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ON THE APPROXIMATION OF FUNCTIONS ON
LOCALLY COMPACT ABELIAN GROUPS

D. UGULAVA

Abstract. Questions of approximative nature are considered for a
space of functions Lp(G, µ), 1 ≤ p ≤ ∞, defined on a locally compact
abelian Hausdorff group G with Haar measure µ. The approximating
subspaces which are analogs of the space of exponential type entire
functions are introduced.

Let us consider a locally compact abelian group G with Haar measure µ,
assuming that the topology of the space G is Hausdorff. By Lp(G, µ) or,
simply, by Lp(G) we denote a space of real- or complex-valued functions
defined on G and integrable on it with respect to the measure µ to the p-th
power with the usual norm ‖f‖p = {

∫

G |f |
pdµ}1/p for 1 ≤ p < ∞. L∞(G,µ)

is a space of functions, essentially bounded on G with respect to µ and
having norm ‖f‖∞ = vrai sup

g∈G
|f(g)|. We shall briefly recall some definitions

and facts from the theory of commutative harmonic analysis. A unitary
irreducible representation of G, i.e., a complex-valued continuous function
χ on G with the properties |χ(g)| = 1, ∀g ∈ G and χ(g1g2) = χ(g1) · χ(g2),
∀g1, g2 ∈ G, is called a character of the group G. An Abelian group structure
is naturally introduced into the set of all characters defined on G. The
obtained group is denoted by ̂G and called a group dual to G. ̂G is usually
topologized by the following two topologies: the first one is the weakest
topology containing continuous functionals ̂f defined by the formula

̂f(χ) =
∫

G

f(g)χ(g) dµ(g) ≡
∫

G

f(g)χ(g) dg, χ ∈ ̂G, f ∈ L1(G,µ), (1)

and the second one is the topology of uniform convergence of characters on
compact subsets of the group G. These topologies are equivalent and with
their aid ̂G transforms to a locally compact Abelian group. A function ̂f of
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form (1) defined on ̂G for f ∈ L1(G) is called the Fourier transform of the
function f . Similarly to (1), we define the inverse transform f̌ of f by the
formula

f̌(χ) =
∫

G

f(g)χ(g) dg.

Of much importance here is the Pontryagin duality principle by which

the natural mapping of G into ̂

̂G , which to an element g ∈ G assigns the
character fg on ̂G, is an isomorphism of topological groups. The notions
of direct and inverse Fourier transform can be extended by the well known
technique to the case of spaces Lp(G,µ) for 1 < p ≤ 2. By Plancherel’s the-
orem the Fourier transform is a linear isometry of L2(G) on L2( ̂G) but the
inverse Fourier transform is a linear isometry from L2( ̂G) on L2(G). These
mappings are mutually inverse ([1], v. 2, §31). Usually, Haar measures on
G and ̂G are normalized so that the inversion formula f = ( ̂f )̌ holds for
functions f ∈ L1(G), ̂f ∈ L1( ̂G). These measures are called mutually dual
and pairs of such measures will be considered below. For f ∈ Lp(G,µ),
1 ≤ p ≤ 2, we have the Hausdorff–Young inequality by which

‖ ̂f‖q ≤ ‖f‖p, (2)

where q (here and in what follows) is the conjugate number of p ( 1
p + 1

q = 1).
A great part of the approximation theory deals with questions of ap-

proximation of functions on an n-dimensional Euclidean space Rn and on
an n-dimensional torus Tn which are Abelian groups. As an approximat-
ing subspace, a space of exponential type entire functions and a space of
trigonometric polynomials [2] are usually taken as an approximating sub-
space in the first and the second case, respectively. We know that ̂Rn = Rn

and ̂T = Z to within an isomorphism, where Z is a set of integer numbers.
In both cases the Fourier transforms of elements from the approximating
space have compact supports in dual spaces ([2], Ch. 3, §§3.1, 3.2). When
investigating the problem of approximation of functions defined on compact
or locally compact Abelian groups one should consider sets with properties
similar to the properties of approximating sets of some well known classi-
cal groups. For example, by analogy with groups Rn or Tn one can try to
consider as an approximating set the set of functions on G whose Fourier
transform lies in some compact K of the dual space ̂G. But such an ap-
proach cannot simultaneously be used for all spaces Lp(G, µ), 1 ≤ p ≤ ∞,
since, generally speaking, for p > 2 the Fourier transform of a function
f ∈ Lp does not exist. Therefore below we shall give a modified defini-
tion of approximating subspaces which is simultaneously applicable for all
p, 1 ≤ p ≤ ∞.
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By UG we shall denote a space of all symmetric compact sets from G
which are the closures of neighborhoods of unity in G. Sets from UG will
be called compact neighborhoods of unity. KT = {g : g = g1g2, g1 ∈ K,
g2 ∈ T} will stand for the product of the sets K and T , while (1)K will
denote the characteristic function of the set K. For arbitrary K and T
from U

