a fixed point of the
operator S in the cone C.

If (A2) and (A3) hold, then in view of (2.4) it is clear that for t ∈
[ti, ti+1], 1 ≤ i ≤ r − 1,

(−1)αiUy(t) ≤ (−1)αiSy(t) ≤ (−1)αiV y(t), (3.6)

where

Uy(t) =
∫ 1

0
G(t, s)a(s)f(y(s))ds and V y(t) =

∫ 1

0
G(t, s)b(s)f(y(s))ds.

Now we shall state two lemmas whose proof is available in [26].

Lemma 3.1. Let (A1)–(A4) hold. Then the operator S is compact on
the cone C.

Remark 3.1. From the proof of Lemma 3.1 we observe that the conclusion
of Lemma 3.1 still holds if the conditions (A1)–(A4) are replaced by (A5).

Lemma 3.2. Let (A2) and (A3) hold. Then the operator S maps C into
itself.

Theorem 3.1. Let (A5) or (A1)–(A4) hold and let w > 0 be given.
Suppose that f satisfies

f(u) ≤ w
[ ∫ 1

0
‖G(·, s)‖b(s)ds

]−1

, |u| ≤ w. (3.7)
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(a) If f0 = ∞, then (M) has a positive solution y1 such that

0 < ‖y1‖ ≤ w. (3.8)

(b) If f∞ = ∞, then (M) has a positive solution y2 such that

‖y2‖ ≥ w. (3.9)

(c) If f0 = f∞ = ∞, then (M) has two positive solutions y1 and y2 such
that

0 < ‖y1‖ ≤ w ≤ ‖y2‖. (3.10)

Proof. (a) Let

A =
[

σ1

∫

I1

(−1)α1G
(

t2/2, s
)

a(s)ds
]−1

. (3.11)

Since f0 = ∞, there exists 0 < r < w such that

f(u) ≥ A|u|, 0 < |u| ≤ r. (3.12)

First, let y ∈ C be such that ‖y‖ = r. Using (3.6), (3.12) and (3.11)
successively, we get

(−1)α1Sy
(

t2/2
)

≥
∫ 1

0
(−1)α1G

(

t2/2, s
)

a(s)f(y(s))ds ≥

≥
∫ 1

0
(−1)α1G

(

t2/2, s
)

a(s)A|y(s)|ds ≥

≥
∫

I1

(−1)α1G
(

t2/2, s
)

a(s)Aσ1‖y‖ds = ‖y‖.

This immediately implies

‖Sy‖ ≥ ‖y‖. (3.13)

If we set Ω1 = {y ∈ B | ‖y‖ < r}, then (3.13) holds for y ∈ C ∩ ∂Ω1.
Next, let y ∈ C be such that ‖y‖ = w. Then, employing (3.6), (2.5) and

(3.7), we find for t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1,

(−1)αiSy(t) ≤
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds ≤ w = ‖y‖.

Consequently,

‖Sy‖ ≤ ‖y‖. (3.14)

If we set Ω2 = {y ∈ B | ‖y‖ < w}, then (3.14) holds for y ∈ C ∩ ∂Ω2.
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Having obtained (3.13) and (3.14), it follows from Theorem 2.1 that S
has a fixed point y1 ∈ C ∩ (Ω̄2\Ω1) such that r ≤ ‖y1‖ ≤ w. Clearly, this y1
is a positive solution of (M) fulfilling (3.8).

(b) As seen in the proof of Case (a), condition (3.7) leads to (3.14).
Hence, if we set Ω1 = {y ∈ B | ‖y‖ < w}, then (3.14) holds for y ∈ C ∩∂Ω1.

Next, noting that f∞ = ∞, we may choose T > w such that

f(u) ≥ A|u|, |u| ≥ T, (3.15)

where A is defined in (3.11). Let T1 = max
{

2w, T/min1≤j≤r−1 σj
}

and let
y ∈ C be such that ‖y‖ = T1. Then we have for s ∈ I1,

|y(s)| = (−1)α1y(s) ≥ σ1‖y‖ ≥ σ1 ·
T

min1≤j≤r−1 σj
≥ T.

So in view of (3.15) it follows that

f(y(s)) ≥ A|y(s)|, s ∈ I1. (3.16)

Applying (3.6), (3.16), and (3.11), we again find (−1)α1Sy
(

t2/2
)

≥ ‖y‖.
Therefore (3.13) holds. By setting Ω2 = {y ∈ B | ‖y‖ < T1} we have (3.13)
for y ∈ C ∩ ∂Ω2.

Now that we have obtained (3.14) and (3.13), it follows from Theorem
2.1 that S has a fixed point y2 ∈ C ∩ (Ω̄2\Ω1) such that w ≤ ‖y2‖ ≤ T1. It
is clear that this y2 is a positive solution of (M) satisfying (3.9).

(c) This follows from Cases (a) and (b).

