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LIMIT DISTRIBUTION OF THE MEAN SQUARE
DEVIATION OF THE GASSER–MÜLLER

NONPARAMETRIC ESTIMATE OF THE REGRESSION
FUNCTION

R. ABSAVA AND E. NADARAYA

Abstract. Asymptotic distribution of the mean square deviation of
the Gasser–Müller estimate of the regression curve is investigated.
The testing of hypotheses on regression function is considered. The
asymptotic behaviour of the power of the proposed criteria under
contiguous alternatives is studed.

Let {Ynk, k = 1, . . . , n}n≥1 be a sequence of arrays of random variables
defined as follows:

Ynk = g(xnk) + Znk, xnk =
k
n

, k = 1, . . . , n, n ≥ 1,

where g(x), x ∈ [0, 1], is the unknown real-valued function to be estimated
by given observations Ynk; Znk, k = 1, . . . , n, is a sequence of arrays of
independent random variables identically distributed in each array such
that EZnk = 0, EZ2

nk = σ2, k = 1, . . . , n, n ≥ 1.
Let us consider the estimate of the function g(x) from [1]:

gn(x) =
n

∑

i=1

Wni(x)Yni, x ∈ [0, 1],

where

Wni = b−1
n

∫

∆i

K
(x− t

bn

)

dt, ∆i =
[ i− 1

n
,

i
n

]

.

Here K(x) is some kernel, bn is a sequence of positive numbers tending to 0.
Assume that the kernel K(x) has a compact support and satisfies the

conditions:
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1◦. supp(K) ⊂ [−τ, τ ], 0 < τ < ∞, sup |K| < ∞,
∫

K(u)du = 1, K(−x) = K(x),
2◦.

∫

K(u)ujdu = 0, 0 < j < s,
∫

K(u)usdu 6= 0,
3◦. K(x) has a bounded derivative in R = (−∞,∞).

Denote by Fs the family of regression functions g(x), x ∈ [0, 1], hav-
ing derivatives of order up to s (s ≥ 2), g(s)(x) is continuous. Note that
∑n

i=1 Wni(x) = 1 for x ∈ Ωn(τ) = [τbn, 1−τbn] and Egn(x) = g(x)+O(b2
n)

if the kernel K(x) satisfies condition 1◦ and g(x) ∈ F2. On the other hand,
∑n

i=1 Wni(x) 6= 1 for x ∈ [0, τbn) ∪ (1 − τbn, 1] and it may happen that
Egn(x) 6→ g(x), for example, Egn(0) → g(0)

2 (or Egn(1) → g(1)
2 ). If the es-

timate gn(x) is divided by
∑n

i=1 Wni(x), then the proposed estimate g̃n(x)
becomes asymptotically unbiased and, moreover, Eg̃n(x) = g(x) + O(bn)
for x ∈ [0, τbn) ∪ (1 − τbn, 1]. Hence the asymptotic behaviour of the esti-
mate gn(x) near the boundary of the interval [0, 1] is worse than within the
interval Ωn(τ). A phenomenon of such kind is known in the literature as
the boundary effect of the estimator gn(x) (see, for examle, [2]). It would
be interesting to investigate the limit behaviour of the distribution of the
mean square deviation of gn(x) from g(x) on the interval Ωn(τ) and this is
the aim of the present article.

The method of proving the statements given below is based on the func-
tional limit theorems for semimartingales from [3].

We will use the notation:

Un = nbn

∫

Ωn(τ)
(gn(x)− Egn(x))2dx, σ2

n = 4σ4(nbn)2
n

∑

k=2

k−1
∑

i=1

Q2
ik(n),

Qij ≡ Qij(n) =
∫

Ωn(τ)
Wni(x)Wnj(x)dx,

ηik ≡ ηik(n) = 2nbnQikZniZnkσ−1
n ,

ξnk =
k−1
∑

i=1

ηik, k = 2, . . . , n, ξn1 = 0, ξnk = 0, k > n,

F (n)
k = σ(ω : Zn1, Zn2, . . . , Znk),

where F (n)
k is the σ-algebra generated by the random variables Zn1, Zn2, . . . ,

Znk, F (n)
0 = (∅, Ω).