Ĝ
we shall consider the function defined on G ([3], Ch. 5, §1)

VK,T (g) = (mes T )−1 ̂(1)T (g) · ̂(1)TK(g), (3)

which, for simplicity, will be denoted by V .
It is at once obvious that V ∈ L1(G). Indeed,

‖VK,T ‖ ≤
1

mes T
‖̂(1)T ‖2 · ‖̂(1)TK‖2 =

=
1

mes T
‖(1)T ‖2 · ‖(1)TK‖2 =

(mes TK
mes T

)1/2
. (4)

Also note that V is a real-valued function. This follows from the fact
that

̂(1)K(g) =
∫

K

χ(g) dχ =
∫

K

χ(g−1) dχ =
∫

K

χ(g) dχ = ̂(1)K(g).

By Parceval’s theorem ([1], v. 2, §31) we obtain
∫

G

VK,T (g) dg =
1

mes T

∫

G

̂(1)T (g) · ̂(1)TK(g) dµ =

=
1

mes T

∫

Ĝ

(1)T (χ) · (1)TK(χ) dχ =
1

mes T

∫

T

dχ = 1.

Using the function f ∈ Lp(G) and kernel V , we introduce the function

PK,T (f, g) = (f ∗ VK,T )(g) =
∫

G

f(h) · VK,T (h−1g) dh. (5)

Definition 1. Let K ∈ U
Ĝ

and p ∈ [1,∞]. By W p(K) we shall denote
the set of functions f from the space Lp(G,µ) for which we have the formula

f(g) = PK,T (f, g) ∀g ∈ G and T ∈ U
Ĝ

. (6)

Remark. If G = Rn and K = ∆ν = {x(x1, . . . , xn) ∈ Rn : |xi| ≤ νi,
ν = (ν1, . . . , νn)}, then the class defined by us coincides with the known class
Wνp(Rn) of entire functions of exponential type ν. A function f ∈ Lp(Rn)
belongs to Wνp(Rn) ([2], Ch. 3, §3.1) if it is analytically extendable onto
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the whole n-dimensional complex Euclidean space Cn, and for any ε > 0
there exists a number Aε such that the inequality

|g(z)| ≤ Aε · exp
n

∑

j=1

(νj + ε) · |zj |

is fulfilled for all z(z1, . . . , zn) ∈ Cn.
But for f ∈ Wνp(Rn) we have representation (6) ([2], Ch. 8, §8.6) with

̂(1)K = 2n
n
∏

i=1
(xi)−1 sin νixi. Conversely, let (6) hold for f ∈ Lp(Rn). We

take an n-dimensional cube Tε = {x ∈ Rn : |xi| ≤ ε, i = 1, . . . , n}, ε > 0,
as a neighborhood of T . The kernel VK,Tε will be a exponential type entire
function for any vector ε with constant coordinates ε. The convolution
f ∗VK,Tε belongs to the same class too ([2], Ch. 3, §3.6), which by virtue of
(6) means that f belongs to Wνp(Rn). Thus W p(K) coincides with Wνp(Rn)
for G = Rn and K = ∆ν . Such an equivalence can be proved by a similar
reasoning for more general K ⊂ Rn too if one uses the results of [4].

Lemma 1. W p(K) is the shift-invariant closed subspace of the space
Lp(G).

Proof. Let fn ∈ W p(K) be an arbitrary converging sequence and ‖fn −
f‖p → 0 as n → ∞. Using the well known estimate of a convolution norm
([1], v. 2, §31) for Lp, we obtain

‖PK,T (fn − f, g)‖p ≤ ‖fn − f‖p · ‖VK,T ‖1, ∀T ∈ U
Ĝ

.

But PK,T (fn) = fn, ∀n ∈ N , and thus fn tends in Lp simultaneously to f
and PK,T (f). Therefore f = PK,T (f) and f ∈ W p(K). The operation of
shift by the element h will be denoted by Lh. Let f ∈ W p(K) and T ∈ U

Ĝ
.

We obtain

(Lhf)(g)=f(hg)=
∫

G

f(g1)VK,T (g−1
1 gh) dg1 =

∫

G

f(ξh)VK,T (ξ−1h−1gh) dξ=

=
∫

G

(Lhf)(ξ)VK,T (ξ−1g) dξ = (Lhf ∗ VK,T )(g)

and Lemma 1 is proved.

