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THE THREE-DIMENSIONAL PROBLEM OF STATICS OF
THE ELASTIC MIXTURE THEORY WITH

DISPLACEMENTS GIVEN ON THE BOUNDARY

M. BASHELEISHVILI

Abstract. The first three-dimensional boundary value problem is
considered for the basic equations of statics of the elastic mixture
theory in the finite and infinite domains bounded by the closed sur-
faces. It is proved that this problem splits into two problems whose
investigation is reduced to the first boundary value problem for an el-
liptic equation which structurally coincides with an equation of stat-
ics of an isotropic elastic body. Using the potential method and the
theory of Fredholm integral equations of second kind, the existence
and uniqueness of the solution of the first boundary value problem is
proved for the split equation.

Basic homogeneous equations of statics of the elastic mixture theory have
the form [1]

a1∆u′ + b1 grad div u′ + c∆u′′ + d grad div u′′ = 0,

c∆u′ + d grad div u′ + a2∆u′′ + b2 grad div u′′ = 0,
(1)

where a1, b1, c, d, a2, b2 are the coefficients kharacterizing the physical
properties of an elastic mixture, u′ and u′′ are partial displacements.

The problem to be considered in this paper is formulated as follows:
given a continuous displacement vector on the boundary S, in the domain
D+ (or D−) find a solution u(u′, u′′) ∈ C(D±) ∩ C2(D±) of equation (1).
This problem is investigated in the space C1,α(D±)∩C2(D±) in [1] by the
method of potentials and the theory of singular integral equations.

Here we give a different technique of solving the above problem. Our
investigation is carried out using Fredholm integral equations of second kind.

1991 Mathematics Subject Classification. 73C02.
Key words and phrases. Theory of elastic mixtures, boundary value problem, Fred-

holm integral equations.

517
1072-947X/99/1100-0517$16.00/0 c© 1999 Plenum Publishing Corporation



518 M. BASHELEISHVILI

Instead of the vectors u′ and u′′ we introduce the vectors

v′ = u′ + X1u′′, v′′ = u′ + X2u′′, (2)

where X1 and X2 are the roots of the quadratic equation

ε2X2 − (ε4 − ε1)X − ε3 = 0. (3)

Here the coefficients ε1, ε2, ε3, ε4, are defined as follows [2]:

δ0ε1 = 2(a2b1 − cd) + b1b2 − d2, δ0ε2 = 2(da1 − cb1),

δ0ε3 = 2(da2 − cb2), δ0ε4 = 2(a1b2 − cd) + b1b2 − d2,

δ0 = (2a1+b1)(2a2+b2)−(2c+d)2≡4∆0d1d2, ∆0 =m1m3−m2
2 >0,

d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0, d2 = a1a2 − c2 > 0,

m1 = l1 +
l4
2

, m2 = l2 +
l5
2

, m3 = l3 +
l6
2

, l1 =
a2

d2
, l2 = − c

d2
,

l3 =
a1

d2
, l1 + l4 =

a2 + b2

d1
, l2 + l5 = −c + d

d1
, l3 + l6 =

a1 + b1

d1
.

(4)

If the equality ε2 = ε3 = 0 holds, then by (4) we obtain

b1

a1
=

d
c

=
b2

a2
= λ. (5)

The substitution of these values into (1) gives

a1(∆u′ + λ grad div u′) + c(∆u′′ + λ grad div u′′) = 0,

c(∆u′ + λ grad div u′) + a2(∆u′′ + λ grad div u′′) = 0.

Since a1a2−c2 >0, we now have ∆u′+λ grad div u′=0, ∆u′′+λ grad div u′′=0,
i.e., the basic equations and the first boundary value problem split so that
they can be investigated as the first three-dimensional boundary value prob-
lem of statics of an isotropic elastic body [3].

In what follows it will be assumed without loss of generality that ε2 6= 0.
Then the roots of equation (3) can be expressed as

2ε2X1 = ε4 − ε1 +
√

(ε1 − ε4)2 + 4ε2ε3,

2ε2X2 = ε4 − ε1 −
√

(ε1 − ε4)2 + 4ε2ε3.
(6)

Since

(ε1 − ε4)2 + 4ε2ε3 =
4

δ2
0a1a2

{

[

a2(da1 − cb1) + a1(da2 − cb2)
]2

+

+ d2(a1b2 − a2b1)2
}

> 0,
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the roots X1 and X2 are different real values. Note that conditions (5) are
fulfilled if the discriminant of equation (3) is equal to zero. In addition to
X1 and X2, we also need the values

2k1 =ε1+ε4+
√

(ε1−ε4)2+4ε2ε3, 2k2 =ε1+ε4−
√

(ε1−ε4)2+4ε2ε3.

