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ON THE DIRICHLET PROBLEM IN A CHARACTERISTIC
RECTANGLE FOR FOURTH ORDER LINEAR SINGULAR

HYPERBOLIC EQUATIONS

T. KIGURADZE

Abstract. In the rectangle D = (0, a) × (0, b) with the boundary Γ
the Dirichlet problem

∂4u
∂x2∂y2

= p(x, y)u + q(x, y),

u(x, y) = 0 for (x, y) ∈ Γ

is considered, where p and q : D → R are locally summable func-
tions and may have nonintegrable singularities on Γ. The effective
conditions guaranteeing the unique solvability of this problem and
the stability of its solution with respect to small perturbations of the
coefficients of the equation under consideration are established.

§ 1. Formulation of the Problem and Main Results

In the open rectangle D = (0, a) × (0, b) consider the linear hyperbolic
equation

∂4u
∂x2∂y2 = p0(x, y)u + q(x, y), (1.1)

where p and q are real functions, Lebesgue summable on [δ, a− δ]× [δ, b− δ]
for any small δ > 0. We do not exclude the case, where p and q are not
summable on D and have singularities on the boundary of D. In this sense
equation (1.1) is singular.

Let Γ be the boundary of D. In the present paper for equation (1.1) we
study the homogeneous Dirichlet problem

u(x, y) = 0 for (x, y) ∈ Γ. (1.2)
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In the regular case, i.e., when p and q are summable on D, problem (1.1),
(1.2) was studied in [1].

Before formulating the main results, we introduce several notations.
R is the set of real numbers. D = [0, a]× [0, b].
For any z ∈ R set [z]+ = |z|+z

2 .
C(D) is the space of continuous functions z : D → R.
Lloc(D) is the space of functions z : D → R which are Lebesgue summable

on [δ, a− δ]× [δ, b− δ] for any arbitrarily small δ > 0.
˜C1,2

loc (D) is the space of functions z : D → R, absolutely continuous on
[δ, a− δ]× [δ, b− δ] for any arbitrarily small δ > 0 together with ∂z

∂x , ∂z
∂y and

∂2z
∂x∂y and satisfying the condition

∫ a
0

∫ b
0

[

∂2z(x,y)
∂x∂y

]2
dx dy < +∞.

A function u ∈ ˜C1,2
loc (D) will be called a solution of equation (1.1) if it

satisfies (1.1) almost everywhere in D.
A solution of problem (1.1), (1.2) will be sought in the class ˜C1,2

loc (D) ∩
C(D).

Along with (1.1), we have to consider the equation

∂4u
∂x2∂y2 = p(x, y)u + q(x, y), (1.3)

where p and q ∈ Lloc(D).

Definition 1.1. A solution of problem (1.1), (1.2) will be called stable
with respect to small perturbations of the coefficients of equation (1.1) if
there exist positive numbers δ and r such that for any p and q ∈ Lloc(D)
satisfying the conditions

η1(p− p)
def
=

a
∫

0

b
∫

0

xy(a− x)(b− y)|p(x, y)− p(x, y)| dx dy ≤ δ, (1.4)

η2(q − q)
def
=

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
1
2 |q(x, y)− q(x, y)| dx dy < +∞, (1.5)

problem (1.3), (1.2) has a unique solution u in ˜C1,2
loc (D) ∩ C(D) and

[
a

∫

0

b
∫

0

(∂2(u(x, y)− u(x, y))
∂x∂y

)2
dx dy

] 1
2

< r[η1(p− p) + η2(q − q)]. (1.6)

∗For the definition of absolutely continuous functions in a rectangle see [2, §570] or
[3].
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Remark 1.1. If inequality (1.6) holds, then, by Lemma 2.1 proved below,
in the rectangle D the difference u− u admits the estimate

|u(x, y)− u(x, y)| ≤ 2r
[

xy
(

1− x
a

)(

1− y
b

)] 1
2 [

η1(p− p) + η2(q − q)
]

.