Theorem 3.2. Let (A5) or (A1)–(A4) hold and let w > 0 be given.
Suppose that f satisfies

f(u)≥w
[ r−1

∑

i=1

∫

Ii

(−1)α1G
(

t2/2, s
)

a(s)ds
]−1

, min
1≤j≤r−1

σjw≤|u|≤w. (3.17)

(a) If f0 = 0, then (M) has a positive solution y1 such that (3.8) holds.
(b) If f∞ = 0, then (M) has a positive solution y2 such that (3.9) holds.
(c) If f0 = f∞ = 0, then (M) has two positive solutions y1 and y2 such

that (3.10) holds.

Proof. (a) Define

Q =
[ ∫ 1

0
‖G(·, s)‖b(s)ds

]−1

. (3.18)

Since f0 = 0, there exists 0 < r < w such that

f(u) ≤ Q|u|, 0 < |u| ≤ r. (3.19)
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First, let y ∈ C be such that ‖y‖ = r. Then the application of (3.6),
(2.5), (3.19) and (3.18) yields for t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1,

(−1)αiSy(t) ≤
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds≤

∫ 1

0
‖G(·, s)‖b(s)Q‖y‖ds = ‖y‖.

Hence (3.14) follows immediately. Set Ω1 = {y ∈ B | ‖y‖ < r}; then (3.14)
holds for y ∈ C ∩ ∂Ω1.

Next, let y ∈ C be such that ‖y‖ = w. Noting that for s ∈ Ii, 1 ≤ i ≤ r−1,

min
1≤j≤r−1

σjw ≤ σi‖y‖ ≤ |y(s)| ≤ w,

it follows from (3.6) and (3.17) that

(−1)α1Sy
(

t2/2
)

≥
∫ 1

0
(−1)α1G

(

t2/2, s
)

a(s)f(y(s))ds ≥

≥
r−1
∑

i=1

∫

Ii

(−1)α1G
(

t2/2, s
)

a(s)f(y(s))ds ≥ w = ‖y‖.

Thus we get (3.13). By setting Ω2 = {y ∈ B | ‖y‖ < w} we see that (3.13)
holds for y ∈ C ∩ ∂Ω2.

Having obtained (3.14) and (3.13), it follows from Theorem 2.1 that S
has a fixed point y1 ∈ C ∩ (Ω̄2\Ω1) such that r ≤ ‖y1‖ ≤ w. Clearly, this y1
is a positive solution of (M) satisfying (3.8).

(b) It is seen in the proof of Case (a) that condition (3.17) gives rise
to (3.13). So if we set Ω1 = {y ∈ B | ‖y‖ < w}, then (3.13) holds for
y ∈ C ∩ ∂Ω1.

Next, let Q be defined as in (3.18). Since f∞ = 0, we may choose T > w
such that

f(u) ≤ Q|u|, |u| ≥ T. (3.20)

There are two cases to consider, namely, f is bounded and f is unbounded.
Case 1. Suppose that f is bounded. Then, there exists some J > 0 such

that

f(u) ≤ J, u ∈ IR. (3.21)

We define

T1 = max
{

2w, J
∫ 1

0
‖G(·, s)‖b(s)ds

}

.

Let y ∈ C be such that ‖y‖ = T1. Using (3.6), (2.5), and (3.21), we find for
t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1,

(−1)αiSy(t) ≤
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds≤

∫ 1

0
‖G(·, s)‖b(s)Jds ≤ T1 = ‖y‖.
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Hence (3.14) follows immediately.
Case 2. Suppose that f is unbounded. Then there exists T1 >

max{2w, T} such that

f(u) ≤ max{f(T1), f(−T1)}, |u| ≤ T1. (3.22)

Let y ∈ C be such that ‖y‖ = T1. Then applying (3.6), (2.5), (3.22), (3.20)
and (3.18) successively gives for t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1,

(−1)αiSy(t) ≤
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds ≤

≤
∫ 1

0
‖G(·, s)‖b(s)max{f(T1), f(−T1)}ds ≤

≤
∫ 1

0
‖G(·, s)‖b(s)QT1ds = T1 = ‖y‖.

Therefore we have (3.14) immediately.
In Cases 1 and 2, if we set Ω2 = {y ∈ B | ‖y‖ < T1}, then (3.14) holds

for y ∈ C ∩ ∂Ω2.
Now that we have obtained (3.13) and (3.14), it follows from Theorem

2.1 that S has a fixed point y2 ∈ C ∩ (Ω̄2\Ω1) such that w ≤ ‖y2‖ ≤ T1.
Obviously, this y2 is a positive solution of (M) such that (3.9) holds.

(c) This is immediate by Cases (a) and (b).

Example 3.1. Consider the boundary value problem

y(3) = t(2y2+1)+t2(y2 + 1), t ∈ (0, 1), y(0)=y(0.5)=y(1)=0.

Here, n = r = 3. Take f(y) = y2 + 1. Then f0 = f∞ = ∞ and

P (t, y)
f(y)

= t
2y2 + 1
y2 + 1

+ t2.

Thus we may take a(t) = t + t2 and b(t) = 2t + t2. The condition (A5)
is fulfilled with ρ = 1/2. Since f(u) ≤ w2 + 1 for |u| ≤ w, by Lemma 2.2
(c = 0.5) we have

∫ 1

0
φ(s)b(s)ds ≥

∫ 1

0
‖G1(·, s)‖b(s)ds.

