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MARKOV DILATION OF DIFFUSION TYPE PROCESSES
AND ITS APPLICATION TO THE FINANCIAL

MATHEMATICS

R. TEVZADZE

Abstract. The Markov dilation of diffusion type processes is de-
fined. Infinitesimal operators and stochastic differential equations for
the obtained Markov processes are described. Some applications to
the integral representation for functionals of diffusion type processes
and to the construction of a replicating portfolio for a non-terminal
contingent claim are considered.

1. Introduction

Let ξ = (ξt)t∈[0,1] be a stochastic process in the metric space X with
the sample paths from the space D([0, 1], X) of functions which are right
continuous with left limit (r.c.l.l.). It is easy to see that the D([0, 1], X)-
valued process defined for each t ∈ [0, 1] by

ξt = (ξt∧s, s ∈ [0, 1])

has a Markov property, i.e., for any Borel set B in D[0, 1]

P [ξt ∈ B|ξt1 , ξt2 , . . . , ξtn ] = P [ξt ∈ B|ξtn ], 0 ≤ t1 ≤ · · · ≤ tn ≤ 1, (1.1)

since σ-fields σ(ξt) = σ(ξs, s ≤ t) increase as t increases.
Consider the case X = R and suppose that ξ is a diffusion type pro-

cess,i.e., it satisfies a stochastic differential equation (S.D.E.)

dξt = a(t, ξ)dwt + b(t, ξ)dt, (1.2)

where a(t, x), b(t, x) are nonanticipative functionals and w = (wt)t∈[0,1] is
the Wiener process. We want to find a S.D.E. and infinitesimal operators
for a random process ξt. This will allow us to write a parabolic equation
for functionals of diffusion type processes and to derive Itô’s formula for
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nonanticipative functionals. In Section 2 we represent ξt as a solution of a
S.D.E. in the space of square integrable paths. For this case the infinitesimal
operator can be defined using the results of infinite dimensional stochastic
analysis but one needs strong conditions on the coefficients a and b. In
Section 3 more general and complicated case of the continuous path space
is studied. Finally, we shall obtain a new proof of Clark’s formula for
Itô’s processes [1] and we bring some applications to financial mathematics.
When ξ is a homogeneous Markov process, our results have some intersection
with the recent results of [2].

Here we use the following notation: W [0, 1] is the space of continuous
functions, D[0, 1] the space of r.c.l.l. functions, L2

m[0, 1] a space of square
integrable functions w.r.t. measure m, it = 1[0,t), jt = 1[t,1]. CB([0, 1] ×
W [0, 1]) denotes class of bounded continuous functions and CBi,k([0, 1] ×
W [0, 1]) denote the subclasses of functions from CB([0, 1] ×W [0, 1]) with
continuous and bounded derivatives w.r.t. the first variable up to order i
and continuous bounded Frechet derivatives w.r.t. the second variable up
to order k.

For any t ∈ [0, 1] we shall consider the operators:

Ctx = xit + x(t)jt, Ct : D[0, 1] → D[0, 1] ⊂ L2
m[0, 1],

Rtx = x(t)jt, Rt : D[0, 1] → D[0, 1] ⊂ L2
m[0, 1],

Lψ
t x(s) ≡ ψ ◦t x(s) =

{

ψ(s)− ψ(t) + x(t) if s > t,
x(s) if s < t,

ψ ∈ D[0, 1], Lψ
t : D[0, 1] → D[0, 1] ⊂ L2

m[0, 1],

Qtx(s) =

{

x(0) if s > t,
x(t)− x(s) + x(0) if s ≤ t,

Qt : D[0, 1] → D[0, 1] ⊂ L2
m[0, 1].

Their restrictions on the space W [0, 1] will be denoted by the same
symbols. We shall also use the space W [0,∞) with metric ‖x − y‖ =
∞
∑

k=1
2−k sup

s≤k
{|x(s) − y(s)|, 1} and spaces CB(R+ × W ), CBi,k(R+ × W )

defined in the same way.