Definition 1.2. We say that a function p ∈ Lloc(D) belongs to U(D) if
there exists a number α ∈ [0, 1) such that for any function u ∈ ˜C1,2

loc (D) ∩
C(D) satisfying the boundary condition (1.2), the estimate

a
∫

0

b
∫

0

[p(x, y)]+u2(x, y) dx dy ≤ α

a
∫

0

b
∫

0

(∂2u(x, y)
∂x∂y

)2
dx dy (1.7)

is valid.

Theorem 1.1. Let
a

∫

0

b
∫

0

[xy(a− x)(b− y)]
3
2 |p(x, y)| dx dy < +∞,

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
1
2 |q(x, y)| dx dy < +∞,

(1.8)

and p ∈ U(D). Then problem (1.1), (1.2) has a unique solution in ˜C1,2
loc (D)∩

C(D), stable with respect to small perturbations of the coefficients of equa-
tion (1.1).

Theorem 1.2. Let conditions (1.8) be fulfilled and the inequality

p(x, y) ≤ λ0(x, y) + λ1

xy(a− x)(b− y)
+

λ2

x2y2(a− x)2(b− y)2
(1.9)

hold almost everywhere in D, where λ0 is a nonnegative summable function,
and λ1 and λ2 are nonnegative numbers such that

4
ab

a
∫

0

b
∫

0

λ0(x, y) dx dy +
1
4
λ1 +

16
a2b2 λ2 < 1. (1.10)

Then the statement of Theorem 1.1 is valid.

As an example, consider the differential equation

∂4u
∂x2∂y2 =

[ l1
xy(a− x)(b− y)

+
l2

x2y2(a− x)2(b− y)2

]

u +

+ l3xµ1yµ2(a− x)ν1(b− y)ν2 , (1.11)
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where li (i = 1, 2, 3), µj and νj (j = 1, 2) are some real constants. By
Theorem 1.2, if µj > − 3

2 , νj > − 3
2 (j = 1, 2) and

1
4
[l1]+ +

16
a2b2 [l2]+ < 1, (1.12)

then problem (1.11), (1.2) has a unique solution in ˜C1,2
loc (D)∩C(D) and this

solution is stable with respect to small perturbations of the coefficients of
equation (1.11).

Note that condition (1.12) is sharp, since for l1 = 4, l2 = l3 = 0 problem
(1.11), (1.2) has an infinite set of solutions. More precisely, for any c ∈ R,
the function u(x, y) = cxy(x−a)(y−b) is a solution of problem (1.11), (1.2).

§ 2. Auxiliary Statements

In this section, along with the notations introduced in §1, we shall make
use of the following notations also.

A1,2
0 = {u ∈ ˜C1,2

loc (D) ∩ C(D) : u(x, y) = 0 for (x, y) ∈ Γ}.

˜C1(D) is the space of functions z : D → R, absolutely continuous to-
gether with ∂z

∂x , ∂z
∂y and ∂2z

∂x∂y .
We introduce

Definition 2.1. Let α > 0. We say that a function p ∈ Lloc(D) belongs
to Uα(D) if inequality (1.7) holds for any u ∈ A1,2.

2.1. Properties of the functions from A1,2
0 .

Lemma 2.1. If u ∈ A1,2, then

u2(x, y) ≤ 4
ab

xy(a− x)(b− y)ρ2 for (x, y) ∈ D, (2.1)

a
∫

0

b
∫

0

u2(x, y)
xy(a− x)(b− y)

dx dy ≤ 1
4
ρ2, (2.2)

a
∫

0

b
∫

0

[ u(x, y)
xy(a− x)(b− y)

]2
dx dy ≤ 16

a2b2 ρ2, (2.3)

where

ρ =
[

a
∫

0

b
∫

0

(∂2u(x, y)
∂x∂y

)2
dx dy

] 1
2

. (2.4)
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Proof. First, let us prove estimate (2.1). The condition u ∈ A1,2 yields the
representations

u(x, y) =

x
∫

ia

y
∫

jb

∂2u(s, t)
∂s∂t

ds dt (i, j = 0, 1) for (x, y) ∈ D.

Hence, by the Schwartz inequality and notation (2.4) it follows that

u2(x, y) ≤ ρ2|x− ia||y − jb| (i, j = 0, 1) for (x, y) ∈ D.