For condition (3.7) to be satisfied, we impose

f(u) ≤ w2 + 1 ≤ w
[ ∫ 1

0
φ(s)b(s)ds

]−1

=

= 18.82w ≤ w
[ ∫ 1

0
‖G1(·, s)‖b(s)ds

]−1

, |u| ≤ w.
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The above inequality holds if

0.05329 ≤ w ≤ 18.76. (3.23)

Hence (3.7) is fulfilled for any w ∈ [0.05329, 18.76]. By Theorem 3.1(c),
the boundary value problem has two positive solutions y1 and y2 such that
0 < ‖y1‖ ≤ w ≤ ‖y2‖. In view of (3.23) we further conclude that

0 < ‖y1‖ ≤ 0.05329 and ‖y2‖ ≥ 18.76. (3.24)

Example 3.2. Consider the boundary value problem

y(3) = h(t)y2e−|y|, t ∈ (0, 1), y(0) = y(0.5) = y(1) = 0,

where h ∈ C[0, 1] is nonnegative.
Let f(y) = y2e−|y|. Then we have f0 = f∞ = 0 and we may take a(t) =

b(t) = h(t) so that (A5) is satisfied with ρ = 1. By Lemma 2.2 (c = 0.5)
we compute that σi = ρLi = Li = 3/32, i = 1, 2. Our aim is to find some
w > 0 such that condition (3.17) be fulfilled.

Case 1. Let h(t) = (t + 0.1)−10. Suppose that w ≤ 2. Then, since f

is nondecreasing in |u| for |u| ∈ [0, 2], we have f(u) ≥
(

3w/32
)2

e−3w/32,

3w/32 ≤ |u| ≤ w. Therefore (3.17) is satisfied if we set

f(u) ≥
(3w

32

)2
e−3w/32 ≥ w

[ r−1
∑

i=1

∫

Ii

(−1)α1G
(

t2/2, s
)

a(s)ds
]−1

=

= w
[ 2

∑

i=1

∫

Ii

G1(0.25, s)h(s)ds
]−1

= 0.002939w, 3w/32≤|u|≤w.

The explicit expression of the Green’s function (see (2.11)) is used in the
computation of the above integrals. It can be checked that the above in-
equality holds if

0.3454 ≤ w ≤ 2. (3.25)

Thus by Theorem 3.2(c) the boundary value problem has two positive so-
lutions y1 and y2 such that 0 < ‖y1‖ ≤ w ≤ ‖y2‖. Moreover, it follows from
(3.25) that

0 < ‖y1‖ ≤ 0.3454 and ‖y2‖ ≥ 2. (3.26)

Case 2. Let h(t) = (t6 +0.1)−16. Suppose that 3w/32 ≥ 2. Then, since f
is nonincreasing in |u| for |u| ≥ 2, we have f(u) ≥ w2e−w, 3w/32 ≤ |u| ≤ w.
Thus, for (3.17) to be satisfied we impose

f(u) ≥ w2e−w ≥ w
[ r−1

∑

i=1

∫

Ii

(−1)α1G
(

t2/2, s
)

a(s)ds
]−1

=
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= 4.001× 10−14w, 3w/32 ≤ |u| ≤ w.

The above inequality holds if

21.34 ≤ w ≤ 34.38. (3.27)

It follows from Theorem 3.2(c) that the boundary value problem has two
positive solutions y1 and y2 such that 0 < ‖y1‖ ≤ w ≤ ‖y2‖. Moreover, in
view of (3.27) we have

0 < ‖y1‖ ≤ 21.34 and ‖y2‖ ≥ 34.38. (3.28)

4. Double Positive Solutions of (M1)

We assume that the function q : (0, 1) → [0,∞) is continuous and satisfies
(B1) and (B2), or (B3), where

(B1) q is not identically zero on any nondegenerate subinterval of (0, 1);

(B2)
∫ 1

0
‖G1(·, s)‖q(s)ds < ∞, where G1 is given in (2.11);

(B3) q : [0, 1] → [0,∞) is continuous and (B1) holds with (0, 1) replaced
by [0, 1].

Theorem 4.1. Let w > 0 be given. Suppose that
∫ 1

0
φ(s)q(s)ds ≤ w

wα + wβ , (4.1)

where φ is defined in (2.8). Then the boundary value problem (M1) has two
positive solutions y1 and y2 such that 0 < ‖y1‖ ≤ w ≤ ‖y2‖.

Proof. Let f(u) = |u|α + |u|β . Then f0 = f∞ = ∞. Further, we may take
a(t) = b(t) = q(t). Clearly, f(u) ≤ wα + wβ for |u| ≤ w. So to ensure that
(3.7) is satisfied we apply Lemma 2.2 and impose

wα + wβ ≤ w
[ ∫ 1

0
φ(s)b(s)ds

]−1

≤ w
[ ∫ 1

0
‖G1(·, s)‖b(s)ds

]−1

which is exactly condition (4.1). The conclusion now follows from Theorem
3.1(c).