Lemma 1 ([4], p. 179). The stochastic sequence (ξnk,F (n)
k )k≥1 is a

martingale-difference.

Lemma 2. Suppose the kernel K(x) satisfies conditions 1◦ and 3◦. If
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nb2
n →∞, then

b−1
n σ2

n → 2σ4
∫ 2τ

−2τ
K2

0 (u) du, (1)

and

EUn = σ2
∫

K2(u)du + O(bn) + O
( 1

nbn

)

, (2)

where K0 = K ∗K (the symbol ∗ denotes the convolution).

Proof. It is not difficult to see that

σ2
n = 2σ4(nbn)2

[ n
∑

k=1

n
∑

i=1

Q2
ki −

n
∑

i=1

Q2
ii

]

= d1(n) + d2(n). (3)

Here by the definition of Qki we have

d1(n) = 2σ4n2b−2
n

∑

i,j

( ∫

∆i

∫

∆j

Ψn(t1, t2)dt1dt2

)2

,

where

Ψn(t1, t2) =
∫

Ωn(τ)
K

(x− t1
bn

)

K
(x− t2

bn

)

dx.

Using the mean value theorem, we can rewrite d1(n) as

d1(n) = 2σ4(nbn)−2
∑

i,j

Ψ2
n(θ(1)

i , θ(2)
j ),

with θ(1)
i ∈ ∆i, θ(2)

i ∈ ∆j .
Let P (x) be the uniform distribution function on [0, 1] and P (i)

n (x) the
empirical distribution function of the “sample” θ(i)

1 , . . . , θ(i)
n , i = 1, 2, i.e.,

P (i)
n (x) = n−1 ∑n

k=1 I(−∞,x)(θ
(i)
k ), where IA(·) is the indicator of the set A.

Then d1(n) can be written as the integral

d1(n) = 2σ4b−2
n

∫ 1

0

∫ 1

0
Ψ2

n(x, y)dP (1)
n (x)dP (2)

n (y). (4)

It is easy to check that
∣

∣

∣

∣

∫ 1

0

∫ 1

0
Ψ2

n(x, y)dP (1)
n (x)dP (2)

n (y)−
∫ 1

0

∫ 1

0
Ψ2

n(x, y)dP (x)dP (y)
∣

∣

∣

∣

≤I1+I2,

where

I1 =
∣

∣

∣

∣

∫ 1

0

∫ 1

0
Ψ2

n(x, y)dP (2)
n (y)[dP (1)

n (x)− dP (x)]
∣

∣

∣

∣

,
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I2 =
∣

∣

∣

∣

∫ 1

0

∫ 1

0
Ψ2

n(x, y)dP (x)[dP (2)
n (y)− dP (y)]

∣

∣

∣

∣

.

Furthermore, the integration by parts of the internal integral in I1 yields

I1 ≤ 2
∫ 1

0
dP (2)

n (y)
∫ 1

0

(

|P (1)
n (x)− P (x)| |Ψn(x, y)|b−1

n ×

×
∫

Ωn(τ)

∣

∣

∣K(1)
( t− x

bn

)∣

∣

∣

∣

∣

∣K
( t− y

bn

)∣

∣

∣dt
)

dx. (5)

Since sup
0≤x≤1

|P (i)
n − P (x)| ≤ 2

n and |Ψn(x, y)| ≤ cbn, we have

I1 = O(bn/n).

Here and in what follows c is the positive constant varying from one formula
to another.

In the same manner we may show that

I2 = O(bn/n).

Therefore

d1(n) = 2σ4b−2
n

∫ 1

0

∫ 1

0
Ψ2

n(t1, t2)dt1dt2 + O
( 1

nbn

)

. (6)

It is easy to show also that

d1(n)=2σ4
∫

Ωn(τ)

∫

Ωn(τ)

( ∫ xb−1
n

(x−1)b−1
n

K(u)K
(x− y

bn
−u

)

du
)2

dxdy+O
( 1

nbn

)

.