We prove that

−1 < kj < 1, j = 1, 2, (7)

and

(1− k1)(1− k2) = 4d2/δ0. (8)

Now from (2) we have

u′ =
−X2v′ + X1v′′

X1 −X2
, u′′ =

v′ − v′′

X1 −X2
. (9)

After substituting these experssions into (1) and performing some simple
transformations, we obtain

(c−a1X2)(∆v′+M1 grad div v′)+(a1X1−c)(∆v′′+M2 grad div v′′)=0,

(a2−cX2)(∆v′+M1 grad div v′)+(cX1−a2)(∆v′′+M2 grad div v′′)=0,
(10)

where

M1 =
d− b1X2

c− a1X2
=

b2 − dX2

a1 − cX2
, M2 =

b1X1 − d
a1X1 − c

=
dX1 − b2

cX1 − a2
. (11)

Let us consider equations (10) as a system with respect to ∆v′ +
M1 grad div v′ and ∆v′′ + M2 grad div v′′. Since

(c− a1X2)(cX1 − a2)− (a2 − cX2)(a1X1 − c) = d2(X2 −X1) 6= 0,

from (10) we have

∆v′ + M1 grad div v′ = 0, (12)

∆v′′ + M2 grad div v′′ = 0. (13)

Thus we have shown that the three-dimensional boundary value problem
of statics of the theory of elastic mixtures with given displacements on the
boundary splits in the general case.

Equations (12) and (13) can be combined as one equation

∆v + M grad div v = 0, (14)

where v=v′ for M =M1 and v=v′′ for M =M2. It is obvious that equation
(14) is an elliptic system if 1 + M >0, i.e., 1+M1 >0 and 1+M2 >0.
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Let us show that these conditions hold for M1 and M2. To this end, we
have to write the expressions of M1 and M2 in a different form. From (11)
it obviously follows that M1 = (b2−dX2)(cX1−a2)

(a2−cX2)(cX1−a2)
. Taking into account

X1 + X2 = (ε4 − ε1)/ε2, X1X2 = −ε3/ε2,

and performing some obvious calculations, from equation (3) we obtain

M1 = (a2b1 − cd + (da1 − cb1)X1)/d2. (15)

In a similar manner we have

M2 = (a2b1 − cd + (da1 − cb1)X2)/d2. (16)

The substitution of the values X1 and X2 from (6) into (15) and (16) gives

M1 =
a1b2 + a2b1 − 2cd

2d2
+

δ0

4d2

√

(ε1 − ε4)2 + 4ε2ε3,

M2 =
a1b2 + a2b1 − 2cd

2d2
− δ0

4d2

√

(ε1 − ε4)2 + 4ε2ε3.
(17)

Now using (8) and carrying out some elementary transformations we have

M1 = 2k1/(1− k1), M2 = 2k2/(1− k2). (18)

Hence by virtue of (7) we obtain

1 + M1 =
1 + k1

1− k1
> 0, 1 + M2 =

1 + k2

1− k2
> 0. (19)

It has thus been shown that (14) is an elliptic system. Now setting

v = ∆Ψ−M(M + 1)−1 grad div Ψ

in (14), we obtain the equation

∆∆Ψ = 0. (20)

that defines the unknown vector Ψ.
For equation (14) we introduce the generalized stress vector

κ
Tv = (1 + κ)

∂v
∂n

+ (M − κ)ndiv v + κ[n rot v],

where κ is an arbitrary real constant. Now in (20) let

Ψ = Er/2, (21)

where E is the three-dimensional unit matrix,

r =

√

√

√

√

3
∑

k=1

(xk − yk)2, (22)



THE THREE-DIMENSIONAL PROBLEM 521

x1, x2, x3 and y1, y2, y3 are the coordinates of the points x and y, respec-
tively. By virtue of (21) and (22) we can rewrite the basic fundamental
matrix for equation (14) as Γ(x− y) = ‖Γkj‖3×3, where

Γkj =
δkj

r
− M

2(1 + M)
∂2r

∂xk∂xj
≡ 2 + M

2(1 + M)
δkj

r
+

M
2(1 + M)

1
r

∂r
∂xk

∂r
∂xj

.