Example 4.1. Consider the boundary value problem (M1) with c = 0.2.
Let w = 1. Then condition (4.1) reduces to

∫ 1

0
φ(s)q(s)ds ≤ 1/2. (4.2)

By Theorem 4.1 the boundary value problem has double positive solutions
y1 and y2 such that 0 < ‖y1‖ ≤ 1 ≤ ‖y2‖ if q(t) fulfills (4.2). Examples of
such q(t) include q(t) = 1, t + 1, sin2(t + 1).
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The next result offers upper and lower bounds for the norms of two
positive solutions of (M1).

Theorem 4.2. We define

qi = inf
t∈Ii

q(t), i = 1, 2, (4.3)

Q1(u) = Lu
1q1

c3(92− 39c)
3072

, Q2(u) = Lu
2q2

13(1− c)3(3c + 1)
3072

,

w1 = [max{Q1(α), Q2(α)}]
1

1−α and w2 = [max{Q1(β), Q2(β)}]
1

1−β .

Let w > 0 be given. Suppose that (4.1) holds. Then the boundary value
problem (M1) has double positive solutions y1 and y2 such that

(a) if w < min{w1, w2}, then 0 < ‖y1‖ ≤ w ≤ ‖y2‖ ≤ min{w1, w2};
(b) if min{w1, w2} < w < max{w1, w2}, then min{w1, w2} ≤ ‖y1‖ ≤

w ≤ ‖y2‖ ≤ max{w1, w2};
(c) if w > max{w1, w2}, then max{w1, w2} ≤ ‖y1‖ ≤ w ≤ ‖y2‖.

Proof. Since (4.1) is satisfied, it follows from Theorem 4.1 that (M1) has
double positive solutions y3 and y4 such that

0 < ‖y3‖ ≤ w ≤ ‖y4‖. (4.4)

Let C1 be a cone in B defined by

C1 =
{

y∈B
∣

∣

∣(−1)αiy(t)≥0, t∈ [ti, ti+1], min
t∈Ii

(−1)αiy(t)≥Li‖y‖, i=1, 2
}

, (4.5)

where Li, i = 1, 2, are given in (2.9) and (2.10). Define the operator
T : C1 → B by

Ty(t) =
∫ 1

0
G1(t, s)q(s)[|y(s)|α + |y(s)|β ]ds, t ∈ [0, 1].

To obtain a positive solution of (M1) we shall seek a fixed point of T in the
cone C1.

First, we shall show that T (C1) ⊆ C1. For this, let y ∈ C1. Clearly, for
i = 1, 2, (−1)αiTy(t) is nonnegative on [ti, ti+1]. Further, for t ∈ [ti, ti+1],
i = 1, 2, we have

(−1)αiTy(t) ≤
∫ 1

0
‖G1(·, s)‖q(s)[|y(s)|α + |y(s)|β ]ds

which implies

‖Ty‖ ≤
∫ 1

0
‖G1(·, s)‖q(s)[|y(s)|α + |y(s)|β ]ds. (4.6)
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Now, applying Lemma 2.2 and (4.6), we find for t ∈ Ii, i = 1, 2,

(−1)αiTy(t) ≥
∫ 1

0
Li‖G1(·, s)‖q(s)[|y(s)|α + |y(s)|β ]ds ≥ Li‖Ty‖.

Thus mint∈Ii(−1)αiTy(t) ≥ Li‖Ty‖, i = 1, 2, and so Ty ∈ C1. Also, the
standard arguments yield that T is completely continuous.

Let y ∈ C1 be such that ‖y‖ = w. Then, using Lemma 2.2 and (4.1), we
find for t ∈ [ti, ti+1], i = 1, 2,

(−1)αiTy(t) ≤
∫ 1

0
‖G1(·, s)‖q(s)[|y(s)|α + |y(s)|β ]ds ≤

≤
∫ 1

0
φ(s)q(s)(wα + wβ)ds ≤ w = ‖y‖.

Therefore

‖Ty‖ ≤ ‖y‖. (4.7)

By setting Ω = {y ∈ B | ‖y‖ < w}, we have (4.7) for y ∈ C1 ∩ ∂Ω.
Now, let y ∈ C1. It follows that

‖Ty‖ = sup
t∈[ti,ti+1],

i=1,2

∫ 1

0
|G1(t, s)|q(s)[|y(s)|α + |y(s)|β ]ds ≥

≥ sup
t∈[ti,ti+1],

i=1,2

∫

Ii

|G1(t, s)|q(s)[(Li‖y‖)α + (Li‖y‖)β ]ds ≥

≥ max
{ ∫

I1

∣

∣

∣G1
(

c/4, s
)

∣

∣q1[(L1‖y‖)α + (L1‖y‖)β ]ds,

∫

I2

∣

∣G1

(

(3c + 1)/4, s
)

∣

∣q2[(L2‖y‖)α + (L2‖y‖)β ]ds
}

.