Since [−τ, τ ] ⊂ [x−1
bn

, x
bn

] for all x ∈ Ωn(τ), we have

d1(n) = 2σ4
∫

Ωn(τ)

∫

Ωn(τ)
K2

0

(x− y
bn

)

dx dy + O
( 1

nbn

)

.

But it is easy to see that

b−1
n d1(n) = 2σ4

∫ 1

0

( ∫ (1−y)/bn−τ

τ−y/bn

K2
0 (u) du

)

dy + O(bn) + O
( 1

nbn

)

.

Therefore

b−1
n d1(n) → 2σ4

∫

K2
0 (u) du. (7)

We can directly verify that

b−1
n |d2(n)|≤n2b−3

n

n
∑

i=1

∫

∆i

∫

∆i

∫

∆i

∫

∆i

( ∫

Ωn(τ)

∣

∣

∣K
(x− t1

bn

)

K
(x− t2

bn

)∣

∣

∣dx×
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×
∫

Ωn(τ)

∣

∣

∣K
(y − t3

bn

)

K
(y − t4

bn

)∣

∣

∣dy
)

dt1 dt2 dt3 dt4 ≤ c
1

nbn
. (8)

Statement (1) immediately follows directly from (3), (7), and (8).
Let us now show that (2) holds. We have

Dgn(x) =
σ2

nb2
n

∫ 1

0
K2

(x− t
bn

)

dPn(x),

where

Pn(x) = n−1
n

∑

k=1

I(−∞,x)(θk), θk ∈ ∆k, k = 1, . . . , n.

Applying the same argument as in deriving (6), we find

Dgn(x) =
σ2

nb2
n

∫ 1

0
K2

(x− t
bn

)

dt + O
( 1

(nbn)2

)

. (9)

Furthermore, taking into account that [−τ, τ ] ⊂ [x−1
bn

, x
bn

] for all x ∈ Ωn(τ)
by (9) we can write

Dgn(x) =
σ2

nbn

∫

K2(u) du + O((nbn)−2).

Thus

EUn = σ2
∫

K2(u) du + O(bn) + O
( 1

nbn

)

.

Theorem 1. Suppose the kernel K(x) satisfies conditions 1◦ and 3◦. If
sup
n≥1

EZ4
n1 < ∞ and nb2

n →∞, then

b−1/2
n (Un − σ2θ1)σ−2θ−1

2
d−→ξ,

where

θ1 =
∫

K2(u) du, θ2
2 = 2

∫

K2
0 (u) du.

By the symbol d−→ we denote the convergence in distribution, ξ is a
random variable distributed according to the standard normal distribution.
Proof. Note that

Un −EUn

σn
= H(1)

n + H(2)
n ,

where

H(1)
n =

n
∑

k=1

ξnk, H(2)
n =

nbn

σn

n
∑

i=1

(Z2
ni − EZ2

ni)Qii.
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H(2)
n converges to zero in probability. Indeed,

DH(2)
n =

(nbn)2

σ2
n

n
∑

i=1

EZ4
niQ

2
ii≤sup

n≥1
EZ4

n1
(nbn)2

σ2
n

n
∑

i=1

Q2
ii = sup

n≥1
EZ4

n1
|d2(n)|

σ2
n

.

This and (8) yield DH(2)
n = O(1/(nσ2

n)) = O(1/(nbn)). Hence H(2)
n

P−→0.
(By the symbol P−→ we denote the convergence in probability).

Now let us prove the convergence H(1)
n

d−→ξ. For this it is sufficient verify
the validity of Corollaries 2 and 6 of Theorem 2 from [3]. We will show
that the asymptotic normality conditions from the corresponding statement
are fulfilled by the sequence {ξnk,F (n)

k }k≥1 which is a square-integrable
martingale-difference according to Lemma 1.

A direct calculation shows that
∑n

k=1 Eξ2
nk = 1. Now the asymptotic

normality will take place if for n →∞ we have

n
∑

k=1

E[ξ2
nkI(|ξnk| ≥ ε) F (n)

k−1]
P−→0 (10)

and
n

∑

k=1

ξ2
nk

P−→1. (11)

But, as shown in [3], the validity of (11) together with the condition
sup

1≤k≤n
|ξnk|

P−→0 implies the statement (10) as well.

