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ON THE PRANDTL EQUATION

R. DUDUCHAVA AND D. KAPANADZE

Abstract. The unique solvability of the airfoil (Prandtl) integro-
differential equation on the semi-axis R+ = [0,∞) is proved in the
Sobolev space W 1

p and Bessel potential spaces Hs
p under certain re-

strictions on p and s.

§ 0. Introduction

The purpose of this paper is to investigate the integro-differential equa-
tion

Aν(t) = ν(t)− λ
π

∫ ∞

0

ν′(τ)
τ − t

dτ = 0, t ∈ R+, λ = const > 0, (0.1)

which is known as the Prandtl equation.
Such equations occur, for instance, in elasticity theory (see [1] and § 2

below), hydrodynamics (aircraft wing motion, see [2]–[5]).
In elasticity theory, a solution ν(t) of (0.1) is sought for in the Sobolev

space W 1
p (R+) and satisfies the boundary condition

ν(0) = c0 6= 0, (0.2)

where the constant c0 is defined by elastic constants (see (2.12) below).

Theorem 0.1. Equation (0.1) with the boundary condition (0.2) has
a unique solution in Sobolev spaces W 1

p if and only if 1 < p < 2.

The proof of the theorem is given in § 4.
We shall consider the nonhomogeneous equation corresponding to (0.1)

Aν(t) = f(t) (0.3)

which will be treated as a pseudodifferential equation in the Bessel potential
spaces, namely, A maps ˜Hs

p(R+) into the space Hs−1
p (R+), s∈R, 1<p<∞.
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The necessary and sufficient conditions for equation (0.1) to be Fredholm
are given and the index formula is derived (Theorem 3.1).

In [1, § 32] the boundary value problem (0.1), (0.2) is solved by means of
the Wiener–Hopf method. Applying the Fourier transform, equation (0.1) is
reduced to a boundary value problem of function theory (BVPFTh) which
is solved by standard procedures (see [3]).

As is known, an equivalent reduction of problem (0.1), (0.2) to the cor-
responding BVPFTh is possible only for Hilbert spaces Hs

2(R+), whereas
for spaces Hs

p(R+), p 6= 2, the BVPFTh should be considered in the com-
plicated space FHs

p(R+) that is not described exactly. Theorem 0.1 clearly
implies that the case p = 2 is not suitable for considering problem (0.1),
(0.2), whereas the case 1 < p < 2 can be treated directly, without applying
the Fourier transform.

In this paper we develop a precise theory of the boundary value prob-
lem (0.1), (0.2) in the spaces Hs

p(R+) and W 1
p (R+) and suggest criteria

(necessary and sufficient conditions) for its solvability.

Remark. By the results of [3], [6], the solution of equation (0.1) has the
asymptotics

ν(t) = c0 + c1t
1
2 + o(t

1
2 ), as t → 0, c1 = const 6= 0.

A full asymptotic expression of the solution can be derived, but this
makes the subject of a separate investigation.

§ 1. Basic Notation and Spaces

Let us recall some standard notation:
R is the one-dimensional Euclidean space.
Lp(R) (1 < p < ∞) is the Lebesgue space.
S(R) is the Schwarz space of infinitely smooth functions rapidly vanishing

at infinity.
S′(R) is the dual Schwarz space of tempered distributions.
The Fourier transform

Fϕ(ξ) =
∫

R
eiξxϕ(x) dx, x ∈ R, (1.1)

and the inverse Fourier transform

F−1ϕ(x) =
1
2π

∫

R
e−ixξϕ(ξ) dξ, ξ ∈ R, (1.2)

are the bounded operators in both spaces S(R) and S′(R). Hence the con-
volution operator

a(D)ϕ = W 0
a ϕ := F−1aFϕ with a ∈ S′(R), ϕ ∈ S(R), (1.3)
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is the bounded transformation from S(R) into S′(R) (see [7]).
The Bessel potential space Hs

p(R) (s ∈ R, 1 < p < ∞) is defined as a
subset of S′(R) endowed with the norm

∥

∥ϕ|Hs
p(R)

∥

∥ :=
∥

∥〈D〉sϕ|Lp(R)
∥

∥, where 〈ξ〉s = (1 + |ξ|2) s
2 . (1.4)