From (2.11) we have

∣

∣G1(c/4, s)
∣

∣ =
3
8

(

1− c
4

)

s2 − 1
2

(

s− c
4

)2
, s ∈ I1,

∣

∣G1((3c + 1)/4, s)
∣

∣ =
3c + 1

32
(1− s)2, s ∈ I2,

(4.8)

which upon substituting into the above inequality yields

‖Ty‖ ≥ max
{

Q1(α)‖y‖α + Q1(β)‖y‖β , Q2(α)‖y‖α + Q2(β)‖y‖β
}

. (4.9)

Let y ∈ C1 be such that ‖y‖ = w1. It follows from (4.9) that

‖Ty‖ ≥ max
{

Q1(α)‖y‖α, Q2(α)‖y‖α
}

=
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= max
{

Q1(α), Q2(α)
}

‖y‖α−1‖y‖ = ‖y‖. (4.10)

If we set Ω1 = {y ∈ B | ‖y‖ < w1}, then (4.10) holds for y ∈ C1∩∂Ω1. Now
that we have obtained (4.7) and (4.10), it follows from Theorem 2.1 that T
has a fixed point y5 such that

min{w1, w} ≤ ‖y5‖ ≤ max{w1, w}. (4.11)

On the other hand, if we let y ∈ C1 be such that ‖y‖ = w2, then from
(4.9) we get

‖Ty‖ ≥ max
{

Q1(β)‖y‖β , Q2(β)‖y‖β
}

= ‖y‖. (4.12)

Take Ω2 = {y ∈ B | ‖y‖ < w2}, then (4.12) holds for y ∈ C1 ∩ ∂Ω2.
Having obtained (4.7) and (4.12), by Theorem 2.1 we conclude that T has
a fixed point y6 such that

min{w2, w} ≤ ‖y6‖ ≤ max{w2, w}. (4.13)

Now, a combination of (4.4), (4.11) and (4.13) yields our result. More

precisely, in Case (a) we may take y1 = y3 and y2 =
{

y5, w1 ≤ w2

y6, w1 ≥ w2
. In

Case (b) it is clear that y1 =
{

y5, w1 ≤ w2

y6, w1 ≥ w2
and y2 =

{

y6, w1 ≤ w2

y5, w1 ≥ w2
.

Finally, in Case (c) we shall take y1 =
{

y6, w1 ≤ w2

y5, w1 ≥ w2
and y2 = y4.

Example 4.2. Consider the boundary value problem

y(3) = (t + 1)
(

|y|0.1 + |y|3
)

, t ∈ (0, 1), y(0) = y(0.3) = y(1) = 0.

Here α = 0.1, β = 3, c = 0.3 and q(t) = t + 1. Condition (4.1) is the
same as

w
w0.1 + w3 ≥

∫ 1

0
φ(s)q(s)ds = 0.09718

which is satisfied for any w ∈ [0.07505, 3.151].
Further, with q1 = 1.075, q2 = 1.475, L1 = 0.02411 and L2 = 0.1188, we

compute

w1 = [max{Q1(α), Q2(α)}]1/(1−α) = [Q2(α)]1/(1−α) = 2.836× 10−4

and

w2 = [max{Q1(β), Q2(β)}]1/(1−β) = [Q2(β)]1/(1−β) = 382.9.
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Since w ∈ (w1, w2), by Theorem 4.2(b) the boundary value problem has
two positive solutions y1 and y2 such that

2.836× 10−4 ≤ ‖y1‖ ≤ w ≤ ‖y2‖ ≤ 382.9. (4.14)

Taking into account the range of w, (4.14) leads to

2.836× 10−4 ≤ ‖y1‖ ≤ 0.07505 and 3.151 ≤ ‖y2‖ ≤ 382.9. (4.15)

5. Double Positive Solutions of (M2)

As in Section 4, it is assumed that the function q : (0, 1) → [0,∞) is
continuous and satisfies (B1) and (B2), or (B3).

Theorem 5.1. Let w > 0 be given. Suppose that
∫ 1

0
φ(s)q(s)ds ≤ we−γw. (5.1)

Then the boundary value problem (M2) has two positive solutions y1 and y2

such that
0 < ‖y1‖ ≤ w ≤ ‖y2‖. (5.2)

Proof. Let f(u) = eγ|u| and a(t) = b(t) = q(t). Noting that f(u) ≤ eγw

for |u| ≤ w, an argument as in the proof of Theorem 4.1 yields the conclu-
sion.

Example 5.1. Consider the boundary value problem

y(3) = q(t)e|y|, t ∈ (0, 1), y(0) = y(0.7) = y(1) = 0.

Let w = 1/3 be given. Then condition (5.1) reduces to
∫ 1

0
φ(s)q(s)ds ≤ 1

3
e−1/3. (5.3)

By Theorem 5.1, for those q(t) which fulfill (5.3), the boundary value prob-
lem has two positive solutions y1 and y2 such that

0 < ‖y1‖ ≤
1
3
≤ ‖y2‖.

Some examples of such q(t) are q(t) = (2t+12)−1, (t2+3)/2,
[

cos2(t+2)
]

/2.
Once again we shall establish upper and lower bounds for the norms of

two positive solutions of (M2).