Since for ε > 0

P
{

sup
1≤k≤n

|ξnk| ≥ ε
}

≤ ε−4
n

∑

k=1

Eξ4
nk,

to prove H(1)
n

d−→ξ we have to verify only (11), since relation (12) given
below is fulfiled.

Now we will establish
∑n

k=1 ξ2
nk

P−→1. It is sufficient to verify that

E
(

n
∑

k=1

ξ2
nk − 1

)2
→ 0

as n →∞, i.e., due to
∑n

k=1 Eξ2
nk = 1

E
(

n
∑

k=1

ξ2
nk

)2
=

n
∑

k=1

Eξ4
nk + 2

∑

1≤k1<k2≤n

Eξ2
nk1

ξ2
nk2

→ 1.
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First show that
∑n

k=1 Eξ4
nk → 0 as n →∞. By virtue of the definitions of

ξnk and ηij we can write

n
∑

k=1

Eξ4
nk = I(1)

n + I(2)
n ,

where

I(1)
n =

16(nbn)4

σ4
n

n
∑

k=2

EZ4
nk

k−1
∑

j=1

EZ4
njQjk,

I(2)
n =

48(nbn)4

σ4
n

n
∑

k=2

k−1
∑

i 6=j

EZ2
niEZ2

njQ
2
ikQ2

jk.

On the other hand, since sup
n≥1

EZ4
n1 < ∞, |Qij | ≤ cb−1

n n−2 and b−1
n σ2

n →

σ4θ2
2, we have I(1)

n = O((nbn)−2), I(2)
n = O(1/(nσ4

n)) = O(1/(nb2
n)). Hence

n
∑

k=1

Eξ4
nk → 0, n →∞. (12)

Now let us establish that

2
∑

1≤k1<k2≤n

Eξ2
nk1

ξ2
nk2

→ 1

as n →∞. The definition of ξni yields

ξ2
nk1

· ξ2
nk2

= B(1)
k1k2

+ B(2)
k1k2

+ B(3)
k1k2

+ B(4)
k1k2

,

where

B(1)
k1k2

= σ2(k1)σ2(k2), B
(2)
k1k2

= σ2(k1)σ1(k2),

B(3)
k1k2

= σ1(k1)σ2(k2), B
(4)
k1k2

= σ1(k1)σ1(k2),

σ1(k) =
∑

i 6=j

ηikηjk, σ2(k) =
k−1
∑

i=1

η2
ik.

Therefore

2
∑

1≤k1<k2≤n

Eξ2
nk1

ξ2
nk2

=
4

∑

i=1

A(i)
n ,

where
A(i)

n = 2
∑

1≤k1<k2≤n

EB(i)
k1k2

, i = 1, 2, 3, 4.
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Let us consider the term A(3)
n . According to the definition of ηij we have

Eη2
ik2

ηsk1ηtk1 = 0, s 6= t, k1 < k2.

Thus

A(4)
n = 0. (13)

To estimate the term A(2)
n , note that sup

n≥1
EZ4

n1 < ∞ and |Qij | ≤ cb−1
n n−2.

So we obtain

|A(2)
n | ≤ c

nb2
n

σ4
n

n
∑

k1=2

k1−1
∑

i=1

Q2
ik1

≤ c
1

nσ2
n

= O
( 1

nbn

)

. (14)

Now we will verify that A(1)
n → 1 as n →∞. For this let us represent A(1)

n

in the form
A(1)

n = D(1)
n + D(2)

n ,

where

D(1)
n = 2

∑

1≤k1<k2≤n

( k1−1
∑

i=1

Eη2
ik1

)( k2−1
∑

j=1

Eη2
jk2

)

,

D(2)
n = 2

(

∑

k1<k2

B(1)
k1k2

−
∑

k1<k2

( k1−1
∑

i=1

Eη2
ik1

)( k2−1
∑

j=1

Eη2
jk2

))

.