Definition 2. When p ∈ [1, 2], for an arbitrary fixed compact K from
the dual space ̂G we shall denote by Fp(K) the set of functions from the
space Lp(G, µ) whose Fourier transform supports belong to K. Using Parce-
val’s theorem ([1], v. 2, §31) by which

∫

G f ̂Φ dg =
∫

Ĝ
̂fΦ dχ, substituting

the function Φ(χ) = χ(g)
mes T ((1)T ∗ (1)TK)(χ) into it, and calculating ̂Φ by
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the rule (χf ̂)(·) = ̂f(χ−1·) ([1], v. 2, §31), for 1 ≤ p ≤ 2 we obtain another
representation of PK,T (f), namely:

PK,T (f, g) = (mes T )−1
∫

Ĝ

̂f(χ) · χ(g) · ((1)T ∗ (1)TK)(χ) dχ,

where integration actually occurs on the compact T 2K. If G is a compact,
then this representation of PK,T certainly holds for all 1 ≤ p ≤ ∞.

Note the following important property of functions from Fp(K). If f ∈
Fp(K), 1 ≤ p ≤ 2, then f ∈ Lp1(G) for arbitrary p1 ∈ [p,∞]. Indeed,
by virtue of (2), ̂f ∈ Lq(G), where q is the conjugate number of p. Since
supp ̂f = K and q ≥ 2, we have ̂f ∈ L2( ̂G) and ( ̂f )̌= f almost everywhere
on G. Thus ̂f ∈ L1( ̂G) ∩ L2( ̂G) and the L2 inverse Fourier transform of ̂f
is f . But ([1], v. 2, §31) the L1 inverse Fourier transform of ̂f is also f .
Hence it is clear that f is a continuous and bounded function on G. Since
f ∈ Lp∩L∞, we have f ∈ Lp1(G) for any p1 ∈ [p,∞]. Moreover, for p = ∞,
by (2) we obtain the inequality

‖f‖∞ ≤ ‖ ̂f‖1 =
∫

K

| ̂f | dχ ≤
( ∫

K

dχ
)1/p

‖ ̂f‖q ≤ (mes K)1/p · ‖f‖p.

Lemma 2. If 1 ≤ p ≤ 2, then the sets W p(K) and Fp(K) coincide.

Proof. Let us first assume that f ∈ W p(K). Then for ∀T ∈ U
Ĝ

we have

̂f ∗ VK,T (χ) = ̂f(χ)

and therefore

̂f(χ) · ̂VK,T (χ) = ̂f(χ) (7)

for almost all χ ∈ ̂G.
Next, by (3) we obtain

0 ≤ ̂VK,T (χ) =
1

mesT
(1)T ∗ (1)TK(χ) =

1
mes T

∫

T

(1)KT (h−1χ)dh.

Let χ /∈ K. If h−1χ /∈ KT for any h ∈ T , then ̂VK,T (χ) = 0. If however
χ /∈ K and χ ∈ KT , then in T there exists a set U with mes U such that
χU /∈ KT so that

̂VK,T (χ) =
1

mes T

( ∫

U−1

+
∫

T\U−1

)

=
1

mes T

∫

T\U−1

< 1.
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Then from (7) it follows that for χ /∈ K we have ̂f(χ) = 0 almost everywhere
and therefore f ∈ Fp(K).

Let now f ∈ Fp(K) and T be an arbitrary set from U
Ĝ

. We have

̂PK,T (χ) = ̂f(χ) · ̂VK,T (χ) =
1

mesT

∫

T

(1)KT (h−1χ)dh · ̂f(χ).

If χ ∈ K and h ∈ T , then h−1χ ∈ KT and we obtain ̂f(χ) on the right-
hand side. If however χ /∈ K, then we have the equality ̂f(χ) = 0 which
by virtue of the fact that f ∈ Fp(K) implies ̂PK,T (f)(χ) = 0. Therefore
̂PK,T (f)(χ) = ̂f(χ) for almost all χ ∈ ̂G. Keeping in mind that the functions

f and PK,T (f) are continuous on G, by the uniqueness theorem on the
Fourier transform of f we obtain representation (6) for any T ∈ U

Ĝ
and

g ∈ G.

Remark. If G = Rn, by applying the well known Peley–Wiener theorem
([5], Ch. 6, §4) we can prove that the classes W p(K) and Fp(K) coincide
for p > 2 too provided that by Fp(K) we shall understand the class of
functions f ∈ Lp(Rn) whose generalized Fourier transform supports (in the
sense of generalized functions) belong to K ⊂ Rn.