Theorem 5.2. Let k, ` (k 6= `) be given integers in the set {0, 2, 3, . . . }.
We define

R1(u) = q1
(γL1)u

u!
c3(92− 39c)

3072
, R2(u) = q2

(γL2)u

u!
13(1− c)3(3c + 1)

3072
,
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w1 = [max{R1(k), R2(k)}]
1

1−k and w2 = [max{R1(`), R2(`)}]
1

1−` ,

where qi, i = 1, 2, are given in (4.3). Let w > 0 be given. Suppose that (5.1)
holds. Then, the boundary value problem (M2) has double positive solutions
y1 and y2 such that conclusions (a)–(c) of Theorem 4.2 hold.

Proof. Since (5.1) is fulfilled, by Theorem 5.1 the boundary value problem
(M2) has double positive solutions y3 and y4 such that (4.4) holds.

To proceed, let C1 be a cone in B defined by (4.5) and let the operator
T̄ : C1 → B be defined by

T̄ y(t) =
∫ 1

0
G1(t, s)q(s)eγ|y(s)|ds, t ∈ [0, 1].

To obtain a positive solution of (M2), we shall seek a fixed point of T̄ in
the cone C1. Using an argument as in the proof of Theorem 4.2, it can be
verified that T̄ (C1) ⊆ C1 and T̄ is completely continuous.

Let y ∈ C1 be such that ‖y‖ = w. Applying Lemma 2.2 and (5.1), we get
for t ∈ [ti, ti+1], i = 1, 2,

(−1)αi T̄ y(t) ≤
∫ 1

0
φ(s)q(s)eγ |y(s)|ds ≤

∫ 1

0
φ(s)q(s)eγwds ≤ w = ‖y‖.

Hence
‖T̄ y‖ ≤ ‖y‖. (5.4)

If we set Ω = {y ∈ B | ‖y‖ < w}, then (5.4) holds for y ∈ C1 ∩ ∂Ω.
Next, let y ∈ C1. We find that

‖T̄ y‖ ≥ sup
t∈[ti,ti+1]

i=1,2

ntIi |G1(t, s)|qieγLi‖y‖ds.

Using the relation

eu ≥ uk

k!
+

u`

`!
, u > 0,

in the above inequality, we find

‖T̄ y‖ ≥ sup
t∈[ti,ti+1]

i=1,2

∫

Ii

|G1(t, s)|qi

[ (γLi)k

k!
‖y‖k +

(γLi)`

`!
‖y‖`

]

≥

≥ max
{∫

I1

∣

∣

∣G1

( c
4
, s

)∣

∣

∣q1

[ (γL1)k

k!
‖y‖k +

(γL1)`

`!
‖y‖`

]

,

∫

I2

∣

∣

∣G1

(3c + 1
4

, s
)∣

∣

∣q2

[ (γL2)k

k!
‖y‖k +

(γL2)`

`!
‖y‖`

]

}

.

On substituting (4.8), it follows that

|T̄ y‖ ≥ max
{

R1(k)‖y‖k + R1(`)‖y‖`, R2(k)‖y‖k + R2(`)‖y‖`}. (5.5)
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Employing a technique as in the proof of Theorem 4.2, from (5.5) we
obtain

|T̄ y‖ ≥ ‖y‖ (5.6)

for y ∈ C1 ∩ ∂Ω1 as well as for y ∈ C1 ∩ ∂Ω2, where

Ω1 = {y ∈ B | ‖y‖ < w1} and Ω2 = {y ∈ B | ‖y‖ < w2}.

Now that we have obtained (5.4) and (5.6), by Theorem 2.1 T̄ has a fixed
point y5 satisfying

min
{

w1, w
}

≤ ‖y5‖ ≤ max
{

w1, w
}

, (5.7)

and also a fixed point y6 such that

min
{

w2, w
}

≤ ‖y6‖ ≤ max
{

w2, w
}

. (5.8)

As in the proof of Theorem 4.2, the combination of (4.4), (5.7) and (5.8)
readily gives rise to conclusions (a)–(c).

Example 5.2. Consider the boundary value problem

y(3) =
6

exp(0.5t(1−t)|t−0.3|)
e|y|/2, t∈(0, 1), y(0)=y(0.3)=y(1)=0.

With c = 0.3 and q(t) = 6[exp(0.5t(1 − t)|t − 0.3|)]−1, we get L1 =

0.02411, L2 = 0.1188, q1 = q
(

(13 −
√

79)/30
)

= 5.942 and q2 = q((13+
√

79)/30) = 5.751. It can be checked that condition (5.1) is satisfied pro-
vided

0.5166 ≤ w ≤ 5.093. (5.9)

Let k = 0 and ` = 9. We find w1 = [R2(k)]1/(1−k) = 0.01586 and w2 =
[R1(`)]1/(1−`) = 1415. Since w ∈ (w1, w2), it follows from Theorem 5.2(b)
that the boundary value problem has two positive solutions y1 and y2 such
that 0.01586 ≤ ‖y1‖ ≤ w ≤ ‖y2‖ ≤ 1415. In view of (5.9) we further
conclude that

0.01586 ≤ ‖y1‖ ≤ 0.5166 and 5.093 ≤ ‖y2‖ ≤ 1415. (5.10)

Indeed, the boundary value problem has a positive solution given by y(t) =

t(t − 0.3)(t − 1) and we note that ‖y‖ = y
(

(13 +
√

79)/30
)

= 0.08475 is

within the range given in (5.10).
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6. Triple Positive Solutions of (M3)

It is assumed that the functions f : IR → [0,∞) and b : (0, 1) → IR are
continuous and satisfy (A1), (A3)′ and (A4), or (A5)′, where

(A3)′ b is nonnegative and not identically zero on any nondegenerate
subinterval of (0, 1);

(A5)′ b : [0, 1] → IR is continuous and (A3)′ holds with (0, 1) replaced by
[0, 1].