From the definition of σ2
n it follows that

D(1)
n = 1−

n
∑

k=2

( k−1
∑

i=1

Eη2
ik

)2

,

where
n

∑

k=2

( k−1
∑

i=1

Eη2
ik

)2

≤ c
(nbn

σn

)4 n
∑

k=2

( k−1
∑

i=1

Q2
ik

)2

≤ c
1

nσ4
n

= O
( 1

nb2
n

)

.

Therefore

D(1)
n → 1 as n →∞. (15)

Next we will show that D(2)
n → 0 as n →∞. It is easy to verify that

D(2)
n = 2

∑

k1<k2

[ k1−1
∑

i=1

cov(η2
ik1

, η2
ik2

) +
k1−1
∑

i=1

cov(η2
ik1

, η2
k1k2

)
]

.
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But

Eη2
ik1

η2
ik2

≤ c
(nbn

σn

)4
Q2

ik1
Q2

ik2
≤ c

1
n4σ4

n
.

Similarly,
Eη2

ij = O(n−2σ−2
n ).

Therefore

cov(η2
ik1

, η2
ik2

) = O((nσn)−4). (16)

Furthermore, since
∑

1≤k1<k2≤n(k1 − 1) = O(n3), equation (16) implies

D(2)
n = O

( 1
nσ4

n

)

= O
( 1

nb2
n

)

. (17)

Thus, according to (15) and (17),

A(1)
n = 1 + O

( 1
nb2

n

)

. (18)

Finally, we will show that A(4)
n → 0 as n → ∞. Again, by the definition of

ηij we can write

|A(4)
n | =4

∣

∣

∣

∣

∑

k1<k2

k1−1
∑

t<s

Eηsk1ηtk1ηsk2ηtk2

∣

∣

∣

∣

≤

≤ c
(nbn

σn

)4
[

∣

∣

∣

∑

s,t,k1,k2

Qsk1Qsk2Qtk1Qtk2

∣

∣

∣ +

+
∣

∣

∣

∑

k,s,t

Q2
ksQ

2
kt

∣

∣

∣ +
∣

∣

∣

∑

k,s,t

QktQstQksQss

∣

∣

∣

]

=

= c
(nbn

σn

)4[
|E(1)

n |+ |E(2)
n |+ |E(3)

n |
]

. (19)

By the same argument as in (4), it can be shown that

E(1)
n = n−7b−8

n

∑

s,t,k

Ψn(θ(1)
s , θ(2)

k )Ψn(θ(1)
t , θ(2)

k )×

×
∫ 1

0
Ψn(θ(1)

s , u)Ψn(θ(1)
t , u)dP (1)

n (u).

Hence, integrating by parts and taking into account that sup |Ψn(t1, t2)| ≤
cbn and sup |K(1)(u)| < ∞, we obtain

E(1)
n = n−7b−8

n

∫ 1

0

∑

s,t,k

Ψn(θ(1)
s , θ(2)

k )Ψn(θ(1)
t , θ(2)

k )×
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×Ψn(θ(1)
s , u)Ψn(θ(1)

t , u))du = O
( 1

n5b4
n

)

. (20)

In the same manner, we can rewrite (20) as

E(1)
n = n−4b−8

n

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Ψn(z, u)Ψn(z, t)Ψn(y, u)×

×Ψn(y, t) du dt dy dz + O(n−5b−4
n ).

It is easy to verify that

n−4b−8
n

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
|Ψn(z, u)Ψn(z, t)Ψn(y, u)Ψn(y, t)| du dt dy dz ≤

≤ cn−4b−2
n

∫

Ωn(τ)

∫

Ωn(τ)

∣

∣

∣K0

(x− v
bn

)∣

∣

∣ dx dv ≤ cn−4b−1
n .

Thus
(nbn

σn

)4
E(1)

n = O(bn) + O
( 1

nb2
n

)

. (21)

Furthermore, it is not difficillt to show

(nbn)4σ−4
n E(2)

n = O
( 1

nb2
n

)

and

(nbn)4σ−4
n E(3)

n = O
( 1

nb2
n

)

. (22)

Therefore (19), (21), and (22) imply

A(4)
n → 0 as n →∞. (23)

Combining relations (12), (13), (14), (18), and (23), we obtain

E
( n

∑

k=1

ξ2
nk − 1

)2

→ 0 as n →∞.