2. Repesentation of a Diffusion Type Process in the Space
L2

m[0, 1]

Let (Ω,F , P ) be a probabilist space with filtration (Ft)t∈[0,1]. Let
(wt,Ft)t∈[0,1] be a Wiener process and (βt,Ft)t∈[0,1] a random process with
paths from the space D[0, 1]∩V [0, 1]. Denote by Iβ(g)t and Iw(g)t the inte-
gral

∫ t
0 gsdβs and the stochastic integral

∫ t
0 gsdws respectively, for a process
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(gt,Ft) with values in the Hilbert space satisfy standart condition, which
guarantees the existence of those integrales. If βt = t, then Iβ(g) is shortly
denoted by I(g). Then the following theorem is valid.

Theorem 2.1. Let (at,Ft), (bt,Ft) be real processes such that

P
(∫ 1

0
|bt|dβt < ∞

)

= 1, E
∫ 1

0
|at|2dt < ∞.

Then the identities take place

C(Iβ(B)) = Iβ(R(b)), C(Iw(a)) = Iw(R(a)).

In other words, if ξt =
∫ t
0 asdws +

∫ t
0 bsdβs, then Ctξ =

∫ t
0 Rs(a)dws +

∫ t
0 Rs(b)dβs.

Proof. Let ψ ∈ L2
m[0, 1]. Then

(ψ,Ct(Iβ(b))) =
∫ t

0
ψs

∫ s

0
budβudms +

∫ 1

t
ψs

∫ t

0
budβudms =

=
∫ t

0

∫ t

0
ψsbuis(u)dβudms +

∫ 1

t

∫ t

0
ψsbudβudms =

=
∫ t

0

∫ t

0
ψsbu1[u,1](s)dβudms +

∫ 1

t

∫ t

0
ψsbudβudms =

=
∫ t

0
bu

∫ t

0
ψsju(s)dmsdβu +

∫ t

0
bu

∫ 1

t
ψsdmsdβu =

=
∫ t

0
bu

∫ 1

u
ψsdmsdβu =

∫ t

0
(ψ, Ru(b))dβu =

=
(

ψ,
∫ t

0
Ru(b)dβu

)

.

By the arbitrariness of ψ the first relation is established. Identitities for
stochastic integrals may be derived in similar way. For instance, the tran-
sition

∫ t

0
dms

∫ t

0
ψsaujs(u)dwu =

∫ t

0

∫ t

0
ψsaujs(u)dmsdwu

is true by Fubini’s theorem for stochastic integrals [3, p. 217]. In particular,
we must take

Ω̃ = [0, 1], F̃t = B[0, 1], p̃ = m, gs(w, w̃) = ψuas(w)1[0,s](w̃)

in the equality
∫

Ω̃

∫ 1

0
gs(w, w̃)dwsdP̃ =

∫ 1

0

∫

Ω̃
gs(w, w̃)dP̃dws.
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Corollary. Let f : [0, 1] × L2
m[0, 1] → R be a bounded function with

bounded and continuous Frechet derivative ft, ∇xf , ∇2
xf and let ξt =

∫ t
0 asdws +

∫ t
0 bsdβs be the Itô process. Then

f(t, Ctξ)− f(t0, Ct0ξ) =
∫ t

t0

[ ∂
∂s

f(s, Csξ) + bs
∂

∂js
f(s, Csξ) +

+
1
2
a2

s
∂2

∂j2
s
f(s, Csξ)

]

ds +
∫ t

t0
as

∂
∂js

f(s, Csξ)dws, (2.1)

where ∂
∂jt

denotes the Gateux derivative in the direction jt.

Proof. Using Itô’s formula for the L2
m[0,1]-valued Itô process ηt =

∫ t
0asjsdws+

∫ t
0 bsjsds [4] and taking into account

(∇xf(t, x), btjt) = bt
∂

∂jt
f(t, x),

∇2
xf(t, x)(atjt, atjt) = a2

t
∂2

∂j2
s
f(t, x),

(2.2)

we obtain (2.1).

