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PROPERTIES A AND B OF nTH ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH DEVIATING

ARGUMENT

R. KOPLATADZE, G. KVINIKADZE, AND I. P. STAVROULAKIS

Abstract. Sufficient conditions for the nth order linear differential
equation

u(n)(t) + p(t)u(τ(t)) = 0, n ≥ 2,

to have Property A or Property B are established in both the de-
layed and the advanced cases. These conditions essentially improve
many known results not only for differential equations with deviating
arguments but for ordinary differential equations as well.

1. Introduction

Let n ≥ 2 be a natural number, R+ = [0, +∞[, p : R+ → R be a
locally integrable function of constant sign and τ : R+ → R be a continuous
function satisfying limt→+∞ τ(t) = +∞. Consider the equation

u(n)(t) + p(t)u(τ(t)) = 0. (1.1)

Let τ∗(t) = min{t, τ(t)} for t ≥ 0, t0 ≥ 0, and τ0 = min{τ∗(t) : t ≥ t0}.
A continuous function u : [τ0,+∞[→ R is said to be a proper solution
of equation (1.1) if it is absolutely continuous on [t0,+∞[ along with its
derivatives up to the (n − 1)th order inclusively on any finite subsegment
of [t0, +∞[, satisfies (1.1) almost everywhere on [t0, +∞[, and sup

{

|u(s)| :
s ≥ t

}

> 0 for t ≥ t0. A proper solution of (1.1) is called oscillatory if it has
a sequence of zeros tending to +∞. Otherwise it is called nonoscillatory.

Definition 1.1. We say that equation (1.1) has Property A if any of its
proper solutions is oscillatory when n is even and either is oscillatory or
satisfies

∣

∣u(i)(t)
∣

∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n− 1) (1.2)
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when n is odd.

Definition 1.2. We say that equation (1.1) has Property B if any of its
proper solutions either is oscillatory or satisfies either (1.2) or

∣

∣u(i)(t)
∣

∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n− 1) (1.3)

when n is even, and either is oscillatory or satisfies (1.3) when n is odd.

The investigation of oscillatory properties of higher order linear ordinary
differential equations began as far back as the end of the last century in the
work of A. Kneser [1]. Later W. Fite [2], J. Mikusinski [3], G. Anan’eva and
V. Balaganskĭı [4] contributed to the subject. A new impetus to investiga-
tions in this direction was given by the works of V. Kondrat’ev [5] and I.
Kiguradze [6]. Further investigations were carried out by I. Kiguradze [7, 8]
and T. Chanturia [9, 10]. Their results concerning Properties A and B of
equation (1.1) in the case τ(t) ≡ t are collected in Section 1 of the mono-
graph [11]. For higher order differential equations with deviating arguments
Properties A and B were studied by R. Koplatadze and T. Chanturia [12]
and R. Koplatadze [13–16].

In the present paper new sufficient conditions are established for equation
(1.1) to have Properties A and B. They complement some results given
in Section 6 of [16] and are new even in the case of ordinary differential
equations.

In the recent paper [17] I. Kiguradze and I. P. Stavroulakis obtained
sufficient conditions concerning the existence of oscillatory solutions of ad-
vanced differential equations in the case where the equations have Property
A. The results of the present paper can be applied in this case.

2. Statement of the Main Results

In this section we formulate the sufficient conditions mentioned at the
end of Introduction. As a preliminary, note that, as it follows from Lemma
4.1 of [15], the condition

+∞
∫

[τ∗(t)]n−1|p(t)|dt = +∞, τ∗(t) = min{t, τ(t)}, (2.1)

is necessary for both Properties A and B of (1.1). In the case where τ(t) ≤ t
for t ≥ 0, condition (2.1) turns into

+∞
∫

[τ(t)]n−1|p(t)|dt = +∞ (2.2)
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and is implied by the hypotheses of the corresponding theorems. As to the
case where τ(t) ≥ t for t ≥ 0, the equivalent condition

+∞
∫

tn−1|p(t)|dt = +∞ (2.3)

does not follow from the hypotheses of the corresponding theorems and is
included therein.