Therefore u2(x, y) ≤ ρ2 min{x, a − x}min{y, b − y} for (x, y) ∈ D. But
min{x, a − x} ≤ 2

ax(a − x) and min{y, b − y} ≤ 2
b y(b − y) for (x, y) ∈ D.

Consequently, estimate (2.1) is valid.
Now pass to proving estimate (2.2). By Hardy–Littlewood theorem (see

[4], Theorem 262), we have

b
∫

0

u2(x, y)
y(b− y)

dy ≤ 1
2

b
∫

0

(∂u(x, y)
∂y

)2
dy,

a
∫

0

1
x(a− x)

(∂u(x, y)
∂y

)2
dx ≤ 1

2

a
∫

0

(∂2u(x, y)
∂x∂y

)2
dx

almost everywhere in (0, a) and (0, b), respectively. Therefore

a
∫

0

[
b

∫

0

u2(x, y)
x(a− x)y(b− y)

dy
]

dx ≤
b

∫

0

[
a

∫

0

1
x(a− x)

(∂u(x, y)
∂y

)2
dx

]

dy ≤

≤ 1
4

a
∫

0

b
∫

0

(∂2u(x, y)
∂x∂y

)2
dx dy =

1
4
ρ2.

Consequently, estimate (2.2) is valid.
As for estimate (2.3), it follows from V. I. Levin’s inequality (see [5] or

[4, D.79]). Indeed,

a
∫

0

[
b

∫

0

[ u(x, y)
x(a− x)y(b− y)

]2
dy

]

dx ≤

≤ 4
b2

b
∫

0

[
a

∫

0

1
x2(a− x)2

(∂u(x, y)
∂y

)

dy
]

dx ≤
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≤ 16
a2b2

a
∫

0

b
∫

0

(∂2u(x, y)
∂x∂y

)2
dx dy =

16
a2b2 ρ2.

Lemma 2.2. Let u ∈ A1,2. Then there exist sequences (xik)+∞k=1 and
(yik)+∞k=1 such that

0 < x1k < x2k < a, 0 < y1k < y2k < b (k = 1, 2, . . . ), (2.5)

lim
k→+∞

x1k = 0, lim
k→+∞

x2k = a, lim
k→+∞

y1k = 0, lim
k→+∞

y2k = b (2.6)

and

lim
k→+∞

x2k
∫

x1k

y2k
∫

y1k

∂4u(x, y)
∂x2∂y2 u(x, y) dx dy = ρ2, (2.7)

where ρ is the number given by (2.4).

Proof. Let

w(x, y) =
∂2u(x, y)

∂x∂y
. (2.8)

For any natural k set

α0k =
a

2k + 4
, αk =

a
k + 2

, a0k =
(k + 1)a
k + 2

, ak =
(2k + 3)a
2k + 4

,

β0k =
b

2k + 4
, βk =

b
k + 2

, b0k =
(k + 1)b
k + 2

, bk =
(2k + 3)b
2k + 4

,

w1k(x) =

bk
∫

β0k

w2(x, y) dy, w2k(y) =

ak
∫

α0k

w2(x, y) dx, (2.9)

αk
∫

α0k

w1k(x) dx +

ak
∫

a0k

w1k(x) dx +

βk
∫

β0k

w2k(y) dy +

bk
∫

b0k

w2k(y) dy = εk. (2.10)

Then lim
k→+∞

εk = 0.

In view of the continuity of w, w1k and w2k, for any natural k there exist

x1k ∈ [α0k, αk], x2k ∈ [a0k, ak], y1k ∈ [β0k, βk], y2k ∈ [b0k, bk]

such that

w1k(x1k) = min{w1k(x) : α0k ≤ x ≤ αk},
w1k(x2k) = min{w1k(x) : a0k ≤ x ≤ ak},
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a
2k + 4

[w2(x1k, y1k) + w2(x2k, y1k)] + w2k(y1k) =

= min
{ a

2k + 4
[w2(x1k, y) + w2(x2k, y)] + w2k(y) : β0k ≤ y ≤ βk

}

,

a
2k + 4

[w2(x1k, y2k) + w2(x2k, y2k)] + w2k(y2k) =

= min
{ a

2k + 4
[w2(x1k, y) + w2(x2k, y)] + w2k(y) : b0k ≤ y ≤ bk

}

.