About Ctξ, Qtξ or Lψ
t ξ we shall say that each of them is the Markov

dilation of ξ, since each of them has the Markov property.

Theorem 2.2. Let A,B : [0, 1] × L2
m[0, 1] → R be Lipschitz function,

satisfying linearly growth condition. Suppose that functions aψ, bψ : [0, 1]×
W [0, 1] → R defined by

aψ(t, x) = A(t, Lψ
t x), bψ(t, x) = B(t, Lψ

t x)

and ξt,ψ
s , θt,ψ

s denote solutions of the S.D.E.

ξs = ψs + jt(s)
∫ s

t
aψ(u, ξ)dwu + jt(s)

∫ s

t
bψ(u, ξ)du, (2.3)

θs = ψ +
∫ s

t
A(u, θu)judwu +

∫ s

t
B(u, θu)judu, (2.4)

respectively. Then θt,ψ
s = Lψ

s (ξt,ψ).

Proof. Equation (2.3) has a unique strong solution ([3], [4]) and equation
(2.4) has a unique strong solution only in the space L2

m[0, 1] [5]. By Theorem
2.1 equation (2.3) gives

Csξ = ψs +
∫ s

t
aψ(u, ξ)judwu +

∫ s

t
bψ(u, ξ)judu.
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Since aψ
u (ξ) = Au(Lψ

u ξ), we have

Lψ
s ξ = ψ +

∫ s

t
A(u, Lψ

u ξ)judwu +
∫ s

t
B(u, Lψ

uξ)judu,

θt,ψ
s = Lψ

s (ξt,ψ) because of the solution is unique.

Corollary 1. Suppose that in addition to the conditions of Theorem 2.2
the functions A,B belong to C1,2([0, 1] × L2

m) and η ∈ C2(L2
m). Then the

Cauchy problem

( ∂
∂t

+A(t)
)

u(t, ϕ) ≡
( ∂

∂t
+ b(t, ϕ)

∂
∂jt

+
1
2
a(t, ϕ)2

∂2

∂j2
t

)

u(t, ϕ) = 0, (2.5)

u(1, ϕ) = η(ϕ) (2.6)

has a solution which can be represented as

u(t, ϕ) = Eη(ξt,ϕ), (2.7)

where ξt,ϕ is a solution of (2.3).

Proof. It follows from the results of [5, pp. 322, 325] taking into account
(2.2).

Corollary 2. ξs = ξ0,ψ(0)j0
s satisfies the S.D.E.

ξs = ψ(0) +
∫ s

0
a(u, ξ)dwu +

∫ s

0
b(u, ξ)du,

where a(u, ξ) = A(u, Cuξ), b(u, ξ) = B(u,Cuξ), and we have

E[η(ξ)|Fξ
t ] = Eη(ξt,ψ)|ψ=Ctξ.

Remark 1. If we suppose

ψ = ψ0j0, m = δ1, A(t, x) = Ã(t, x(t)), B(t, x) = B̃(t, x(t)),

then a(t, x) = A(t, Ctx) = Ã(t, x(t)), b(t, x) = B(t, Ctx) = B̃(t, x(t)).

Theorem 2.3. Suppose that a continuous bounded function

f : [0, 1]× L2
m[0, 1] → R

possesses the continuous bounded derivatives ∂
∂tf(t,ψ), ∂

∂jt
f(s,ψ), ∂2

∂j2
t
f(s,ψ)

for each t, s ∈ [0, 1]. Then (2.1) holds.
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Proof. By a standard way the proof of formula (2.1) reduces to the case
ξt = xt0 + (t− t0)Rt0(b) + (w(t)− w(t0))Rt0(a). Evidently, ξt − xt0 = ηtjt,
g(t, ηt) = f(t, ξt), where g(t, q) = f(t, qxt0jt0), ηt = (t − t0)bt0 + (w(t) −
w(t0))at0 . By the Itô formula for scalar case we obtain

g(t, ηt)− g(t0, 0) =
∫ t

t0

[ ∂
∂s

g(s, ηs) + bt0
∂
∂q

g, ηs) +

+
1
2
a2

t0
∂2

∂q2 g(s, ηs)
]

ds +
∫ t

t0
at0

∂
∂q

g(s, ηs)dws.