Theorems 2.1–2.3 below treat the case of Property A, while Theorems
2.4–2.7 concern Property B.

Theorem 2.1. Let τ be nondecreasing,

τ(t) ≤ t, p(t) ≥ 0 for t ≥ 0 (2.4)

and

lim sup
t→+∞

{

τ(t)

+∞
∫

t

[τ(s)]n−2p(s)ds +

t
∫

τ(t)

[τ(s)]n−1p(s)ds +

+[τ(t)]−1

τ(t)
∫

0

s[τ(s)]n−1p(s)ds
}

> (n− 1)!. (2.5)

Then equation (1.1) has Property A.

Theorem 2.2. Let τ be nondecreasing, (2.3) be fulfilled, n be even,
τ(t) ≥ t, p(t) ≥ 0 for t ≥ 0, and

lim sup
t→+∞

{

τ(t)

+∞
∫

τ(t)

sn−2p(s)ds +

τ(t)
∫

t

sn−1p(s)ds +

+[τ(t)]−1

t
∫

0

sn−1τ(s)p(s)ds
}

> (n− 1)!. (2.6)

Then equation (1.1) has Property A.
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Theorem 2.3. Let τ be nondecreasing, (2.3) be fulfilled, n be odd, τ(t) ≥
t, p(t) ≥ 0 for t ≥ 0,

lim sup
t→+∞

{

τ(t)

+∞
∫

τ(t)

[τ(s)]sn−3p(s)ds+

τ(t)
∫

t

sn−2τ(s)p(s)ds+

+[τ(t)]−1

t
∫

0

sn−2[τ(s)]2p(s)ds
}

> 2(n− 2)!, (2.7)

and

lim sup
t→+∞

{

τ(t)

+∞
∫

τ(t)

[τ(s)]n−2p(s)ds +

τ(t)
∫

t

s[τ(s)]n−2|p(s)|ds +

+[τ(t)]−1

t
∫

0

s[τ(s)]n−1p(s)ds
}

> (n− 1)!. (2.8)

Then equation (1.1) has Property A.

Theorem 2.4. Let τ be nondecreasing, n be even, τ(t) ≤ t, p(t) ≤ 0 for
t ≥ 0, and

lim sup
t→+∞

{

τ(t)

+∞
∫

t

[τ(s)]sn−3|p(s)|ds +

t
∫

τ(t)

s[τ(s)]n−2|p(s)|ds +

+[τ(t)]−1

τ(t)
∫

0

s2[τ(s)]n−2|p(s)|ds
}

> 2(n− 2)!. (2.9)

Then equation (1.1) has Property B.

Theorem 2.5. Let τ be nondecreasing, n be odd, τ(t) ≤ t, p(t) ≤ 0 for
t ≥ 0,

lim sup
t→+∞

{

τ(t)

+∞
∫

t

sn−2|p(s)|ds +

t
∫

τ(t)

sn−2τ(s)|p(s)|ds +

+[τ(t)]−1

τ(t)
∫

0

sn−1τ(s)|p(s)|ds
}

> (n− 1)!, (2.10)
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and

lim sup
t→+∞

{

τ(t)

+∞
∫

t

[τ(s)]n−3s|p(s)|ds +

t
∫

τ(t)

s[τ(s)]n−2|p(s)|ds +

+[τ(t)]−1

τ(t)
∫

0

s2[τ(s)]n−2|p(s)|ds
}

> 2(n− 2)!. (2.11)

Then equation (1.1) has Property B.

Theorem 2.6. Let τ be nondecreasing, (2.3) be fulfilled, n be even,
τ(t) ≥ t, p(t) ≤ 0 for t ≥ 0, and

lim sup
t→+∞

{

τ(t)

+∞
∫

τ(t)

sn−3τ(s)|p(s)|ds +

τ(t)
∫

t

sn−2τ(s)|p(s)|ds +

+[τ(t)]−1

t
∫

0

sn−2[τ(s)]2|p(s)|ds
}

> 2(n− 2)!. (2.12)

Then equation (1.1) has Property B.