Then it is obvious that the sequences (xik)+∞k=1 and (yik)+∞k=1 (i = 1, 2) satisfy
conditions (2.5) and (2.6). On the other hand, from (2.9) and (2.10) we have

εk ≥
a

2k + 4
[w1k(x1k) + w1k(x2k)] +

βk
∫

β0k

w2k(y) dy +

bk
∫

b0k

w2k(y) dy ≥

≥
βk
∫

β0k

[ a
2k + 4

w2(x1k, y) +
a

2k + 4
w2(x2k, y) + w2k(y)

]

dy +

+

bk
∫

b0k

[ a
2k + 4

w2(x1k, y) +
a

2k + 4
w2(x2k, y) + w2k(y)

]

dy ≥

≥ ab
(2k + 4)2

[w2(x1k, y1k) + w2(x2k, y1k) + w2(x1k, y2k) + w2(x2k, y2k)] +

+
b

2k + 4
[w2k(y1k) + w2k(y2k)] (k = 1, 2, . . . ).

Therefore

w1k(xik)≤(k + 2)ε0k, w2k(yik)≤(k + 2)ε0k (i = 1, 2; k = 1, 2, . . . ), (2.11)

|w(xik, yjk)| ≤ (k + 2)ε0k (i, j = 1, 2; k = 1, 2, . . . ), (2.12)

where ε0k = max
{

2εk
a , 2εk

b , 2
(

εk
ab

) 1
2
}

and

lim
k→+∞

ε0k = 0. (2.13)

Moreover, inequality (2.1) implies that

|u(xik, yjk)| ≤ γ
k + 2

(i, j = 1, 2; k = 1, 2, . . . ), (2.14)

where γ = 2ρ(ab)
1
2 .
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For every natural k consider the integral

Ik =

x2k
∫

x1k

y2k
∫

y1k

∂4u(x, y)
∂x2∂y2 u(x, y) dx dy. (2.15)

By equality (2.8) and the formula of integration by parts, we have

Ik =

x2k
∫

x1k

(
y2k
∫

y1k

∂2w(x, y)
∂x∂y

u(x, y) dy
)

dx =

x2k
∫

x1k

[∂w(x, y2k)
∂x

u(x, y2k)−

−∂w(x, y1k)
∂x

u(x, y1k)
]

dx−
y2k
∫

y1k

(
x2k
∫

x1k

∂w(x, y)
∂x

∂u(x, y)
∂y

dx
)

dy =

= w(x2k, y2k)u(x2k, y2k)− w(x1k, y2k)u(x1k, y2k)−
−w(x2k, y1k)u(x2k, y1k) + w(x1k, y1k)u(x1k, y1k)−

−
x2k
∫

x1k

[

w(x, y2k)
∂u(x, y2k)

∂x
− w(x, y1k)

∂u(x, y1k)
∂x

]

dx−

−
y2k
∫

y1k

[

w(x2k, y)
∂u(x2k, y)

∂y
− w(x1k, y)

∂u(x1k, y)
∂y

]

dy + I0k, (2.16)

where

I0k =

x2k
∫

x1k

y2k
∫

y1k

(∂2u(x, y)
∂x∂y

)2
dx dy.

Moreover, as it follows from (2.4) and (2.6),

lim
k→+∞

I0k = ρ2. (2.17)

By virtue of the condition u ∈ A1,2 and equality (2.8) we have

∂u(x, yik)
∂x

=

yik
∫

(i−1)b

w(x, y) dy,
∂u(xik, y)

∂y
=

xik
∫

(i−1)a

w(x, y) dx (i = 1, 2).