For our further discussion it is important to note that the above-stated
property that f ∈ Fp(K), 1 ≤ p ≤ 2, gives that f ∈ Lp1(G) for any
p1 ∈ [p,∞] holds for functions from W p(K) for p ∈ [1,∞]. Indeed, if
f ∈ W p(K), then f = f ∗VK,T for any T ∈ U

Ĝ
. But VK,T ∈ F1(KT 2) and,

as we already know, this implies that VK,T ∈ Lr(G) for all r ∈ [1,∞]. By
the Young inequality ([1], v. 1, §20)

‖f‖p1 ≤ ‖f‖p · ‖VK,T ‖r, where
1
p1

=
1
p

+
1
r
− 1. (8)

If 1 ≤ r ≤ p
p−1 , then p1 takes all values from the interval [p,∞]. Let us

prove that the functions from W p(K) are continuous for any 1 ≤ p ≤ ∞.
Indeed, if f ∈ W p(K), then f ∈ W∞(K)

|f(g1)− f(g)| =
∣

∣

∣

∣

∫

G

f(h)
[

VK,T (h−1g1)− VK,T (h−1g)
]

dh
∣

∣

∣

∣

≤

≤ ‖f‖∞ ·
∥

∥VK,T (h−1g1)− VK,T (h−1g)
∥

∥

1,

and the continuity of functions follows from the continuity of the shift op-
erator in L1 ([3], Ch. 3, §5).

Let C0(G) be the Banach space of continuous functions on a locally
compact but not compact group G, which vanish at infinity ([1], v. 1, §11,
[3], Ch. 2, §3). f ∈ C0(G) if for any ε > 0 there exists a compact Gε
depending on f and such that the inequality |f(g)| < ε holds everywhere
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outside Gε. We shall show that for 1 ≤ p < ∞ the functions from W p(K)
belong to C0(G). Indeed, in view of the fact the Haar measure is regular
and taking into account the integral representation (6), for any ε > 0 we
can find a compact Gε such that

∣

∣

∣

∣

f(g)−
∫

Gε

f(h)V (h−1g)dh
∣

∣

∣

∣

< ε.

Next, using (4), we obtain

∣

∣

∣

∣

∫

Gε

f(h)V (h−1g)dh
∣

∣

∣

∣

≤ ‖f‖p ·
{ ∫

Gε

|V (hg)|qdh
} 1

q

≤

≤
(mes TK

mes T

) 1
2q · ‖f‖p · sup

h∈Gε

|V (hg)|
q−1

q

(for p = 1, q = ∞ we have ‖f‖∞ · sup
h∈Gε

|V (hg)| on the right-hand side).

It is the well known fact that the Fourier transform of a function from
L1( ̂G) belongs to C0(G) ([1], v. 2, §31). Hence by (3) it is clear that V (hg) ∈
C0(G), ∀h ∈ Gε. Since p 6= ∞, q > 1 and the fact that V (hg) belongs to
C0(G), together with the last two estimates, enable us to conclude that
f ∈ C0(G). A constant function f(g) ≡ C 6= 0 on G may serve as an
example showing that for p = ∞ the inclusion W∞(K) ⊂ C0(G) is not
valid.

If G = Rn and 1 ≤ p < ∞, then the obtained inclusion Wνp(Rn) ⊂
C0(Rn) is equivalent to the well known fact that lim

|x|→∞
f(x) = 0 if f ∈

Wνp(Rn) which was proved by a different method in [2] (Ch. 3, §3.2).

Lemma 3. Let f ∈ Lp(G), 1 ≤ p ≤ ∞, K ∈ U
Ĝ
, T ∈ U

Ĝ
. Then

PK,T (f) ⊆ W p(KT 2).

Proof. From the equality

̂VK,T (χ) = (mes T )−1
∫

T

(1)KT (h−1χ)dh

it follows that VK,T ∈ F1(KT 2) and, by Lemma 2 we have VK,T ∈W 1(KT 2).
After multiplying both sides of equality (5) by VKT 2,T1(g

−1t), where T1 ∈
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U
Ĝ

, and integrating them over G, we obtain

∫

G

PK,T (f, g)VKT 2,T1(g
−1t)dg=

∫

G

∫

G

f(h)VK,T (h−1g)dh·VKT 2,T1(g
−1t)dg=

=
∫

G

f(h)dg
∫

G

VK,T (h−1g) · VKT 2,T1(g
−1t)dg.

Here changing the integration order is righful by virtue of the Fubini theorem
([1), v. 1, §13) and in view of the fact that

∫

G

dg
∫

G

∣

∣f(h)VK,T (h−1g) · VKT 2,T1(g
−1t)

∣

∣dh ≤

≤
∥

∥

∥

∥

∫

G

∣

∣f(h)VK,T (h−1g)
∣

∣dh
∥

∥

∥

∥

p
· ‖VKT 2,T1‖ p

p−1
< ∞.

Next, by the change of the variable we obtain
∫

G

PK,T (f, g)VKT 2,T1(g
−1t)dg =

∫

G

f(h)dh
∫

G

VK,T (ξ) ·VKT 2,T1(ξ
−1h−1t)dξ.