Then the Itô formula is obtained for ξt, since ∂k

∂qk g(t, q) = ∂k

∂jk
t0

f(t, xt0+qjt0),

k = 1, 2.

The first and second Frechet derivatives ∇F , ∇2F for the functions F :
W [0, 1] → R by Riesz’ theorem are represented as a Borel measure on [0, 1]
and a symmetric (w.r.t. the inversion (u, v) → (v, u)) Borel measure on
[0, 1]2, respectively [6, p. 68]. These measures are denoted by ∇F (x, du)
and ∇2F (x, dudv).

Remark 2. If f : W [0, 1] → R is a twice continuous Frechet differentiable
function, then by the results of [2] both ∂

∂jt
f(t, Ctx), ∂2

∂j2
t
f(t, Ctx) are r.c.l.l.

in t.

Theorem 2.4. Suppose that f ∈ CB1,2([0, 1] × W [0, 1]), f0(t, x) =
∂
∂tf(t, x), f1(t, x) = ∇f(t, x, [t, 1]), f2(t, x, [t, 1]2) = ∇2f(t, x, [t, 1]2) and
ηt = ψ+

∫ t
t0

asjsdws+
∫ t

t0
bsjsds, where (at,Ft), (bt,Ft) satisfy the conditions

of Theorem 2.1. Then

f(t, ηt)− f(t0, ηt0) =
∫ t

t0

[

f(s, ηs) + bsf1(s, ηs) +
1
2
a2

sf
2(s, ηs)

]

ds +

+
∫ t

t0
asf1(s, ηs)dws. (2.8)

Proof. For each h ∈ L2[0, 1] we denote

hn(t) = n
∫ t

0
e−n(t−s)h(s)ds. (2.9)

Evidently, the mapping L2[0, 1] ∈ h → hm ∈ W [0, 1] is a lineary continuous
function and hm → h,m →∞ in L2[0, 1]. The mapping f (n)(t, x) = f(t, x)
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is a differentiable w.r.t. t and twice Frechet differetiable w.r.t. x. For
h ∈ L2[0, 1] we have

∂
∂h

f (n)(t, x) =
∫ 1

0
fx(t, xn, ds)hn(s),

∂2

∂h2 F (n)(t, x) =
∫ 1

0

∫ 1

0
fxx(t, xn, dudv)hn(u)hn(v)

for h = js, hn(t) = e−nt(ent − ens), i.e.,

∂
∂jt

f (n)(t, x) → f1(t, x), n →∞.

Similarly,
∂2

∂j2
t
f (n)(t, x) → f2(t, x), n →∞.

By Lebesgue’s theorem we can pass to the limit in formula (2.1).

Remark 3. In [7] it was proposed to define derivatives of anticipative
functions as follows. f(t, x) called differentiable if there exist f0 and f1 such
that f(t, x) = f0(t, x)+

∫ t
0 f1(s, x)dxs for x ∈ V [0, 1]. If f(t, x) = F (t, Ctx)

then the derivatives f0(t, x), f1(t, x) can be calculated as
∫ t

0

∂F
∂s

(s, Csx)ds,
∂F
∂jt

(t, Ctx),

respectively.

Remark 4. It is possible to define the Markov dilation by the operator
Qt. Then the infinitesimal operator will have the form ∂

∂t + b(t, x) ∂
∂it

+
1
2a(t, x)2 ∂2

∂i2t
.

3. Markov dilation of a Diffusion Type Process in the Space
W [0,∞)

Let a, b : R×W [0,∞) → R be nonanticipative continuous functions such
that the S.D.E.