If along with this we take into account equalities (2.4) and (2.9) and in-
equality (2.11), then we get

∣

∣

∣

∣

x2k
∫

x1k

w(x, yik)
∂u(x, yik)

∂x
dx

∣

∣

∣

∣

=
∣

∣

∣

∣

x2k
∫

x1k

w(x, yik)
(

yik
∫

(i−1)b

w(x, y) dy
)

dx
∣

∣

∣

∣

≤
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≤
[

x2k
∫

x1k

w2(x, yik) dx
] 1

2
[

x2k
∫

x1k

(
yik
∫

(i−1)b

w(x, y) dy
)2

dx
] 1

2

≤ [w2k(yik)]
1
2×

×
[

b
k + 2

a
∫

0

b
∫

0

w2(x, y) dx dy
] 1

2

≤(bε0k)
1
2 ρ (i = 1, 2; k = 1, 2, . . . ), (2.18)

∣

∣

∣

∣

y2k
∫

y1k

w(xik, y)
∂u(xik, y)

∂y
dy

∣

∣

∣

∣

≤ (aε0k)
1
2 ρ (i = 1, 2; k = 1, 2, . . . ). (2.19)

Using conditions (2.12)–(2.14), (2.18), and (2.19), from (2.16) we find

|Ik − I0k| ≤ 4γε0k + 2(bε0k)
1
2 ρ + 2(aε0k)

1
2 ρ → 0 for k → +∞.

Hence, according to (2.15) and (2.17), there follows equality (2.7).

2.2. On one property of the set Uα(D).

Lemma 2.3. Let α > 0, δ > 0, p ∈ Uα(D) and the function p ∈ Lloc(D)
satisfy the inequality

a
∫

0

b
∫

0

xy(a− x)(b− y)[p(x, y)− p(x, y)]+ dx dy ≤ δ. (2.20)

Then

p ∈ Uβ(D), (2.21)

where β = α + 4
abδ.

Proof. Let u be an arbitrary function from A1,2, and ρ be the number given
by (2.4). Then by Definition 2.1 and Lemma 2.1 inequalities (1.7) and (2.1)
are valid. Moreover, if we take into account inequalities (2.20) and

[p(x, y)]+ ≤ [p(x, y)]+ + [p(x, y)− p(x, y)]+,

then we get

a
∫

0

b
∫

0

[p(x, y)]+u2(x, y) dx dy ≤
a

∫

0

b
∫

0

[p(x, y)]+u2(x, y) dx dy +

+

a
∫

0

b
∫

0

[p(x, y)− p(x, y)]+u2(x, y) dx dy ≤ αρ2 +
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+
4ρ2

ab

a
∫

0

b
∫

0

xy(a− x)(b− y)[p(x, y)− p(x, y)]+dx dy ≤
(

α+
4
ab

δ
)

ρ2 =βρ2.

Consequently, inclusion (2.21) is true.

2.3. Lemmas on a priori estimates.

Lemma 2.4. Let p ∈ Uα(D), where 0 < α < 1, and the function q ∈
Lloc(D) satisfy the condition

η2(q)
def
=

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
1
2 |q(x, y)| dx dy < +∞. (2.22)

Moreover, if problem (1.1), (1.2) has a solution u ∈ ˜C1,2
loc (D) ∩ C(D), then

ρ ≤ 2
(1− α)

√
ab

η2(q), (2.23)

where ρ is a number given by (2.4).

Proof. By virtue of Definition 2.1 and Lemmas 2.1 and 2.2 the function u
satisfies conditions (1.7) and (2.1), and there exist sequences (xik)+∞k=1 and
(yik)+∞k=1 (i = 1, 2) satisfying conditions (2.5) and (2.6) such that equality
(2.7) is true.

Multiply both sides of (1.1) by u(x, y) and integrate them over [x1k, x2k]×
[y1k, y2k] for any natural k. Then with regard to (1.7),(2.1) and (2.22) we
find

x2k
∫

x1k

y2k
∫

y1k

u(x, y)
∂4u(x, y)
∂x2∂y2 dx dy =

x2k
∫

x1k

y2k
∫

y1k

p(x, y)u2(x, y) dx dy +

+

x2k
∫

x1k

y2k
∫

y1k

q(x, y)u(x, y) dx dy ≤
a

∫

0

b
∫

0

[p(x, y)]+u2(x, y) dx dy +

+

a
∫

0

b
∫

0

|q(x, y)||u(x, y)| dx dy ≤ αρ2 +
2√
ab

η2(q)ρ (k = 1, 2, . . . ).