Therefore
Un − EUn

σn

d−→ ξ.

But, due to Lemma 2, we have EUn = σ2θ1 + O(bn) + O((nbn)−1) and
b−1
n σ2

n → σ4θ2
2, and hence we obtain

b−1/2
b

(Un − σ2θ1

σ2θ2

)

d−→ ξ.
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Let us denote by

Tn = nbn

∫

Ωn(τ)
[gn(x)− g(x)]2dx.

Theorem 2. Suppose g(x) ∈ Fs, s ≥ 2 and K(x) satisfies conditions
1◦ − 3◦. If, in addition, sup

n≥1
EZ4

n1 < ∞, nb2
n →∞ and nb2s

n → 0, then

b−1/2
n (Tn − σ2θ1)σ−2θ−1

2
d−→ ξ.

Proof. Note that
Tn = Un + d(1)

n + d(1)
n ,

where

d(1)
n = 2nbn

∫

Ωn(τ)
[gn(x)−Egn(x)] [Egn(x)− g(x)]dx,

d(2)
n = nbn

∫

Ωn(τ)
[Egn(x)− g(x)]2dx.

It is easy to verify that

Egn(x)− g(x) = b−1
n

n
∑

i=1

∫

∆i

K
(x− t

bn

)

dx g
( i

n

)

− g(x) =

= b−1
n

∫ 1

0
K

(x− t
bn

)

[g̃n(t)− g(t)]dt +

+b−1
n

∫ 1

0
K

(x− t
bn

)

[g(t)− g(x)]dt, x ∈ Ωn(τ), (24)

with

g̃n(x) =
n

∑

i=1

g
( i

n

)

I∆i(x), ∆i =
[ i− 1

n
,

i
n

]

.

But

sup
0≤x≤1

|g̃n(x)− g(x)| ≤ max
1≤i≤n

sup
x∈∆i

∣

∣

∣g
( i

n

)

− g(x)
∣

∣

∣ =

= max
1≤i≤n

sup
x∈∆i

∣

∣

∣

i
n
− x

∣

∣

∣ |g′(τi)| = O
( 1

n

)

, τi ∈ ∆i.

Therefore the second term in (24) is O( 1
n ). Since g(x) ∈ Fs and K(x)

satisfies conditions 1◦–3◦, we have

sup
x∈Ωn(τ)

∣

∣

∣

∣

∫ 1

0
K

(x− t
bn

)

[g(t)− g(x)]dt
∣

∣

∣

∣

=
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=
bs
n

(s− 1)!
sup

x∈Ωn(τ)

∣

∣

∣

∣

∫ τ

−τ

∫ 1

0
(1− t)s−1g(s)(x + tubn)usK(u)du

∣

∣

∣

∣

≤ cbs
n. (25)

Thus from (24) and (25) it follows that

sup
x∈Ωn(τ)

|Egn(x)− g(x)| ≤ c
(

bs
n +

1
n

)

. (26)

Therefore

b−1/2
n d(2)

n ≤ c
(

nb2s
n

√

bn + bs+1/2
n + n−1

√

bn
)

. (27)

On the other hand, (9) and (26) yield

b−1/2
n E|d(1)

n | ≤ nb1/2
n

{ ∫

Ωn(τ)
E(gn(x)− Egn(x))2dx×

×
∫

Ωn(τ)
(Egn(x)− g(x))2dx

}1/2

≤ c
√

nbs. (28)

Finally, the statement of Theorem 2 follows directly from Theorem 1, (27)
and (28).

Using Theorem 2, it is easy to solve the problem of testing the hypothesis
about g(x). Given σ2, it is required to verify the hypothesis

H0 : g(x) = g0(x), x ∈ Ωn(τ).