For a non-negative integer s ∈ N0 = {0, 1, . . . } the space Hs
p(R) coincides

with the Sobolev space W s
p (R), and in that case the equivalent norm is

defined as follows:

∥

∥ϕ|Hs
p(R)

∥

∥ '
s

∑

k=0

∥

∥∂kϕ|Lp(R)
∥

∥ provided s ∈ N0, (1.5)

where ∂ denotes a (generalized) derivative.
The space ˜Hs

p(R+) is defined as a subspace of Hs
p(R) of the functions

ϕ ∈ Hs
p(R) supported in the half-space supp ϕ ⊂ R+, where Hs

p(R+) denotes
distributions ϕ on R+ which admit an extension l+ϕ ∈ Hs

p(R). Therefore
r+Hs

p(R) = Hs
p(R+).

If the convolution operator (1.3) has the bounded extension

W 0
a : Lp(R) → Lp(R),

then we write a ∈ Mp(R). For µ ∈ R let

M (µ)
p (R) =

{

〈ξ〉µa(ξ) : a ∈ Mp(R)
}

. (1.6)

The following fact is valid:
The operator

W 0
a : Hs

p(R) → Hs−µ
p (R)

is bounded if and only if a ∈ M (µ)
p (R).

PCp(R) will denote the closure of an algebra of piecewise-constant func-
tions by the norm

‖a‖0p = ‖W 0
a |Lp‖.

Note that for 1 < p < ∞ all functions of bounded variation belong to
PCp(R).

SR denotes the Cauchy singular integral operator

SRν(t) =
1
πi

∫

R

ν(τ)
τ − t

dτ, (1.7)

where the integral is understood in a sense of the Cauchy principal value:

SRν(t) =
1
πi

lim
N→∞

lim
ε→0

( ∫ t−ε

−N
+

∫ N

t+ε

)

ν(τ)
τ − t

dτ.
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§ 2. Half-Plane with a Semi-Infinite Stringer along the
Border [1]

Let us consider an elastic plate lying in the complex lower half-plane
z = x + iy, y < 0. Superpose the stringer axis on the positive part of the
real axis so that one stringer end would take its origin at 0 and the other
would tend to infinity.

It is assumed that the stringer is an elastic line to which tensile force is
applied. It is also assumed that stresses within the plate and the stringer
are produced by a single axial force applied to the stringer origin 0 and
directed along the negative x-axis.

Let E be the elastic constant of the plate, E0 the elastic modulus of the
stringer, h the plate thickness, and S0 the stringer cross-section; h and S0
are assumed to be constant values.

According to the condition, the part of the half-plane border (on the left-
hand side of the origin) is free from load. Therefore the boundary conditions
are written as

σy = τxy = 0 for x < 0, (2.1)

where σx, σy, σxy are the stress components. On the other part of the
border, where the plate is reinforced by the stringer, forces are in the state
of equilibrium and there is no bending moment, the boundary conditions
read as

p0 − h
∫ x

0
τxy dt + kσx = 0, −h

∫ x

0
σy dt = 0 for x > 0, (2.2)

where k = E0S0
E . Combined together, the latter conditions acquire the form

p0 − h
∫ x

0
(τxy + iσy) dt + kσx = 0 (x > 0). (2.3)

Let us recall the well-known Kolosov–Muskhelishvili representation

σx + σy = 2
[

ϕ′(z) + ϕ′(z)
]

, σy − σx + 2iτxy = 2
[

zϕ′′(z) + ψ′(z)
]

(2.4)

(see [3]) and the Muskhelishvili formula

−i
∫ t

0
(τxy + iσy) dτ = ϕ(t) + tϕ′(t) + ψ(t) + const . (2.5)

By virtue of (2.4) and (2.5) we can rewrite (2.1) and (2.3) as

ϕ(t) + tϕ′(t) + ψ(t) = 0 (t < 0),

ip0 + h
[

ϕ(t) + tϕ′(t) + ψ(t)
]

+

+ik Re
[

ϕ′(t) + ϕ′(t)− tϕ′′(t)− ψ′(t)
]

= 0 (t > 0),

(2.6)



ON THE PRANDTL EQUATION 529

with some nonessential constants omitted.
To solve problem (2.6), we are to find a function w(t) = µ(t) + iν(t) on

[0,∞] which is related to the complex potentials ϕ(z), ψ(z) by the formulae

ψ(z) = −ϕ(z)− zϕ′(z), y < 0 (z = x + iy), (2.7)

ϕ(z) = − p0

2πh
ln z + ϕ0(z), (2.8)

ϕ0(z) = − 1
2πi

∫ ∞

0

ω(τ)
τ − z

dτ, (2.9)

where under ln z we mean any fixed branch, say arg z = 0 when x > 0,
y = 0.