If we pass in this inequality to the limit as k → +∞, then by (2.7) we get

ρ2 ≤ αρ2 +
2√
ab

η2(q)ρ.

Consequently, estimate (2.23) is true.
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Lemma 2.5. Let 0 < α < 1, δ > 0,

β = α +
4
ab

δ < 1, (2.24)

and the functions p ∈ Uα(D), p, q and q ∈ Lloc(D) satisfy conditions (1.4)
and (1.5). Moreover, let problem (1.1), (1.2) have a solution u ∈ ˜C1,2

loc (D) ∩
C(D), and problem (1.3), (1.2) have a solution u ∈ ˜C1,2

loc (D) ∩ C(D). Then
inequality (1.6) is valid, where

r = max
{ 4ρ

(1− β)ab
,

2
(1− β)

√
ab

}

(2.25)

and ρ is the number given by (2.4).

Proof. Note that by Lemma 2.3 inclusion (2.21) is true. Set

v(x, y) = u(x, y)− u(x, y).

Then from (1.1)–(1.3) we have

∂4v(x, y)
∂x2∂y2 = p(x, y)v(x, y) + [p(x, y)− p(x, y)]u(x, y) + q(x, y)− q(x, y),

v(x, y) = 0 for (x, y) ∈ Γ.

Hence, by Lemma 2.4 and conditions (2.21) and (2.24), there follows the
estimate

ρ∗
def
=

[
a

∫

0

b
∫

0

(∂2v(x, y)
∂x∂y

)2
dx dy

] 1
2

≤ 2
(1− β)

√
ab

η2(q − q) +

+
2

(1− β)
√

ab

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
1
2 |p(x, y)− p(x, y)||u(x, y)| dx dy.

Now if we apply conditions (1.5) and (2.1), then it becomes clear that

ρ∗ ≤ 4ρ
(1− β)ab

η1(p− p) +
2

(1− β)
√

ab
η2(q − q).

Consequently, estimate (1.6) is true, where the constant r is given by
(2.25).
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2.4. Lemmas on the existence and uniqueness of solutions of
problem (1.1),(1.2).

Lemma 2.6. If p ∈ Uα(D), where 0 < α < 1, then problem (1.1), (1.2)
has at most one solution in ˜C1,2

loc (D) ∩ C(D).

Proof. Let ui ∈ ˜C1,2
loc (D)∩C(D) (i = 1, 2) be arbitrary solutions of problem

(1.1), (1.2). Set u(x, y) = u2(x, y)−u1(x, y). It is obvious that u is a solution
of the homogeneous problem

∂4u
∂x2∂y2 = p(x, y)u (2.26)

and u ∈ A1,2. Hence by Lemma 2.4 it follows that ∂2u(x,y)
∂x∂y ≡ 0 and

u(x, y) ≡
x

∫

0

y
∫

0

∂2u(s, t)
∂s∂t

≡ 0.

Consequently, u1(x, y) ≡ u2(x, y).

Lemma 2.7. If the functions p and q are summable on D and p ∈
Uα(D), where 0 < α < 1, then problem (1.1), (1.2) has one and only one
solution in ˜C1,2

loc (D) ∩ C(D).

Proof. By Lemma 2.6, problem (2.26), (1.2) has only the trivial solution in
the space ˜C1,2

loc (D) ∩ C(D). Consequently, this problem has only the trivial
solution in ˜C1(D), since

˜C1(D) ⊂ ˜C1,2
loc (D) ∩ C(D). (2.27)

But by Theorem 1.1 from [1] the summability of p and q on D and the
unique solvability of problem (2.26),(1.2) in the space ˜C1(D) guarantee the
existence and uniqueness of a solution u ∈ ˜C1(D) of problem (1.1),(1.2).
Hence Lemma 2.6 and condition (2.27) imply that u is the unique solution
of problem (1.1),(1.2) in ˜C1,2

loc (D) ∩ C(D).