Let us now calculate, with respect to the coordinates of x, the general-
ized stress operator of the basic fundamental matrix. After some obvious

calculations we obtain
κ
T xΓ(x− y) = ‖(

κ
T xΓ(j))k‖3×3, where

(
κ
T xΓ(j))k =

[

(1 + κ)
2 + M

2(1 + M)
− κ

]

δkj
∂

∂n(x)
1
r

+ (1 + κ)
3M

2(1 + M)
×

× ∂r
∂xk

∂r
∂xj

∂
∂n(x)

1
r

+
1

2(1 + M)
[κ(2 + M)−M ]

(

nj
∂

∂xk
− nk

∂
∂xj

)1
r
.

For the matrix
κ
T xΓ(x− y) to contain only a weak singulary at x = y it

is necessary and sufficient that κ(2 + M)−M = 0, i.e., that

κ = M/(M + 2). (23)

When κ is defined by (23), the generalized stress operator will be denoted
by N . We have

NxΓ(x−y)=
1

2+M

∥

∥

∥2δkj +3M
∂r
∂xk

∂r
∂xj

∥

∥

∥

3×3
· ∂
∂n(x)

1
r
, k, j =1, 2, 3.

It is obvious that

NyΓ(y − x) =
1

2 + M

∥

∥

∥2δkj + 3M
∂r
∂xk

∂r
∂xj

∥

∥

∥

3×3
· ∂
∂n(y)

1
r
. (24)

By direct calculations it is proved that each column of matrix (24) is a
solution of equation (14) with respect to x when x 6= y. Taking into account
formulas (18) and (19), we obtain

κ1 = k1 = M1/(2 + M1), κ2 = k2 = M2/(2 + M2).

Green’s formula for the operator N is obtained in a usual manner [2] and
for the regular vector v has the form

∫

D+
N(v, v)dy1 dy2 =

∫

S
vNv ds, (25)

where v is a solution of equation (14) and

N(v, v)=
(1−2k

3
+

2k
1−k

)

(div v)2+
1+k

3

[(∂v1

∂y1
− ∂v2

∂y2

)2
+

(∂v1

∂y1
− ∂v3

∂y3

)2
+
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+
(∂v2

∂y2
− ∂v3

∂y3

)2]

+
1+k

2

[(∂v2

∂y1
+

∂v1

∂y2

)2
+

(∂v3

∂y1
+

∂v1

∂y3

)2
+

(∂v3

∂y2
+

+
∂v2

∂y3

)2]

+
1−k

2

[(∂v2

∂y1
− ∂v1

∂y2

)2
+

(∂v3

∂y2
− ∂v2

∂y3

)2
+

(∂v1

∂y3
− ∂v3

∂y1

)2]

. (26)

For the infinite domain D− we have
∫

D−
N(v, v)dy1 dy2 = −

∫

S
vNv ds. (27)

In this case the vector v satisfies at infinity the conditions

v = O(ρ−1),
∂v
∂xk

= O(ρ−2), k = 1, 2, 3,

where ρ =
√

x2
1 + x2

2 + x2
3. To use formulas (25) and (27) in the proof of the

uniqueness theorems it is necessary that expression (26) have a positively
defined form both for k1 and k2. Since (7) is fulfilled, all the terms in (26)
except for the first one are positive. From (17) we obtain

M1 +
1
2

=
a1(b2 − λ5) + a2(b1 − λ5)− 2c(d + λ5) + ∆1

2d2
+

+
δ0

4d2

√

(ε1 − ε4)2 + 4ε2ε3 > 0,

where ∆1 =µ1µ2−µ2
3 > 0 and a1(b2−λ5)+a2(b1−λ5)−2c(d+λ5)>0 [2]. By

the first formula of (18) we have k1 >−1
3 . Therefore − 1

3 <k1 <1. Then

1− 2k1

3
+

2k1

1− k1
=

(2k1 + 1)(k1 + 1)
3(1− k1)

> 0.

For the expression 1−2k2
3 + 2k2

1−k2
= (2k2+1)(k2+1)

3(1−k2)
to be positive it is neces-

sary and sufficient that (2k2 +1)(k2 +1) > 0. After obvious transformations
the expanded form of this inequality is

1
δ0

[

9(b1b2 − d2) + 6(a1b2 + a2b1 − 2cd) + 4d2
]

≡

≡ 1
δ0

[

(2a1 + 3b1)(2a2 + 3b2)− (2c + 3d)2
]

> 0, (28)

where δ0 is given by (4). When (28) is fulfilled, the first term of formula
(26) will be positive, too, for k=k2. In what follows it will be assumed that
(28) is valid.