The critical region is defined approximately by the inequality

T 0
n = nbn

∫

(gn(x)− g0(x))2dx ≥ qn(α), (29)

where

qn(α) = σ2(θ1 + λα

√

bnθ2
)

, θ1 =
∫

K2(u)du, θ2
2 = 2

∫

K2
0 (u)du,

and λα is the quantile of level 1 − α of the standard normal distribution,
i.e.,

Φ(λα) = 1− α, Φ(u) = (2π)−1/2
∫ u

−∞
exp

(

− x2

2

)

dx.

Suppose now that σ2 is unknown. We will use the b−1/2
n -consistent estimate

of variance σ2 (see, for example, [5]):

S2
n =

1
2(n− 1)

n−1
∑

i=1

(Yi+1 − Yi)2, Yi ≡ Yni.
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Indeed,

ES2
n =

1
2(n− 1)

n−1
∑

i=1

Eε2i +
1

2(n− 1)

n−1
∑

i=1

[

g
( i− 1

n

)

− g
( i

n

)]2
,

where εi = Zi+1 − Zi, Zi ≡ Zni. Moreover, since Eε2i = 2σ2, we can write

ES2
n = σ2 +

1
2(n− 1)

1
n2

n−1
∑

i=1

(g(1)(τi))2 = σ2 + O(n−2).

To calculate the variance, it is sufficient to note that

E(S2
n − σ2)2 =

1
4(n− 1)2

n−1
∑

i=1

Eε4i +O(n−2)−σ2+
1

4(n− 1)2
∑

i6=j

Eε2i Eε2j =

=
1

4(n− 1)2

n−1
∑

i=1

Eε4i +
(n− 2)(n− 3)

4(n− 1)2
(2σ2)2 − σ4 + O(n−1) =

=
1

4(n− 1)2

n−1
∑

i=1

Eε4i + O(n−1).

Since sup
n≥1

EZ4
n1 < ∞, this yields E(S2

n − σ2)2 = O(n−1). Therefore

b−1/2
n (S2

n − σ2) P−→ 0.

Corollary. Under the conditions of Theorem 2

b−1/2
n

(T 0
n − S2

nθ1

S2
nθ2

)

d−→ ξ.

This corollary enables us to construct a test for verifying

H0 : g(x) = g0(x).

The critical region is defined approximately by the inequality T 0
n ≥ q̃n(α),

where q̃n(α) is obtained from qn(α) by using S2
n instead of σ2.

Consider now the asymptotic properties of test (29) (i.e., the asymptotic
behaviour of the power function as n →∞). First, let us study the question
whether the corresponding test is consistent.

Theorem 3. Under the conditions of Theorem 2

Πn(g1) = PH1(T
0
n ≥ qn(α)) → 1, n →∞,

i.e., the test defined by (29) is consistent under any alternatives

H1 : g(x) = g1(x) 6= g0(x), ∆ =
∫ 1

0
(g1(x)− g0(x))2dx > 0.
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Proof. Denote

Zn(g1) = b−1/2
n

(

nbn

∫

Ωn(τ)
(gn(x)− g1(x))2dx− σ2θ1

)

σ−2θ−1
2 .

It is easy to show that

Πn(g1) = PH1

{

Zn(g1) ≥ −nb1/2
n (θ−1

2 σ−2∆ + op(1))
}

.

Since Zn(g1) is asymptoticaly normally distributed with parameters (0, 1)
under hypothesis H1, nb1/2

n → ∞ and ∆ > 0, we have Πn(g1) → 1 as
n →∞.

Thus under any fixed alternative the power of test (29) tends to 1 as n →
∞. Nevertheless, if the alternative hypothesis varies with n and becomes
“closer” to the null hypothesis H0, the power of the test may not converge
to 1 depending on the rate at which the alternative approaches the null
hypothesis. In our case the sequence of “close” alternatives has the form

Hn : g̃n(x) = g0(x) + γnφ(x) + o(γn). (30)

Theorem 4. Suppose g0(x) and ϕ(x) are from Fs, but K(x) satisfies
coditions 1◦–3◦ and sup

n≥1
EZ4

n1 < ∞. If bn = n−δ, γn = n−1/2+δ/4, 1/2s <

δ < 1/2, then under alternatives Hn the statistic

b−1/2
n (T 0

n − θ1σ2)σ−2θ−1
2

has the limiting normal distribution with parameters ( 1
σ2θ2

∫ 1
0 ϕ2(x)dx, 1).