With the same Banach space B (= C[0, 1]), let

C2 = {y ∈ B | (−1)αiy(t) ≥ 0, t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1}.

We note that C2 is a cone in B.
Let the operator V : C2 → B be defined by

V y(t) =
∫ 1

0
G(t, s)b(s)f(y(s))ds, t ∈ [0, 1]. (6.1)

To obtain a positive solution of (M3), we shall seek a fixed point of the
operator V in the cone C2.

By using an argument as in Section 3, we see that the operator V is
compact on the cone C2. Next, it is clear from (6.1) and (2.4) that if y ∈ C2,
then (−1)αiV y(t) ≥ 0 for t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1. Hence V y ∈ C2 and
we have shown that V maps C2 into itself. Also, the standard arguments
yield that V is completely continuous.

It is clear that

‖V y‖ =
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds. (6.2)

We define the constants

z=
∫ 1

0
‖G(·, s)‖b(s)ds and µ= min

1≤i≤r−1
min
t∈Ii

∫ 1

0
(−1)αiG(t, s)b(s)ds. (6.3)

Lemma 6.1. Suppose that there exists ν > 0 such that f(u) < ν
z for

|u| ∈ [0, ν]. Then
V (C̄2(ν)) ⊆ C2(ν) ⊂ C̄2(ν).

Proof. Let y ∈ C̄2(ν). Then we have for t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1,

(−1)αiV y(t) ≤
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds <

∫ 1

0
‖G(·, s)‖b(s) ν

z
ds = ν.

Consequently, ‖V y‖ < ν and so V y ∈ C2(ν). This immediately implies that
V (C̄2(ν)) ⊆ C2(ν) ⊂ C̄2(ν).
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Theorem 6.1. Suppose that there exist numbers k, `, m, where 0 < k <
` < m, m ≥ 1 and ` ≤

[

min1≤i≤r−1(ti+1 − ti)/4
]n

, such that the following
conditions are satisfied:

(H1) one of the following holds:

(i) lim sup|u|→∞ f(u)/|u| < 1/z;
(ii) there exists a number η, where η > m, such that if |u| ∈ [0, η], then

f(u) < η/z;

(H2) if |u| ∈ [`,m], then f(u) > `/µ;
(H3) if |u| ∈ [0, k], then f(u) < k/z.
Then the boundary value problem (M3) has (at least) three positive solu-

tions y1, y2 and y3 such that

‖y1‖ < k; (−1)αiy2(t) > `, t ∈ Ii, 1 ≤ i ≤ r − 1;
‖y3‖ > k and min

1≤i≤r−1
min
t∈Ii

(−1)αiy3(t) < `. (6.4)

Proof. We shall show that the conditions of Theorem 2.2 are fulfilled. First
we shall prove that condition (H1) leads to the existence of a number ν,
where ν > m, such that

V (C̄2(ν)) ⊂ C̄2(ν). (6.5)

For this, it is clear that if (ii) holds, then by Lemma 6.1 we immediately
have (6.5) where ν = η. Suppose now that (i) is satisfied. Then there exist
T > 0 and ε < 1

z such that

f(u)/|u| < ε, |u| > T. (6.6)

Define M = max|u|∈[0,T ] f(u). In view of (6.6) it is obvious that

f(u) ≤ M + ε|u|, |u| ≥ 0. (6.7)

Now let ν be such that

ν > max
{

m, M(1/z − ε)−1}. (6.8)

For y ∈ C̄2(ν) and t ∈ [ti, ti+1], 1 ≤ i ≤ r− 1, we use (2.5), (6.7), (6.3) and
(6.8) to get

(−1)αiV y(t) ≤
∫ 1

0
‖G(·, s)‖b(s)f(y(s))ds ≤

≤
∫ 1

0
‖G(·, s)‖b(s)(M + ε|y(s)|)ds ≤

≤
∫ 1

0
‖G(·, s)‖b(s)(M + εν)ds =

= z(M + εν) < z
[

ν(1/z − ε) + εν
]

= ν.
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Hence ‖V y‖ < ν and so (6.5) follows immediately.
Let ψ : C2 → [0,∞) be defined by

ψ(y) = min
1≤i≤r−1

min
t∈Ii

(−1)αiy(t).

Clearly, ψ is a nonnegative continuous concave functional on C2 such that
ψ(y) ≤ ‖y‖ for all y ∈ C2.