Theorem 2.7. Let τ be nondecreasing, (2.3) be fulfilled, n be odd, τ(t) ≥
t, p(t) ≤ 0 for t ≥ 0, and

lim sup
t→+∞

{

τ(t)

+∞
∫

τ(t)

sn−2|p(s)|ds +

τ(t)
∫

t

sn−2τ(s)|p(s)|ds +

+[τ(t)]−1

t
∫

0

sn−1τ(s)|p(s)|ds
}

> (n− 1)!. (2.13)

Then equation (1.1) has Property B.

A series of corollaries more convenient for applications can be deduced
from the formulated theorems. We will give here only those of Theorem
2.1. Analogous corollaries of Theorems 2.2–2.7 can be stated without any
difficulty.

Corollary 2.1. Let τ be nondecreasing, (2.4) be fulfilled and either

lim sup
t→+∞

τ(t)

+∞
∫

t

[τ(s)]n−2p(s)ds + lim inf
t→+∞

t−1

t
∫

0

s[τ(s)]n−1p(s)ds > (n− 1)!
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or

lim inf
t→+∞

τ(t)

+∞
∫

t

[τ(s)]n−2p(s)ds+lim sup
t→+∞

t−1

t
∫

0

s[τ(s)]n−1p(s)ds>(n− 1)!.

Then equation (1.1) has Property A.

Corollary 2.2. Let τ be nondecreasing, (2.4) be fulfilled and either

lim sup
t→+∞

τ(t)

+∞
∫

t

[τ(s)]n−2p(s)ds > (n− 1)!

or

lim sup
t→+∞

t−1

t
∫

0

s[τ(s)]n−1p(s)ds > (n− 1)!.

Then equation (1.1) has Property A.

In the case of ordinary differential equations (τ(t) ≡ t) all the above
theorems give the same results for both Properties A and B. They read as
follows.

Theorem 2.8. Let τ(t) ≡ t, p(t) ≥ 0 for t ≥ 0, and

lim sup
t→+∞

{

t

+∞
∫

t

sn−2|p(s)|ds + t−1

t
∫

0

sn|p(s)|ds
}

> (n− 1)!. (2.14)

Then equation (1.1) has Property A.

Theorem 2.9. Let τ(t) ≡ t, p(t) ≤ 0 for t ≥ 0. Let, moreover,

lim sup
t→+∞

{

t

+∞
∫

t

sn−2|p(s)|ds + t−1

t
∫

0

sn|p(s)|ds
}

> 2(n− 2)! (2.15)

hold if n is even, and (2.14) hold if n is odd. Then equation (1.1) has
Property B.

Theorems 2.8 and 2.9 essentially improve T. Chanturia’s tests [11] for
Property A and B which read as follows.

If τ(t) ≡ t, p(t) ≥ 0 for t ≥ 0, and

lim sup
t→+∞

t

+∞
∫

t

sn−2|p(s)|ds > (n− 1)!, (2.16)



PROPERTIES A AND B OF LINEAR DIFFERENTIAL EQUATIONS 559

then (1.1) has Property A; if τ(t) ≡ t, p(t) ≤ 0 for t ≥ 0, (2.16) holds when
n is odd and

lim sup
t→+∞

t

+∞
∫

t

sn−2|p(s)|ds > 2(n− 2)!

when n is even, then (1.1) has Property B.
T. Chanturia’s tests imply the following criterion of I. Kiguradze [6, 7]:

if τ(t) ≡ t and for some ε > 0

+∞
∫

tn−1−ε|p(t)|dt = +∞, (2.17)

then equation (1.1) has Property A for p(t) ≥ 0, and Property B for p(t) ≤ 0.
It should be noted that the following corollary of Theorems 2.8, 2.9 also
implies this criterion. To be more precise, under (2.17) the left-hand sides
of (2.18) and (2.19) equal +∞.

Corollary 2.3. Let τ(t) ≡ t, p(t) ≥ 0 (p(t) ≤ 0) and

lim sup
t→+∞

t−1

t
∫

0

sn|p(s)|ds > (n− 1)! (2.18)

((2.16) holds if n is odd and

lim sup
t→+∞

t−1

t
∫

0

sn|p(s)|ds > 2(n− 2)! (2.19)

if n is even). Then equation (1.1) has Property A (B).