For the function w(t) we assume that w(t) ∈ Lp(R+) for some p > 1,
w′(t) ∈ L1(R+).

For the function w(t) we get

µ(t) = 0, (2.10)

ν(t)− λ
π

∫ ∞

0

ν′(τ)
τ − t

dτ = 0 (t > 0) (2.11)

where

λ =
2E0S0

Eh
and

ν(0) = −p0

h
. (2.12)

Thus for the density of integral (2.9) we have obtained the Prandtl equa-
tion (2.11) and the boundary condition (2.12).

One can readily obtain equation (2.11) by considering the problem of an
infinite plane with a half-infinite stringer attached along the half-axes R+.

§ 3. A Nonhomogeneous Equation in Bessel Potential Spaces

Lemma 3.1. The Prandtl operator

Aν(t) = ν(t)− λ
π

∫ ∞

0

ν′(τ)
τ − t

, λ > 0, (3.1)

emerging in equation (2.11) is a convolution operator

Aν(t) = F−1(1 + λ|x|)Fν(t)

with the symbol 1 + λ|x| ∈ M (1)
p (R) of first order (see [8]).
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Proof. Note that

FSRν(t) = F
(

1
πi

∫

R

ν(τ)
τ − t

dτ
)

= − sgnxFν(t)

[8, § 1] and
F(ν′(t)) = −ixFν(t).

Therefore

FAν(t) =
(

1− iλ(−ix)(− sgnx)
)

Fν(t) = (1 + λ|x|)Fν(t)

and the operator

r+A : ˜Hs
p(R+) → Hs−1

p (R+), 1 < p < ∞, s ∈ R, (3.2)

is bounded [8, § 5].

Let us investigate operator (3.1).

Theorem 3.1. Let s ∈ R and s = [s] + {s}, [s] = 0,±1,±2, . . . , 0 ≤
{s}<1, be the decomposition of s into the integer part and the fractional one.
The operator r+A in (3.2) is Fredholm if and only if |{s}− 1

p | 6=
1
2 . When the

latter condition is fulfilled, the operator r+A is invertible, invertible from the
left or invertible from the right provided that κ is zero, positive or negative,
respectively.

Here

κ = [s] if
∣

∣

∣{s} −
1
p

∣

∣

∣ <
1
2

,

κ = [s] + 1 if {s} − 1
p

>
1
2

,

κ = [s]− 1 if {s} − 1
p

< −1
2
,

(3.3)

and
Ind r+A = −κ.

We need the following lemma from [8, § 5].

Lemma 3.2. The operators

Λs
+ = (D + i)sl+, Λs

− = r+(D − i)s,

(D ± i)±sϕ = F−1(x± i)±sFϕ, ϕ ∈ C∞0 (R+),

arrange the isomorphisms of the spaces

Λs
+ : ˜Hs

p(R+) → Lp(R+), Λ−s
− : Lp(R+) → Hs

p(R+). (3.4)
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Proof of Theorem 3.1. Consider the lifted operator B = Λs−1
− r+AΛ−s

+

˜Hs
p(R+)

r+A−−−−→ Hs−1
p (R+)





y
Λ−s

+





y
Λs−1
−

Lp(R+) B−−−−→ Lp(R+)

. (3.5)

Due to Lemma 3.2 the operators r+A and B are isometrically equivalent
and therefore it suffices to study the operator B in the space Lp(R+) (see
diagram (3.5)).