Proof. Let us represent T 0
n as the sum

T 0
n = nbn

∫

Ωn(τ)
(gn(x)− g̃n(x))2dx + nbn

∫

Ωn(τ)
(g̃n(x)− g0(x))2dx +

+2nbn

∫

Ωn(τ)
(gn(x)− g̃n(x))(g̃n(x)− g0(x))dx = T 1

n + A1(n) + A2(n).

It is easy to check that

b−1/2
n A1(n) =

∫ 1

0
ϕ2(u)du + O(n−δ). (31)

Let us introduce the random variable

dn =
∫

Ωn(τ)
(gn(x)− E1gn(x))ϕ(x) dx.
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Here E1 denotes the mathematical expectation under the hypothesis Hn.
We can derive the inequality

b−1/2
n E|A2(n)| ≤ nb1/2

n γn

[

E|dn|+
∫

Ωn(τ)
|E1gn(x)− g̃n(x)|ϕ(x) dx

]

=

= nb1/2
n γnE|dn|+ O(nγnbs+1/2

n ).

But

E|dn| ≤ σ
{ n

∑

i=1

(

b−1
n

∫

Ωn(τ)

( ∫

∆i

K
(x− t

bn

)

dt
)

)ϕ(x) dx
)2}1/2

≤ cn−1/2.

Therefore

b−1/2
n E|A2(n)| ≤ c

(

n−δ/4 + n
2−(4s+1)δ

4
)

→ 0. (32)

Referring to the proof of Theorem 2 it is easy to verify that b−1/2
n (T 0

n −
σ2θ1)σ−2θ−1

2 is asymptotically normally distributed with parameters (0,1).
Hence, from (31) and (32) we conclude that the theorem is valid.

Remark 1. It follows from Theorem 4 that more closer alternatives of
form (30) (i.e., under γnn1/2−δ/4 → 0) are not distinguished from H0 by
this test (i.e., PHn(T 0

n ≥ qn(α)) → α), and for more remote alternatives (i.e.,
under γnn1/2−δ/4 → ∞) the corresponding test preserves the consistency
property (i.e., PHn(T 0

n ≥ qn(α)) → 1).
Thus the local behaviour of the power PHn(T 0

n ≥ qn(α)) is

PHn(Tn ≥ qn(α)) → 1− Φ
(

λα −
1

σ2θ2

∫ 1

0
ϕ2(u) du

)

. (33)

Since
∫ 1
0 ϕ2(u)du > 0 and is equal to zero if and only if ϕ(u) = 0, it follows

from (33) that the test for testing the hypothesis H0 : g(x) = g0(x) against
the alternative of form (30) is asymptotically strictly unbiased.

Remark 2. Theorem 4 is analogous to Theorem 6.1 from the book by
J. D. Hart [6] with the only difference that [6] deals with the statistic based
on the Priestley–Chao estimate [7].

Remark 3. If in the interval [0, 1] we choose points xnk in a more general
manner, i.e.,

∫ xnk

0
p(u) du = k/n, k = 1, . . . , n,

where p(x) > 0, x ∈ [0, 1], is the probability density satisfying certain
conditions of smoothness, then Theorems 1–4 remain valid provided that
the parameters θ1 and θ2 are changed appropriately.
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Remark 4. If instead of K(x) we consider its modification Kq,r(x) from
[2], then we can give the hypothesis H0 on the entire interval [0, 1]. For the
corresponding estimate we have g∗n(x) ≡ gn(x), x ∈ Ωn, while the relation

nb1/2
n

( ∫ 1

0
(g∗n − g)2dx−

∫

Ωn

(gn − g)2dx
)

P−→0

will be proved in our forthcoming paper.

Remark 5. If in Theorem 4 we set δ = 2
2s+1 , then γn = n−

s
2s+1 . By

Yu. Ingster’s results [8] the test Tn is minimax consistent with respect to
alternatives of form (30).
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