But VK,T ∈ W 1(KT 2) and, according to the definition of the class W 1, the
internal integral can be replaced by VK,T (h−1t). As a result,

∫

G

PK,T (f, g)VKT 2,T1(g
−1t)dg =

∫

G

f(h)VK,T (h−1t)dh = PK,T (f, t).

This implies that PK,T (f) ∈ W p(KT 2).

Remark. While proving Lemma 3, concomittantly we have actually
proved the following property of functions from W p(K): if f ∈ W p(K),
p ∈ [1,∞], and K1 is an arbitrary compact from U

Ĝ
containing K, then

f ∈ W p(K1). This can be shown by repeating the proof of Lemma 3,
where VKT 2,T1 is replaced by VK1,T1 for any T1 ∈ U

Ĝ
, and taking into

account that VK,T ∈ W 1(K1T1). The latter inclusion is valid because
VK,T ∈ F1(KT 2). But T can be chosen so that KT 2 ⊂ K1T1 ([3], Ch. 3,
§1). Then VK,T ∈ F1(K1T1) and, by virtue of Lemma 2, VK,T ∈ W 1(K1T1).
Finally, we obtain f = PK,T (f) ∈ W p(K1T1).

Theorem 1. Let p ∈ [1,∞]. The set of functions from W p(K) for all
possible compacts from U

Ĝ
is dense everywhere in Lp(G,µ).
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Proof. First we shall prove that if f ∈ W p(K) and χ is an arbitrary char-
acter of the group G, then f · χ ∈ W p(K1) for some compact K1 ∈ U

Ĝ
.

Indeed, since f ∈ W p(K), we have

χ(g)f(g) =
∫

G

f(h)χ(g)VK,T (h−1g)dh =

=
∫

G

f(h)χ(h)χ(h−1g)VK,T (h−1g)dh = (fχ ∗ χVK,T )(g). (9)

Next we obtain

̂(VK,T · χ)(χ0) =
∫

G

VK,T (g) · χ(g) · χ0(g) dg =

=
∫

G

VK,T (g) · (χχ0)(g) dg = ̂VK,T (χ−1χ0).

Since VK,T ∈ F1(KT 2), this implies that χ · VK,T ∈ F1(K1) for some
compact K1 ∈ U

Ĝ
, i.e., χ · VK,T ∈ W 1(K1) and χ · VK,T = χVK,T ∗ VK1,T1

for any T, T1 ∈ U
Ĝ

. Next, by (9) we have

χ(g)f(g) = (fχ ∗ (χVK,T ∗ VK1,T1))(g) =

= ((fχ ∗ χVK,T ) ∗ VK1,T1)(g) = (χf ∗ VK1,T1)(g),

which implies that χf ∈ W p(K1).
We shall show that for all K ∈ U

Ĝ
the functions from W p(K) are dense

everywhere in Lp(G,µ). Let us assume that the opposite is true. Let Ap be
the closure of the union ∪

K
W p(K) and Ap not coinciding with Lp(G,µ).

There exists a well defined nontrivial linear functional on Lp(G) which
is equal to zero on Ap. This functional is defined by a nontrivial function
ϕ ∈ Lq(G) ([1], v. 1, §12). Since f · χ ∈ Ap for arbitrary χ ∈ ̂G, then

∫

G

fχϕ dµ = 0, f ∈ Lp(G), ϕ ∈ Lq(G).

The latter equality implies

̂f · ϕ(χ) = 0, f · ϕ ∈ L1(G)

for any χ ∈ ̂G. Hence it follows that ([1], v. 2, §31) fϕ = 0 almost
everywhere on G for any function f ∈ W p(K), where K is an arbitrary
compact from U

Ĝ
. By the continuity of f we readily conclude that ϕ = 0

almost everywhere on G, which is impossible.
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For p = 1, Theorem 1 actually establishes the density of functions from
F1(K), for all possible compacta K, in L1(G) and this density is known
([3], Ch. 5, §4, [6], Ch. 2, §8.8).

Remark. Theorem 1 does not hold for p = ∞ but remains valid for its
subspace C0(G) ⊂ L∞(G).

The dual space to C0(G) is the space M(G) of complex-valued measures
defined on some σ-algebra containing all Borel sets in G ([1], v. 1, §14). To
verify this, i. e., the density of W∞(K) ∩C0(G) in C0(G), we must repeat
the proof of Theorem 1, which will lead us to the existence of a nontrivial
measure µ ∈ M(G) such that

∫

G fχdµ = 0, ∀f ∈ C0(G) ∩W∞(K), χ ∈ ̂G.
Hence the Fourier transform of the measure fdµ is equal to zero on the entire
̂G. Therefore fdµ ([1], v. 2, §28) and thus µ = 0, which is impossible.