The presymbol b(x) of B equals

b(x) =
1 + λ|x|
(x + i)s (x− i)s−1 =

(x− i
x + i

)s 1 + λ|x|
x− i

(3.6)

belonging to the class PCp(R), 1 < p < ∞ [8].
The corresponding p-symbol reads as

bp(x, ξ) =
1
2

[

˜b(x− 0) +˜b(x + 0)
]

+

+
1
2

[

˜b(x− 0)−˜b(x + 0)
]

cothπ
( i

p
+ ξ

)

(3.7)

[8, § 4], where ˜b(x± 0) = b(x± 0), x ∈ R, ˜b(∞± 0) = b(±∞).
When s is not an integer, s 6= 0,±1, . . . , the function (x−i

x+i )
s has a jump

on
◦
R = R ∪ {∞} and we fix this jump at infinity, i. e., b(−∞) 6= b(+∞).
Since s = [s] + {s}, where [s] = 0,±1,±2, . . . , 0 ≤ {s} < 1, we can

rewrite b(x) as follows:

b(x) =
(x− i

x + i

)[s](x− i
x + i

){s} 1 + λ|x|
x− i

=

= −
(x− i

x + i

)[s] 1 + λ|x|
(x2 + 1)

1
2

(x− i
x + i

){s}− 1
2 ≡ g(x)b0(x), (3.8)

where

g(x) = −
(x− i

x + i

)[s] 1 + λ|x|
(x2 + 1)

1
2

, b0(x) =
(x− i

x + i

){s}− 1
2
, (3.9)

g(x) is a continuous function and ind g = [s].
Now let us investigate the p-symbol of b0(x). We shall consider three

cases.
I. {s} = 1

2 . It is easy to show that b0(x) is the continuous function
b0(−∞) = b0(+∞) and ind b0

p = 0.
II. 0 ≤ {s} < 1

2 . This situation is shown in Fig. 1, where the image
of b(x) is plotted on the complex plane and the answer depends on the
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connecting function coth π( i
p + ξ) (coth z = ez+e−z

ez−e−z ) which fills up the gap
between b0(±∞).

b0(x)

e2π({s}− 1
2 )i

6

-1

Fig. 1

Let us define the image Im b0
p(∞, 0).

Since

b0
p(∞, 0) =

1
2
(

1 + e2π({s}− 1
2 )i)− 1

2
(

1− e2π({s}− 1
2 )i)i ctg

π
ρ

,

we obtain

Im b0
p(∞, 0) = i

[

sin(2π{s} − π)− ctg
π
p

+ ctg
π
p

cos(2π{s} − π)
]

=

=
[

− sin 2π{s} − ctg
π
p
− cos

π
p

cos 2π{s}
]

i =

= −2 cos π{s}
[

sin π{s}+ ctg
π
p

cos π{s}
]

i =

= −2 cos π{s}
sin π

p
cos

(π
p
− π{s}

)

i.

If − 2 cos π{s}
sin π

p
cos(π

p − π{s}) > 0, then ind b0
p = −1 and this inequality

implies

cos
(π

p
− π{s}

)

<0 =⇒ 2πk +
π
2

<
π
p
− π{s}<

3π
2

+ 2πk =⇒ 1
2

<
1
p
− {s}

because cos π{s} > 0, 0 ≤ {s} < 1
2 , − 1

2 < 1
p − {s} < 1.

In a similar manner, 1
i Im b0

p(∞, 0) < 0 implies 1
p − {s} < 1

2 , ind b0
p = 0

and if 1
p − {s} = 1

2 , then inf |b0
p| = 0.

III. When 1
2 < {s} < 1, we can proceed as in the foregoing case and

obtain

ind b0
p = 1 if

1
p
− {s} < −1

2
, ind b0

p = 0 if
1
p
− {s} > −1

2
,

and inf |b0
p| = 0 if

1
p
− {s} = −1

2
.
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Hence by virtue of the equality ind bp = ind g + ind b0
p we have

ind b0
p = [s]− 1 if {s} − 1

p
< −1

2
,

inf |bp| = 0 if
∣

∣

∣{s} −
1
p

∣

∣

∣ =
1
2

,

ind |bp| = [s] if
∣

∣

∣{s} −
1
p

∣

∣

∣ <
1
2
,

and ind bp = [s] + 1 if {s} − 1
p

>
1
2

.