3. Auxiliary Statements

In this section we give some auxiliary statements which we will need in the
sequel. Lemmas 3.1 and 3.2 below describe some properties of nonoscillatory
solutions of (1.1). Lemma 3.1 is due to I. Kiguradze and its proof can be
found in [11, Lemma 1.1].

By ˜Cn−1
loc ([t0, +∞[) we denote the set of all functions u : [t0,+∞[→ R

which are absolutely continuous along with their derivatives up to the (n−
1)th order inclusively on any finite subsegment of [t0, +∞[.
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Lemma 3.1. Let u ∈ ˜Cn−1
loc ([t0, +∞[) be positive and satisfy u(n)(t) ≤ 0

(u(n)(t) ≥ 0) for t ≥ t0. Then there exist t1 ∈ [t0,+∞[ and l ∈ {0, . . . , n}
such that l + n is odd (even) and

u(i)(t) > 0 for t ≥ t1 (i = 0, . . . , l − 1),

(−1)i+lu(i)(t) ≥ 0 for t ≥ t1 (i = l, . . . , n).
(3.1l)

Lemma 3.2. Let u ∈ ˜Cn−1
loc ([t0, +∞[) and (3.1l) be fulfilled for some

l ∈ {1, . . . , n− 1}. Then

+∞
∫

tn−l−1|u(n)(t)|dt < +∞. (3.2)

If, moreover,

+∞
∫

tn−l|u(n)(t)|dt = +∞, (3.3)

then there is t∗ ≥ t0 such that for t ≥ t∗

u(t)
tl

↓, u(t)
tl−1 ↑ (3.4)

and

u(t) ≥ tl

l!(n− l)!

+∞
∫

t

sn−l−1|u(n)(s)|ds +
tl−1

l!(n− l)!

t
∫

t∗

sn−l|u(n)(s)|ds. (3.5)

Proof. Condition (3.2) follows from the identity

k−1
∑

j=i

(−1)jtj−iu(j)(t)
(j − i)!

=
k−1
∑

j=i

(−1)jtj−i
0 u(j)(t0)

(j − i)!
+

+
(−1)k−1

(k − i− 1)!

t
∫

t0

sk−i+1u(k)(s)ds (3.6ik)

if we put i = l, k = n in it and take (3.1l) into account. The same identity
also implies the inequality

n−1
∑

j=l

tj−l|u(j)(t)|
(j − l)!

≥ 1
(n− l − 1)!

+∞
∫

t

sn−l−1|u(n)(s)|ds for t ≥ t1. (3.7)
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Let now (3.3) be fulfilled. Using (3.1l), from (3.6l−1,n) we have

u(l−1)(t)− tu(l)(t) =
n−1
∑

j=l+1

tj−l+1|u(j)(t)|
(j − l + 1)!

+

+
n−1
∑

j=l−1

(−1)j+l−1tj−l+1
0 u(j)(t0)

(j − l + 1)!
+

1
(n− l)!

t
∫

t0

sn−l|u(n)(s)|ds

for t ≥ t1 (3.8)

which by (3.3) gives

lim
t→+∞

(

u(l−1)(t)− tu(l)(t)
)

= +∞ (3.9)

and

u(l−1)(t) ≥
n−1
∑

j=l

tj−l+1|u(j)(t)|
(j − l + 1)!

for large t. (3.10)

For any t ≥ t1 and i ∈ {1, . . . , l} put

ρi(t) = iu(l−i)(t)− tu(l−i+1)(t) = −ti+1(t−iu(l−i)(t)
)′

, (3.11)

ri(t) = tu(l−i+1)(t)− (i− 1)u(l−i)(t) = ti
(

t1−iu(l−i)(t)
)′

. (3.12)