§ 3. Proofs of the Main Results

Proof of Theorem 1.1. Note that by Definitions 1.2 and 2.1 there exists
α ∈ (0, 1) such that

p ∈ Uα(D). (3.1)

For any natural m set

Dm =
( a

4m
,
(4m− 1)a

4m

)

×
( b

4m
,
(4m− 1)

4m

)

,
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pm(x, y) =

{

p(x, y) for (x, y) ∈ Dm,
0 for (x, y) ∈ D\Dm,

qm(x, y) =

{

q(x, y) for (x, y) ∈ Dm,
0 for (x, y) ∈ D\Dm

and consider the differential equation

∂4u
∂x2∂y2 = pm(x, y)u + q(x, y). (3.2m)

It is clear that pm and qm (m = 1, 2, . . . ) are summable on D and the
conditions

|pm(x, y)| ≤ |p(x, y)|, |qm(x, y)| ≤ |q(x, y)| (m = 1, 2, . . . ), (3.3)

lim
m→∞

pm(x, y) = p(x, y), lim
m→∞

qm(x, y) = q(x, y) (3.4)

hold almost everywhere in D. Moreover, by (3.1),

pm ∈ Uα(D) (m = 1, 2, . . . ). (3.5)

By Lemmas 2.4 and 2.7, for any natural m problem (3.2m), (1.2) has the
unique solution um in ˜C1,2

loc (D) ∩ C(D) and

ρm ≤ 2

(1− α)
√

ab

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
1
2 |qm(x, y)| dx dy,

where ρm =
[

∫ a
0

∫ b
0

(

∂2um(x,y)
∂x∂y

)2
dx dy

] 1
2
. Hence, taking into account (1.8)

and (3.3), we find

ρm ≤ γ (m = 1, 2, . . . ), (3.6)

where γ = 2
(1−α)

√
ab

∫ a
0

∫ b
0 [xy(a− x)(b− y)]

1
2 |q(x, y)| dx dy.

By Lemma 2.1 and condition (3.6), we have

|um(x, y)| ≤ γ0[xy(a− x)(b− y)]
1
2 for (x, y) ∈ D (m = 1, 2, . . . ), (3.7)

|um(x, y)− um(x, y)| =
∣

∣

∣

x
∫

x

y
∫

0

∂2um(s, t)
∂s∂t

ds dt +

x
∫

0

y
∫

y

∂2um(s, t)
∂s∂t

ds dt
∣

∣

∣ ≤

≤ (y|x− x|) 1
2 ρm + (x|y − y|) 1

2 ρm ≤ γ0(|x− x|) 1
2 + |y − y|) 1

2 )

for 0 ≤ x ≤ x ≤ a, 0 ≤ y ≤ y ≤ b (m = 1, 2, . . . ),

(3.8)

where γ0 = max{2(ab)−
1
2 , a

1
2 , b

1
2 }γ.
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By the Arzela–Ascoli lemma, conditions (3.7) and (3.8) guarantee the
existence of a subsequence (umk)+∞k=1 of the sequence (um)+∞m=1, uniformly
convergent on D. Set

lim
k→+∞

umk(x, y) = u(x, y). (3.9)

Then from (3.7) we get

|u(x, y)| ≤ γ0[xy(a− x)(b− y)]
1
2 for (x, y) ∈ D. (3.10)

For any natural k the function umk admits the representation

umk(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)[pmk(s, t)umk(s, t) + qmk(s, t)] ds dt, (3.11)

where

g1(x, s) =

{

s
(x

a − 1
)

for s ≤ x,
x
( s

a − 1
)

for s > x,
g2(y, t) =

{

t
(y

b − 1
)

for t ≤ y,
y
( t

b − 1
)

for t > y.