Let us consider the best approximation EK(f)p,G of the function f ∈
Lp(G) by the subspace W p(K), i. e., the value

EK(f)p,G = inf
g∈W p(K)

‖f − g‖Lp(G). (10)

If we obtain inf on some element g0 ∈ W p(K), then it will be called the best
approximation element of f in W p(K). We shall prove that such an element
necessarily exists if 1 ≤ p ≤ ∞. Indeed, let f ∈ Lp(G), and tn ∈ W p(K) be
the minimizing sequence, i.e.,

‖f − tn‖p ≤ d + εn,

where d = EK(f)p,G and ε ↓ 0. Clearly, the sequence tn is bounded with
respect to the norm of the space Lp, and by applying inequality (8) to
p1 = ∞ we have

‖tn‖∞ ≤ C · ‖tn‖p ≤ A,

where A does not depend on n. Next we obtain

‖tn(h−1g)− tn(g)‖p =
∥

∥

∥

∥

∫

G

tn(ξ)
[

VK,T (ξ−1h−1g)− VK,T (ξ−1g)
]

dξ
∥

∥

∥

∥

p
≤

≤ ‖tn‖p · ‖VK,T (h−1g)− VK,T (g)‖1.

The continuity of the shift operator in L1 ([3], Ch. 3, §5) implies equicon-
tinuity of the family {tn} in Lp(G) and therefore in L∞(G) as well. Hence
by virtue of the well known theorem ([7], §5) it follows that from tn we can
extract a subsequence tnν converging uniformly on arbitrary compacts from
G to a certain function t. Let us prove that t ∈ W p(K). The sequence tnν

will again be denoted by tn. In the first place, for any compact G1 ⊂ G we
have

‖t‖Lp(G1) ≤ ‖t− tn‖Lp(G1) +‖tn‖Lp(G1) ≤ C(G1)‖t− tn‖L∞(G1) +‖tn‖Lp(G).
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But since lim
n→∞

‖t − tn‖L∞(G1) = 0 and ‖tn‖Lp(G) ≤ C, for any compact

G1 ⊂ G we have ‖t‖Lp(G1) ≤ C, where C is a constant not depending on
G1. Therefore t ∈ Lp(G). Let consider an arbitrary compact G1 ⊂ G. Since
tn ∈ W p(K), we have

tn(g) =
∫

G

tn(h)VK,T (h−1g)dh =

=
∫

G1

tn(h)VK,T (h−1g)dh +
∫

G\G1

tn(h)VK,T (h−1g)dh.

Assuming that g ∈ G1 and passing to the limit as n →∞, we obtain

t(g) =
∫

G1

t(h)VK,T (h−1g)dh + A(G \G1),

where

|A(G \G1)| ≤ sup
n
‖tn‖p ·

∫

G\G1

|VK,T (h−1g)|dh.

Now taking into account the fact that the Haar measure is regular and mak-
ing G1 tend to G, we find that t(g) =

∫

G t(h)VK,T (h−1g)dh and therefore
t ∈ W p(K). Further, for any compact G1 ⊂ G we have

‖f − t‖Lp(G1) = lim
n→∞

‖f − tn‖Lp(G1) ≤ lim
n→∞

‖f − tn‖Lp(G) = d

and thus t is the best approximation element of f ∈ Lp(G) in W p(K),
1 ≤ p ≤ ∞.

For p = 2 the best approximation element of f ∈ L2(G) in the subspace
W 2(K) can be constructed explicitly in the form

fK(g) =
∫

K

̂f(χ)χ(g)dχ. (11)

Indeed, let S be an arbitrary element from W 2(K), i.e., from F2(K). Then
almost everywhere (̂S)̌= S. Since ̂S ∈ L1( ̂G) and its Fourier transforms in
the sense of the spaces L1 and L2 coincide, we have

S(g) =
∫

K

̂S(χ)χ(g) dχ almost everywhere on G.
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Applying Parceval’s theorem we obtain

‖f − S‖22 = ‖f‖22 −
∫

K

̂S(χ) ̂f(χ) dχ−
∫

K

̂S(χ) ̂f(χ) dχ + ‖S‖22 =

= ‖f‖22 +
∫

K

[̂S(χ)− ̂f(χ)]2dχ−
∫

K

[ ̂f(χ)]2dχ.

The right-hand side of this equality will is minimal if ̂S = ̂f almost every-
where on K, i.e., by virtue of (11), if

S(g) =
∫

K

̂S(χ)χ(g) dχ =
∫

K

̂f(χ)χ(g) dχ = fK(g).