ξs = ψs +
∫ s

t
a(u, ξ)dwu +

∫ s

t
b(u, ξ)du, t ≤ s, (3.1)

being defined as ψ(s) for s < t has a unique strong solution for any t. For
this it must satisfies the following condition [5]: There exists K > 0 such
that

|a(t, x)− a(t, y)|2 + |b(t, x)− b(t, y)|2 ≤ K‖x− y‖2t ,
|a(t, x)|2 + |b(t, x)|2 ≤ K(1 + ‖x‖2).

(3.2)
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Lemma 3.1. Let ξt,ψ
s , s ≥ t be a solution of (3.1). Then

ξt,ψ
τ = ξψ◦sξt,ψ

τ , t ≤ s ≤ τ.

Proof. By inserting ϕ = ξt,ψ in the equality

ξψ◦sϕ
τ = ψ ◦s ϕ(τ) +

∫ τ

t
a(u, ξψ◦sϕ)dwu +

∫ τ

t
b(u, ξψ◦sϕ)du, ψ ∈ W,

and taking into account that
∫ τ

s
g(u, r)dwu|r=η =

∫ τ

s
g(u, η)dwu, η ∈ Fs,

we have

ξs,ψ◦sξt,ψ

τ =ψ(τ)− ψ(s) + ξt,ψ
s +

+
∫ τ

s
a(u, ξs,ψ◦sξt,ψ

)dwu +
∫ τ

s
b(u, ξs,ψ◦sξt,ψ

)du =

= ξt,ψ
s − ψ(s)−

∫ s

t
a(u, ξs,ψ◦sξt,ψ

)dwu −
∫ s

t
b(u, ξs,ψ◦sξt,ψ

)du +

+ ψ(τ) +
∫ τ

t
a(u, ξs,ψ◦sξt,ψ

)dwu +
∫ τ

t
b(u, ξs,ψ◦sξt,ψ

)du =

= ψ(τ) +
∫ τ

t
a(u, ξs,ψ◦sξt,ψ

)dwu +
∫ τ

t
b(u, ξs,ψ◦sξt,ψ

)du.

This equality is valid, since ξt,ψ
u = ξs,ψ◦sξt,ψ

u for t ≤ u ≤ s. By the uniqueness
of a solution it follows that ξt,ψ

τ = ξψ◦sξt,ψ

τ .

Theorem 3.1. θt,ψ
s ≡ ψ ◦s ξt,ψ = Lψ

s (ξt,ψ) is a W -valued Markov family
of processes.

Proof. Suppose f ∈ CB(W ). By Lemma 3.1 ψ ◦s ξt,ψ = ψ ◦s ξs,ψ◦sξt,ψ
s , i.e.,

θt,ψ
τ = ψ ◦s ξs,ψ◦sξt,ψ

s , t ≤ s ≤ τ , and

E[f(θt,ψ
τ )|θt,ψ

s ] = E[f(θs,θt,ψ
s

τ )|θt,ψ
s ] = E[f(θs,ψ

τ )]ψ=θs,ψ
s

.

On the other hand, (1.1) is fulfilled, i.e., E[f(θt,ψ
τ )|θt,ψ

s ] = Ef(θs,ψ
τ )ψ=θs,ψ

s
,

since

σ(θt,ψ
s ) = σ(ξt,ψ

u , t ≤ u ≤ s) = σ(θt,ψ
u , t ≤ u ≤ s).

Now we shall describe infinitesimal operators of Markov family of pro-
cesses. Here jt will denote 1[t,∞).



MARKOV DILATION OF DIFFUSION TYPE PROCESSES 371

Theorem 3.2. Suppose that the bounded function f : R+×L2(R+) → R
has the continuous bounded derivatives ∂

∂tf(t, ψ), ∂
∂js

f(t, ψ), ∂2

∂j2
s
f(t, ψ) for

each t, s ∈ R+. Then

f(s, θt,ψ
s )− f(t, ψ) =

∫ s

t

[ ∂
∂u

f(u, θt,ψ
u ) +A(u)F (u, θt,ψ

u )
]

du +

+
∫ s

t
a(u, θt,ψ

u )
∂

∂ju
f(u, θt,ψ

u )dwu.