Solutions of the first boundary value problem for equations (12) and (13)
are sought for in the form

v′(x) =
1
2π

∫

S
N (1)

y Γ(1)(y − x)g′(y) ds, (29)



THE THREE-DIMENSIONAL PROBLEM 523

v′′(x) =
1
2π

∫

S
N (2)

y Γ(2)(y − x)g′′(y) ds, (30)

where g′(y) and g′′(y) are the unknown vector functions and

N (i)
y Γ(i)(y−x)=

∥

∥

∥(1−ki)δkj +3ki
∂r
∂xk

∂r
∂xj

∥

∥

∥

3×3
· ∂
∂n(y)

1
r
, i=1, 2.

In the case of the first internal problem, to define g′ and g′′, we obtain by
virtue of the properties of potentials (29) and (30) [3] the Fredholm integral
equation of second kind

− g′(z) +
1
2π

∫

S
N (1)

y Γ(1)(y − z)g′(y) ds = f (1)(z),

− g′′(z) +
1
2π

∫

S
N (2)

y Γ(2)(y − z)g′′(y) ds = f (2)(z),
(31)

where the vectors f ′(z) and f ′′(z) given on the boundary S are the bound-
ary values of the vectors v′ and v′′, respectively. Since it is assumed that
condition (28) is fulfilled, the quadratic form (26) is positively defined both
for k1 and k2. Applying the method developed in [3] to (31), we readily
conclude that these equations have unique solutions g′ and g′′ ∈ C1,α(S) if
f (i) ∈ C1,α(S) and S ∈ C2,β , where i = 1, 2, 0 < β < α ≤ 1.

Similar arguments can be used in considering the first boundary value
problem for the infinite domain D− bounded by the closed surface S. In
that case we are to seek for a solution the manner as follows:

v′(x)=
1
2π

∫

S
N (1)

y Γ(1)(y−x)g′(y)ds+
1
4π

Γ(1)(x)
∫

S
N (1)

y Γ(1)(y)g′(y)ds,

v′′(x)=
1
2π

∫

S
N (2)

y Γ(2)(y−x)g′′(y)ds+
1
4π

Γ(2)(x)
∫

S
N (2)

y Γ(2)(y)g′′(y)ds.
(32)

To define the unknown vectors g′(y) and g′′(y) we respectively obtain the
Fredholm integral equations of second kind

g′(z) +
1
2π

∫

S
N (1)

y Γ(1)(y − z)g′(y) ds +

+
1
4π

Γ(1)(z)
∫

S
N (1)

y Γ(1)(y)g′(y) ds = f (1)(z),

g′′(z) +
1
2π

∫

S
N (2)

y Γ(2)(y − z)g′′(y) ds +

+
1
4π

Γ(2)(z)
∫

S
N (2)

y Γ(2)(y)g′′(y) ds = f (2)(z),

(33)

where f (1), f (2) and S satisfy the above conditions. Again applying the
method developed in [3] we find that equations (33) have unique solutions
and g(g′, g′′) ∈ C1,α(s).
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Thus we have proved that the vectors v′(x) and v′′(x) are uniquely defined
both for the finite domain D+ and the infinite domain D−. By virtue of (9)
this means that u′ and u′′, i.e., the vector u(u′, u′′), are defined uniquely,
too.

Using the methods and arguments from [4] and [5, Ch. II, §4], we can
prove that the Fredholm equations (31) and (33) are also uniquely solvable
in the space of continuous vectors (provided that f (i) ∈ C(s), i = 1, 2),
while the first three-dimensional problem for equations (1) and (14) (i.e.,
(12) and (13)) is uniquely solvable in the class C(D±) ∩ C2(D±)).

Since potentials (29), (30), and (32) with continuous densities are contin-
uous in the respective closed domains, the results obtained above prove the
unique solvability of the considered problems in the class C(D±)∩C2(D±)
when the boundary data are continuous.

The above reasoning also enables us to construct effective (explicit) so-
lutions of the first three-dimensional boundary value problem of the elastic
mixture theory for those specific domain for which we can effectively con-
struct a solution of the elastostatic problem with given displacements on
the boundary.
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