For p 6= 2, constructing a best approximation element is a difficult task
even for simple cases. Moreover, we know of the cases for which it has been
proved that one cannot construct a sequence of linear continuous projectors
used to realize the best order approximation ([8], Ch. 9, §5.4, [9], Ch. 9,
§5). In this connection, a problem is posed to construct a sequence of linear
continuous operators, close in a certain sense to projectors, by means of
which the best order approximation is realized. Such a problem, in which
G is the unit circumference T , was posed and solved by de la Vallée-Poussin
([10]). The space of trigonometric polynomials of order n is considered as
an approximating set and it is proved that for 1 ≤ p ≤ ∞ and f ∈ Lp(T )

‖f − σn,m(f)‖p ≤ 2
n + 1
m + 1

En(f)p,

where

(σn,mf)(x) =
1

m + 1

n+m
∑

k=n

(Skf)(x) =

2π
∫

0

f(u)Vn,m(x− u)du,

Sk(f) is the Fourier sum of the function f of order k, and

Vn,m(x) =
sin (m+1)x

2 · sin (2n+m+1)x
2

2π(m + 1) sin2 x
2

. (12)

In [10], this result was obtained for the space of C(T )-continuous functions
on T . If m = [n

2 ], then the deviation ‖f − σn,[n/2]‖p has a the best approx-
imation order En(f)p.

Theorem 2. If for a locally compact Abelian group G the function f
belongs to the space Lp(G,µ), 1 ≤ p ≤ ∞, and K and T are the compact
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symmetric neighborhoods of the unit of the dual group ̂G, then

‖f(g)− PK,T (f, g)‖p ≤
(

1 +
(mes(TK)

mesT

)1/2)

EK(f)p,G, (13)

where PK,T (f, g) and EK(f)p,G are defined by formulas (5) and (10).

Proof. Let fn ∈ W p(K) be a minimizing sequence for the function f ∈
Lp(G), 1 ≤ p ≤ ∞. Then

‖f(g)− PK,T (f, g)‖p ≤ ‖f − tn‖p + ‖PK,T (f − tn)‖p ≤
≤ ‖f − tn‖p + ‖f − tn‖p · ‖VK,T ‖1.

Hence, taking into account inequality (4) and the relation lim
n→∞

‖f − tn‖p =

EK(f)p,G, we obtain estimate (13).

Remark. To have a best order approximation in (13), we must choose K
and T from U

Ĝ
such that for EK the multiplier be bounded from above by

a number not depending on K and T . For example, if T = K and PK,K is
denoted by PK , then (13) gives the estimate

‖f − PK(f)‖p ≤
(

1 +
(mesK2

mesK

))1/2
· EK(f)p,G,

and mes K2

mes K is bounded from above by the number not depending on K
for a sufficiently wide class of groups G. For example, for ̂G = Rn the
Haar measure µ coincides with the Lebesgue measure, and if K is compact
convex symmetric neighborhood of zero, then mes K2

mes K = 2n. If ̂G = Zn, and
K = {x ∈ Zn, −N ≤ xi ≤ N , xi ∈ Z, i = 1, 2, . . . , n}, then mes K2

mes K =
( 4N+1
2N+1 )n < 2n. If however in the latter case K = {x ∈ Zn, |x| ≤ N} is

an integer-valued lattice from Zn contained within a ball of radius N , then
mes K2

mes K behaves as 2n for large N . This follows from the known relation
∑

|k|≤N
1 ∼

∑

|k|≤N
πn/2[Γ(n

2 + 1)]−1Nn, where Γ is a Euler function of second

kind.
Examples.
1. Let G = Rn. Then ̂G = Rn and the group G has a character

χ(x) = eitx, t ∈ Rn. We respectively take, as sets K and T , n-dimensional
parallelepipeds with ribs of length 2N and 2s: K = {−N ≤ xi ≤ N},
T = {−s ≤ xi ≤ s}, i = 1, 2, . . . , n. Since the measure is normalized, we
readily obtain

VK,T (x) = (sπ)−n
n

∏

j=1

x−2
j · sin sxj · sin(N + s)xj .

For s = N
2 this is the well known Vallée–Poussin kernel ([2], Ch. 8, §8.6).
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If K and T are n-dimensional balls of radii N and s, then, after perform-
ing some calculations, we find that

VK,T (x) =
n

Ωn

( s
N + s

)n
2 |x|−nIn

2
(s|x|) · In

2
((N + s)|x|),

where Ωn is the surface area of the n-dimensional unit sphere and In/2 is a
first kind Bessel function of order n/2. In both cases the expression mes(TK)

mes T
is bounded from above by the number (N+s

N )n.
2. If G = E is the unit circumference from R2, then ̂G = Z and the

group G has a character of the form χn(t) = e−int, t ∈ E, n ∈ Z. Take
K = [−n, n] = {−n,−n + 1, . . . , n − 1, n}, T = [−s, s]. Then for the
kernel VK,T we obtain the above-mentioned de la Vallée-Poussin kernel Vn,m

defined by formula (12) with m = 2s. If m is an odd number, then VK,T

does not exactly coincide with Vn,m, but to obtain Vn,m one should modify
the definition of the kernel VK,T by means of averaging the kernels ̂(1)Ki

,
where T ⊂ Ki ⊂ K.