We shall now show that condition (a) of Theorem 2.2 is satisfied. For

this, note that y1(t) ≡
r

∏

i=1

(t− ti)ni has the properties

(−1)αiy1(t) ≥ 0, t ∈ [ti, ti+1], 1 ≤ i ≤ r − 1, ‖y1‖ < 1 ≤ m

and

ψ(y1) = min
1≤i≤r−1

min
t∈Ii

(−1)αiy1(t) =

= min
1≤i≤r−1

{

∣

∣

∣y1

(3ti + ti+1

4

)∣

∣

∣,
∣

∣

∣y1

( ti + 3ti+1

4

)∣

∣

∣

}

>

>
[

min
1≤i≤r−1

(ti+1 − ti)/4
]n ≥ `.

Hence
y1 ∈ {y ∈ C2(ψ, `, m) | ψ(y) > `} 6= ∅. (6.9)

Next, let y ∈ C2(ψ, `, m). Then ` ≤ ‖y‖ ≤ m and so |y(s)| ∈ [`, m] for all
s ∈ [0, 1]. Using this together with (H2) and (6.3), we get

ψ(V y) = min
1≤i≤r−1

min
t∈Ii

(−1)αiV y(t) =

= min
1≤i≤r−1

min
t∈Ii

∫ 1

0
(−1)αiG(t, s)b(s)f(y(s))ds >

> min
1≤i≤r−1

min
t∈Ii

∫ 1

0
(−1)αiG(t, s)b(s) (`/µ) ds = `.

Therefore ψ(V y) > ` for all y ∈ C2(ψ, `, m).
Moreover, it follows from Lemma 6.1 and condition (H3) that V (C̄2(k)) ⊆

C2(k). Hence condition (b) of Theorem 2.2 is satisfied.
It remains to verify that condition (c) of Theorem 2.2 holds. Let m >

`(min1≤i≤r−1 Li)−1 (≥ `) and let y ∈ C2(ψ, `, ν) with ‖V y‖ > m. Applying
Lemma 2.1 and (6.2), we find

ψ(V y) = min
1≤i≤r−1

min
t∈Ii

∫ 1

0
(−1)αiG(t, s)b(s)f(y(s))ds ≥

≥ min
1≤i≤r−1

∫ 1

0
Li‖G(·, s)‖b(s)f(y(s))ds =
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= min
1≤i≤r−1

Li‖V y‖ > m min
1≤i≤r−1

Li > `.

This shows that ψ(V y) > ` for all y ∈ C2(ψ, `, ν) with ‖V y‖ > m.
Consequently, it follows from Theorem 2.2 that the boundary value prob-

lem (M3) has (at least) three positive solutions y1, y2, y3 ∈ C̄2(ν). Further,
we have (2.1) which reduces to (6.4).

Example 6.1. Consider the boundary value problem

y(3) = (t2 + 1)f(y), t ∈ (0, 1), y(0) = y(0.5) = y(1) = 0,

where

f(y) =











| sin y|, |y| ≤ 0.001
sin 0.001 + (|y| − 0.001)1/8, 0.001 ≤ |y| ≤ 1
sin 0.001 + 0.9991/8, |y| ≥ 1

.

Here n = r = 3 and b(t) = t2 +1. It is clear that (A5)′ is satisfied. Using
(2.11), we find

z =
∫ 1

0
‖G1(·, s)‖b(s)ds =

= max
{

max
t∈[0,0.5]

∫ 1

0
|G1(t, s)|b(s)ds, max

t∈[0.5,1]

∫ 1

0
|G1(t, s)|b(s)ds

}

=0.0109

and

µ=min
{

min
t∈[ 18 , 3

8 ]

∫ 1

0
|G1(t, s)|b(s)ds, min

t∈[ 58 , 7
8 ]

∫ 1

0
|G1(t, s)|b(s)ds

}

=0.006081.

Obviously, condition (H1) holds as

lim
|u|→∞

f(u)
|u|

= lim
|u|→∞

sin 0.001 + 0.9991/8

|u|
= 0.

Next, take k = 0.001. Then (H3) is fulfilled, since for |u| ∈ [0, k],

f(u) ≤ sin 0.001 < k/z.

Finally, let m = 1 and take ` (≤
[

min1≤i≤r−1(ti+1− ti)/4
]n

= 0.001953)
such that condition (H2) is satisfied. Clearly, (H2) is fulfilled provided that
for |u| ∈ [`,m],

f(u) ≥ sin 0.001 + (`− 0.001)1/8 > `/µ.

The above inequality is satisfied if

0.001001 ≤ ` ≤ 0.001953. (6.10)
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By Theorem 6.1 the boundary value problem has (at least) three positive
solutions y1, y2 and y3. Further, in view of (6.10), it follows from (6.4) that

‖y1‖ < 0.001; |y2(t)| > 0.001953, t ∈
[

1
8
,
3
8

]

∪
[

5
8
,
7
8

]

;

‖y3‖ > 0.001 and min
t∈

[

1
8 , 3

8

]

∪
[

5
8 , 7

8

]
|y3(t)| < 0.001001.

(6.11)
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