Moreover, it is obvious that the functions g1 and g2 admit the estimates

|g1(x, s)| ≤
(

1− s
a

)

s, |g2(y, t)| ≤
(

1− t
b

)

t, (3.12)
∣

∣

∣

∂g1(x, s)
∂x

∣

∣

∣ ≤
[

x
(

1− x
a

)]−1
s
(

1− s
a

)

,
∣

∣

∣

∂g2(y, t)
∂y

∣

∣

∣ ≤
[

y
(

1− y
b

)]−1
t
(

1− t
b

)

.
(3.13)

If along with this we take into account conditions (1.8), (3.3), and (3.7),
then we obtain the inequalities

|g1(x, s)g2(y, t)[pmk(s, t)umk(s, t)+qmk(s, t)]|≤q∗(s, t) (k=1, 2, . . . ), (3.14)
∣

∣

∣

∂g1(x, s)
∂x

∂g2(y, t)
∂y

[pmk(s, t)umk(s, t) + qmk(s, t)]
∣

∣

∣ ≤

≤
[

xy
(

1− x
a

)(

1− y
b

)]−1
q∗(s, t) (k = 1, 2, . . . ), (3.15)

where q∗(s, t) = γ0

[

st
(

1− s
a

)(

1− t
b

)] 3
2 |p(s, t)|+ st

(

1− s
a

)(

1− t
b

)

|q(s, t)|
and q∗ is summable on D.

Now if we apply the Lebesgue’s theorem on the passage to the limit under
the integral, then, with regard to (3.4), (3.9), and (3.14), from (3.11) we get

u(x, y) =

a
∫

0

b
∫

0

g1(x, s)g2(y, t)[p(s, t)u(s, t) + q(s, t)] ds dt. (3.16)
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By virtue of (3.15), equalities (3.11) and (3.16) yield

lim
k→+∞

∂2umk(x, y)
∂x∂y

=
∂2u(x, y)

∂x∂y

uniformly on every closed subset of D. Taking into account this fact, from
(3.6) we get

a
∫

0

b
∫

0

(∂2u(x, y)
∂x∂y

)2
dx dy ≤ γ. (3.17)

By virtue of (1.8), (3.12), (3.13) it follows from (3.16) and (3.17) that
u ∈ ˜C1,2

loc (D) ∩ C(D) and u is a solution of equation (1.1). On the other
hand, it is clear from (3.10) that u satisfies the boundary condition (1.2).

By Lemma 2.6, problem (1.1),(1.2) has no solution different from u in
˜C1,2

loc (D) ∩ C(D).
To complete the proof, we have to show the stability of the solution u

with respect to small perturbation of the coefficients of equation (1.1).
Let δ be an arbitrary positive number satisfying inequality (2.24), and ρ

and r be numbers given by equalities (2.4) and (2.25). Consider arbitrary
functions p and q ∈ Lloc(D) satisfying conditions (1.4) and (1.5). Then by
conditions (1.8),(3.1) and Lemma 2.3,

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
3
2 |p(x, y)| dx dy < +∞,

a
∫

0

b
∫

0

[xy(a− x)(b− y)]
1
2 |q(x, y)| dx dy < +∞

and p ∈ Uβ(D). But according to the above-said, these conditions guar-
antee the existence and uniqueness of a solution u ∈ ˜C1,2

loc (D) ∩ C(D) of
problem (1.1),(1.3). On the other hand, by Lemma 2.5, the solutions u and
u satisfy conditions (1.6).

Proof of Theorem 1.2. Let

α =
4
ab

a
∫

0

b
∫

0

λ0(x, y) dx dy +
1
4
λ1 +

16
a2b2 λ2.

By Theorem 1.1 and inequality (1.10), to prove Theorem 1.2 it is sufficient
to establish that the function p satisfies condition (3.1).
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Let u be an arbitrary funciton from A1,2. Then by Lemma 2.1, inequa-
lities (2.1)–(2.3) are valid, where ρ is the number given by (2.4). If along
with this we take into account inequality (1.9), then we get

a
∫

0

b
∫

0

[p(x, y)]+u2(x, y) dx dy ≤
a

∫

0

b
∫

0

λ0(x, y)
u2(x, y)

xy(a− x)(b− y)
dx dy +

+λ1

a
∫

0

b
∫

0

u2(x, y)
xy(a− x)(b− y)

dx dy + λ2

a
∫

0

b
∫

0

[ u(x, y)
xy(a− x)(b− y)

]2
dx dy ≤

≤
[

4
ab

a
∫

0

b
∫

0

λ0(x, y) dx dy +
λ1

4
+

16
a2b2 λ2

]

ρ2 = αρ2.

Hence, in view of the arbitrariness of u there follows inclusion (3.1).
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