If G is an n-dimensional torus, then one can take, as VK,T , the product
of one-dimensional kernels (12), i.e.,

VK,T (x) = (2π)−n
n

∏

j=1

(2sj + 1)−n · sin−2 xj

2
· sin

(

sj +
1
2

)

xj ×

× sin
(

Nj + sj +
1
2

)

xj , tj , Nj ∈ Z+.

3. If G = Z, then ̂G = E. Characters of the group G have the form
χt(n) = tn, n ∈ Z, t ∈ E. Let K = {eiθ : −ϕ ≤ θ ≤ ϕ, 0 < ϕ ≤ π},
T = {eiθ : −t ≤ θ ≤ t, 0 < t ≤ π}. Take, as a dual measure on E, the arc
length divided into i

√
2π. We have

̂(1)T (n) =
1

i
√

2π

∫

T

ξndξ =
1√
2π

t
∫

−t

eiθ(n+1)dθ =

=

{ √
2√

π·(n+1) sin t(n + 1), n 6= −1,
√

2√
π t, n = −1,

and PK,T (f, n) in this example takes the form

PK,T (f, n) =

=
1
tπ

{ ∞
∑

k=−∞
k 6=n+1

f(k)
sin t(n− k + 1) · sin(ϕ + t)(n− k + 1)

(n− k + 1)2
+ t(ϕ + t)

}
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and mes(TK)
mes T = ϕ+t

t .
4. Let G = R+ be a multiplicative group of positive integers with the

unit e = 1. The group G has a character χ(ξ) = ξix, where x ∈ R, ̂G = R
to within an isomorphism. Take, as K and T , the intervals K = [−N, N ],
T = [−t, t], N, t ∈ R+. Then

̂(1)K(ξ) =

N
∫

−N

ξixdx = 2
sin(N ln ξ)

ln ξ
,

PK,T (f, x) =
1
tπ

∞
∫

0

f(h)
sin(t ln x

h ) · sin((N + t) ln x
h )

h ln2 x
h

dh.

5. Let a = (a0, a1, . . . , an, . . . ) be a given sequence, where all an are
integer numbers greater than 1, and consider the Cartesian product ∆a =
Pn∈N∪{0}{0, 1, . . . , an − 1}. If one applies the summation operation to ∆a

([1], v. 1, §10), then ∆a together with Tikhonov topology of the product
becomes a compact Abelian group. This group G = ∆a is called a group
of integer a-adic numbers. Its dual group is the discrete group ̂G = Z(a∞)
consisting of all numbers of the form

exp
(

2πi
l

a0a1 · · · ar

)

, l, r ∈ Z, r > 1

([1], v. 1, §10). For the fixed natural number N we take, as a compact
symmetric neighborhood K of the unit, the set of numbers from Z(a∞) for
which r ≤ N . It is proved ([1], v. 1, §25) that the character corresponding
to the number ξ = exp(2πi l

a0a1·ar
) is written as

χξ(g) = exp
[ 2πil
a0a1 · · · ar

(g0 + a0g1 + · · ·+ a0a1 · · · ar−1gr)
]

,

where g0 + a0g1 + · · · + a0a1 · · · ar−1gr is the sum of the first r + 1 terms
of the a-adic expansion of the element g ∈ ∆a. Assuming that the Haar
measure of each point in Z(a∞) is 1, we have

̂(1)K(g) =
∫

K

χξ(g) dξ =

=
N

∑

r=0

a0a1···ar−1
∑

l=1−a0a1···ar

exp
[

2πil
a0a1 · · · ar

(

g0 +
r

∑

k=1

a0 · · · ak−1gk

)]

=

=
N

∑

r=0

sin(a0a1 · · · ar − 1
2 )xr

sin xr
2

, xr =
2π

a0a1 · · · ar

(

g0 +
r

∑

k=1

a0 · · · ak−1gk

)

.
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Clearly, K2 = K and, taking T = K, we obtain

PK(f, g1) =
1

(N + 1)2

∫

∆a

f(gg1)
[ N

∑

r=0

sin(a0a1 · · · ar − 1
2 )xr

sin xr
2

]2

dg,

where integration is performed with respect to the measure dual to the taken
discrete measure on Z(a∞).
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