From (3.9) by De l’Hospital’s rule we have

lim
t→+∞

t1−iu(l−i)(t) = +∞ (i = 1, . . . , l)

so that in view of (3.12) there are αl ≥ · · · ≥ α1 > t1 such that ri(αi) > 0
(i = 1, . . . , l). Since r1(t) = tu(l)(t) > 0 and r′i+1(t) = ri(t) for t ≥ t0
(i = 1, . . . , l − 1), we have ri(t) > 0 for t ≥ αi. Analogously, since by
(3.9) ρ1(t) → +∞ as t → +∞ and ρ′i+1(t) = ρ(t), we have ρi(t) → +∞ as
t → +∞ (i = 1, . . . , l). In view of (3.11), (3.12) this proves (3.4). On the
other hand, by (3.11) we have

iu(l−i)(t) ≥ tu(l−i+1)(t) for large t (i = 1, . . . , l),

which implies

u(t) ≥ tl−1

l!
u(l−1)(t) for large t. (3.13)

It remains to prove (3.5). Choose t2 > t1 sufficiently large for (3.10) to
hold with t = t2. Using (3.8) with t0 replaced by t2, by (3.10) and (3.7) we
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get

u(l−1)(t) ≥
n−1
∑

j=l

tj−l+1|u(j)(t)|
(j − l + 1)!

+
1

(n− l)!

t
∫

t2

sn−l|u(n)(s)|ds ≥

≥ t
n− l

n−1
∑

j=l

tj−l|u(j)(t)|
(j − l)!

+
1

(n− l)!

t
∫

t2

sn−l|u(n)(s)|ds ≥

≥ t
(n− l)!

+∞
∫

t

sn−l−1|u(n)(s)|ds +
1

(n− l)!

t
∫

t2

sn−l|u(n)(s)|ds.

Combining the latter inequality with (3.13), we obtain (3.5).

4. Proof of the Main Results

Proposition 4.1. Let τ be nondecreasing, τ(t) ≤ t, p(t) ≥ 0 (p(t) ≤ 0)
for t ≥ 0, l ∈ {1, . . . , n− 1}, l + n be odd (even) and

lim sup
t→+∞

{

τ(t)

+∞
∫

t

[τ(s)]l−1sn−l−1|p(s)|ds +

+

t
∫

τ(t)

sn−l−1[τ(s)]l|p(s)|ds +

+ [τ(t)]−1

τ(t)
∫

0

sn−l[τ(s)]l|p(s)|ds
}

> l!(n− l)!. (4.1)

Then equation (1.1) has no solution satisfying (3.1l).

Proof. Suppose, to the contrary, that (1.1) has a solution u : [t0, +∞[→ R
satisfying (3.1l). Show that (3.3) is fulfilled. Indeed, if it is not the case,
then since u(t) ≥ ctl−1 for t ≥ t1 with some t1 ≥ t0 and c0 > 0, by (1.1) we
have

+∞
∫

t1

sn−l[τ(s)]l−1|p(s)|ds < +∞. (4.2)
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Therefore, since τ is nondecreasing and τ(t) ≤ t, we get

τ(t)

+∞
∫

t

[τ(s)]l−1sn−l−1|p(s)|ds ≤
+∞
∫

t

[τ(s)][τ(s)]l−1sn−l−1|p(s)|ds ≤

≤
+∞
∫

t

sn−l[τ(s)]l−1|p(s)|ds → 0 as t → +∞. (4.3)

Analogously,

t
∫

τ(t)

sn−l−1[τ(s)]l|p(s)|ds≤
+∞
∫

τ(t)

sn−l[τ(s)]l−1|p(s)|ds→0 as t→+∞. (4.4)

On the other hand, for any sufficiently large t2 ≥ t1 we have

[τ(t)]−1

τ(t)
∫

0

sn−l[τ(s)]l|p(s)|ds ≤ [τ(t)]−1

t2
∫

0

sn−l[τ(s)]lds +

+

τ(t)
∫

t2

sn−l[τ(s)]l−1|p(s)|ds for t ≥ t2.

Passing here to the upper limit as t → +∞ and then to the limit as t2 →
+∞, we obtain

[τ(t)]−1

τ(t)
∫

0

sn−2[τ(s)]l|p(s)|ds → 0 as t → +∞. (4.5)

Conditions (4.3), (4.4), and (4.5) contradict (4.1). Thus (3.3) is proved.
Now we can use Lemma 3.2. Taking into account (3.4), (3.5) and the

fact that τ(t) ≤ t and τ is nondecreasing, we get for t ≥ t∗ with sufficiently
large t∗

u(τ(t))≥ τ l(t)
l!(n− l)!