(3.10)

Lemma 3.3. The function b (see (3.6)) has the p′-factorization

b(ξ) = b−(ξ)
(ξ − i

ξ + i

)κ
b+(ξ)

(see Definition 1.22 and Theorem 4.4 in [8]). Here

I. κ = [s], b±(ξ) = g±(ξ)
( −2i

ξ ∓ i

)∓({s}− 1
2 )

, when
∣

∣

∣{s} −
1
p

∣

∣

∣ <
1
2

,

II. κ = [s] + 1, b±(ξ) = g±(ξ)
( −2i

ξ ∓ i

)∓({s}− 3
2 )

, when {s} − 1
p

>
1
2

,

III. κ = [s]− 1, b±(ξ) = g±(ξ)
( −2i

ξ ∓ i

)∓({s}+ 1
2 )

, when {s} − 1
p

<
1
2

,

where

g±(ξ) = ± exp
1
2
(I ± SR) ln

1 + λ|ξ|
(ξ2 + 1)

1
2
.

Proof. This fact is valid since g(ξ) = −( ξ−i
ξ+i )

[s] 1+λ|ξ|
(ξ2+1)

1
2

is a nonvanishing

continuous function and has the following general p′-factorization which is
the same for all 1 < p < ∞:

g(ξ) = g−(ξ)
(ξ − i

ξ + i

)[s]
g+(ξ)

with

g±(ξ) = ± exp
1
2

(I ± SR) ln
1 + λ|ξ|

(ξ2 + 1)
1
2

.

For b0(ξ) we have

b0(ξ) =
( −2i

ξ + i

){s}− 1
2
( −2i

ξ − i

) 1
2−{s}

,

− 1
p

<
1
2
− {s} < 1− 1

p
or

∣

∣

∣{s} −
1
p

∣

∣

∣ <
1
2

,
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b0(ξ) =
( −2i

ξ + i

){s}− 3
2
(ξ − i

ξ + i

)( −2i
ξ − i

) 3
2−{s}

,

− 1
p

<
3
2
− {s} < 1− 1

p
or {s} − 1

p
>

1
2

,

b0(ξ) =
( −2i

ξ + i

){s}+ 1
2
(ξ − i

ξ + i

)−1( −2i
ξ − i

)− 1
2−{s}

,

− 1
p

< −1
2
− {s} < 1− 1

p
or {s} − 1

p
< −1

2
.

§ 4. A Homogeneous Equation in the Bessel Potential Spaces

Theorem 4.1. Let

1 ≤ s <
1
p

+
1
2

(4.1)

and A be the operator defined by equation (3.1). Then the operator

r+A : Hs
p(R+) → Hs−1

p (R+) (4.2)

is Fredholm and

Ind r+A = 1. (4.3)

Proof. Since 0 ≤ s − 1 < 1
p , the spaces ˜Hs−1

p (R+) and Hs−1
p (R+) can be

identified (see [9, Theorem 2.10.3c]); thus

∂ : Hs
p(R+) → Hs−1

p (R+) = ˜Hs−1
p (R+), ∂u(x) :=

du(x)
dx

,

is a bounded operator. Now

r+A = I − 2iλSR+∂ : Hs
p(R+) → Hs−1

p (R+), SR+u(x) =
1
πi

∫ ∞

0

u(y) dy
y − x

is bounded because SR+ : ˜Hθ
p (R+) → Hθ

p (R+) is bounded for arbitrary
θ ∈ R [8, § 5] and the embedding Hs

p(R+) ⊂ Hs−1
p (R+) is continuous [9,

§ 2.8].
Next we have to show that dimKer r+A = 1.
Let us fix arbitrary u0 ∈ Hs

p(R+) with u0(0) = 1 (note that u(0) exists
due to the embedding Hs

p(R+) ⊂ C(R+) [9, § 2.8]). Then

Hs
p(R+) = ˜Hs

p(R+) + {λu0}λ∈C (4.4)

because an arbitrary function v ∈ Hs
p(R+) can be represented as

v = v0 + v(0)u0, v0 = v − v(0)u0 ∈ ˜Hs
p(R+).
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Since u0 ∈ Hs
p(R+), we have r+Au0 ∈ Hs−1

p (R+) and due to Theo-
rem 3.1 (r+A is invertible) there exists a function ϕ0 ∈ ˜Hs

p(R+) such that
ϕ0 = −r+A(r+Au0). Then ϕ0 + u0 ∈ Ker r+A because r+A(ϕ0 + u0) = 0.