+∞
∫

τ(t)

sn−l−1|u(n)(s)|ds+
τ l−1(t)

l!(n− l)!

τ(t)
∫

t∗

sn−l|u(n)(s)|ds=

=
τ l(t)

l!(n− l)!

+∞
∫

t

sn−l−1|p(s)|u(τ(s))ds+
τ l(t)

l!(n− l)!

t
∫

τ(t)

sn−l−1|p(s)|u(τ(s))ds+
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+
τ l−1(t)

l!(n− l)!

τ(t)
∫

t∗

sn−l|p(s)|u(τ(s))ds≥ τ(t)u(τ(t))
l!(n− l)!

+∞
∫

t

sn−l−1τ l−1(s)|p(s)|ds+

+
u(τ(t))

l!(n− l)!

t
∫

τ(t)

sn−l−1τ l(s)|p(s)|ds+
[τ(t)]−1u(τ(t))

l!(n− l)!

τ(t)
∫

t∗

sn−lτ l(s)|p(s)|ds.

The last inequality contradicts (4.1).

Proposition 4.2. Let τ be nondecreasing, τ(t) ≥ t, p(t) ≥ 0 (p(t) ≤ 0)
for t ≥ 0, l ∈ {1, . . . , n− 1}, l + n be odd (even) and

lim sup
t→+∞

{

τ(t)

+∞
∫

τ(t)

[τ(s)]l−1sn−l−1|p(s)|ds +

τ(t)
∫

t

sn−l[τ(s)]l−1|p(s)|ds +

+[τ(t)]−1

t
∫

0

sn−l[τ(s)]l|p(s)|ds
}

> l!(n− l)! (4.6)

Let, moreover, condition (2.3) be fulfilled. Then equation (1.1) has no solu-
tion satisfying (3.1l).

The proof is analogous to that of Proposition 4.1. The difference is that
now condition (3.3) follows from (2.3).

Proof of Theorem 2.1. Let u : [t0, +∞[→]0, +∞[ be a proper nonoscillatory
solution of (1.1). According to Lemma 1.1, there exists l ∈ {0, . . . , n − 1}
such that l + n is odd and (3.1l) is fulfilled. It can be easily seen that
(2.4) implies (4.1) for any l ∈ {1, . . . , n − 1}. Hence by Proposition 4.1,
l 6∈ {1, . . . , n−1}. Thus it remains to prove the case l = 0, which is possible
only when n is odd. Using arguments similar to those of deriving (3.3) from
(4.1) in Proposition 4.1, one can show that (2.2) is fulfilled which, in turn,
easily implies that u(t) → 0 as t → +∞. But this means that (1.2) holds
and thus equation (1.1) has Property A.

Theorems 2.2 and 2.3 can be proved analogously. Instead of Proposition
4.1 one has to use Proposition 4.2. For any l ∈ {1, . . . , n − 1} inequality
(4.6) follows from (2.6) in the case of Theorem 2.2, and from (2.7)–(2.8) in
the case of Theorem 2.3.

Proof of Theorem 2.4. First of all note that, as above, (2.9) implies (2.2).
Let u : [t0, +∞[→]0, +∞[ be a nonoscillatory proper solution of (1.1). Ac-
cording to Lemma 3.1, there exists l ∈ {0, . . . , n} such that l+n is even and
(3.1l) is fulfilled. As above, (2.9) implies (4.1) for any l ∈ {1, . . . , n − 1}.
Hence by Proposition 4.1 l 6∈ {1, . . . , n − 1}. If l = n, then condition (2.2)
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implies (1.3), and if l = 0 which is possible only if n is even, then the same
condition (2.2) yields (1.2). This means that equation (1.1) has Property
B.

The proofs of Theorems 2.5–2.7 are analogous. One has to use the ap-
propriate one of Propositions 4.1, 4.2 and note that (2.10)–(2.11) imply
(4.1) for any l ∈ {1, . . . , n− 1}, while (2.12) and (2.13) imply (4.6) for any
l ∈ {1, . . . , n− 1}.
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