Now let v1, v2 ∈ Ker r+A. Due to Theorem 3.1 vk(0) 6= 0 because if
vk ∈ ˜Hs

p(R+) ∩ Ker r+A, then vk = 0 (k = 1, 2). For the same reason v =
v1− v1(0)

v2(0)
v2 = 0, because v(0) = 0 and v ∈ Ker r+A. Thus dim Ker r+A = 1.

From (4.4) we obtain Hs
p(R+) = ˜Hs

p(R+)+Ker r+A and by Theorem 3.1
we conclude that r+AHs

p(R+) = Hs−1
p (R+), i.e., dim CoKer r+A = 0. The

results obtained imply that (4.2) is Fredholm and (4.3) holds.

Proof of Theorem 0.1. We know that

Hs
p(R+) ⊂ W 1

p1
(R+) provided that 1<p≤p1 <∞, s− 1

p
≥1− 1

p1
(4.5)

[9, § 2.8]. On the other hand, for any 1 < p1 < 2 we can find s and p which
satisfy conditions (4.1) and (4.5). Therefore by Theorem 4.1 the solutions
of the Prandtl homogeneous equations can be written as

v = v0 + c0u0, v0 ∈ ˜Hs
p(R+). (4.6)

Obviously, v(0) = c0 (see (0.2)) while v0 in (4.6) is the unique solution of
the equation r+Av0 = −c0r+Au0 ∈ Hs−1

p (R+) provided that 1 < p < 2 (see
Theorem 3.1).

If p1 ≥ 2, from (4.5) we obtain

s− 1/p ≥ 1/2 . (4.7)

Note that for 1
p < s < 1

p +1 operator (4.2) is bounded and representation
(4.4) holds (see the proof of Theorem 4.1). Therefore for

1/p + 1/2 ≤ s < 1/p + 1 (4.8)

we obtain either [s] = 0 and 1/2 ≤ {s} − 1/p < 1, or [s] = 1 and −1/2 ≤
{s} − 1/p < 0.

By Theorem 3.1 we conclude that Ind r+A = −1 provided that |{s}− 1
p | 6=

1
2 (for |{s} − 1

p | = 1
2 operator (3.2) is not normally solvable as proved in

[8, § 4]). Hence dimKer r+A = 0 (including the case |{s} − 1
p | = 1

2 ) and
dimCo Ker r+A = 1.

Now let us show that operator (4.2) has the trivial kernel Ker r+A = {0}.
For this we consider the function u0 ∈ Hs

p(R+), u0(0) = 1, from the proof
of Theorem 4.1. Then we cannot find ϕ ∈ ˜Hs

p(R+) such that r+Aϕ =
−c0r+Au0, c0 6= 0. Be it otherwise, we would have

c0u0+ϕ=I(c0u0+ϕ)=2λiSR+∂(c0u0 + ϕ)∈Hs−1
p (R+)= ˜Hs−1

p (R+), (4.9)
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since the spaces Hs−1
p (R+) and ˜Hs−1

p (R+) can be identified for 1
p − 1 <

s− 1 < 1
p . Thus c0 = c0u0 + ϕ(0) = 0, which is a contradiction. Therefore

under condition (4.8) operator (4.2) is invertible and equation (0.1) would
have only a trivial solution in W 1

p (R+) (p ≥ 2).
If s > 1 + 1

p , operator (4.2) is unbounded, since there exists a function
u ∈ Hs

p(R+) with the property u′(0) 6= 0, u′ ∈ Hs−1
p (R+) ⊂ C(R+). Thus

SRu′ has a logarithmic singularity at 0 and the inclusion u′ ∈ Hs−1
p (R+) ⊂

C(R+) fails to hold.
If s = 1 + 1

p , operator (4.2) is unbounded. Otherwise, due to the bound-
edness, for s = 1, 1 < p0 < 2, the complex interpolation theorem will imply
that operator (4.2) is bounded for 1

p + 1
2 ≤ s < 1

p + 1, which contradict the
proved part of the theorem.
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