Proof. It can be obtained immediately by the theorem 2.3 and the repre-
sentation

θt,ψ
s = ψs +

∫ s

t
jua(u, ψ)dwu +

∫ s

t
jub(u, ψ)du.

Let us denote by CB1,2
J (R+ ×W ) a class of function satisfying the con-

ditions of Theorem 3.2.

Lemma 3.2. Suppose f ∈ CB(R+×W ), f (n)(t, x) = f(t, xn), where xn

is defined by (2.9). Then f (n)(t, x) → f(t, x), (t, x) ∈ R+×W , and {fn} is
the uniformly bounded family.

Proof. The results of [8] imply that xn(t) → x(t) uniformly on each segment
[a, b], i.e., xn → x in W . By the continuity of f we have f (n)(t, x) → f(t, x),
f(t, x) ≤ ‖f‖∞.

Corollary. CB1,2
J (R+ ×W ) dense in CBJ(R+ ×W ) in the topology of

bounded pointwise convergence.

Proof. It is sufficient to recall that Gateux differentiable functions in the
Hilbert space H dense in CB(H) [5].

Now we introduce the R+ ×W -valued homogeneous Markov family

ηt,ψ
s = (t + s, θt,ψ

t+s), s ≥ 0.

Evidently, by Theorem 2.3 for each f ∈ CB1,2
J (R+ × W ), we have the

following decomposition

f(ηt,ψ
s ) = f(t, ψ) +

∫ s

0
Lf(u + t, θt,ψ

u+t)du +

+
∫ s

0

∂f
∂ju+t

(u + t, θt,ψ
u+t)a(u + t, θt,ψ

u+t)dwu.

Therefore CB1,2
J belongs to the domain of the generator of the Markov

family {ηt,ψ
s } and the equation Lf = ( ∂

∂t + A(t))f holds for any f ∈
CB1,2

J (R+ ×W ). We will show the solvability of this equatiion.



372 R. TEVZADZE

Lemma 3.3. Let an(t, u), bn(t, u), cn(t), (t, u) ∈ R+ × R, n = 0, 1, . . . ,
be the processes adapted with filtration (Ft) for each fixed u. Furtermore,
an(t, ·), bn(t, ·) are functions of finite variation. Assume that there exist K
such that

‖an(t, ·)‖ ≤ K, ‖bn(t, ·)‖ ≤ K, E sup
s≤t

|cn(s)| ≤ K,

and

‖an(t, ·)− a0(t, ·)‖V [0,t] → 0, ‖bn(t, ·)− b0(t, ·)‖V [0,t] → 0,

E sup
s≤t

|cn(s)− c0(s)| → 0

in probability. Let ζn, n = 0, 1, . . . , be solutions of

ζn(t) = cn(t) +
∫ t

0

∫ s

0
an(s, du)ζn(u)dws +

∫ t

0

∫ s

0
bn(s, du)ζn(u)ds.

Then E‖ζn − ζ0‖2t → 0.

Proof. We shall use the proof from [9]. Using the inequality (a + b + c)2 ≤
3(a2 + b2 + c2) we obtain

E sup
s≤t

|ζn(τ)− ζ0(τ)|2t ≤

≤ 3E sup
τ≤t

∫ τ

0

∣

∣

∣

∣

∫ s

0
(an(s, du)ζn(du)− a0(s, du)ζ0(u))dws

∣

∣

∣

∣

2

+

+ 3E sup
τ≤t

∫ τ

0

∣

∣

∣

∣

∫ s

0
(bn(s, du)ζn(du)−b0(s, du)ζ0(u))ds

∣

∣

∣

∣

2

+

+ 3E sup
τ≤t

|cn(t)−c0(t)|2.

By Doob’s inequality we have

E sup
τ≤t

∫ τ

0

∣

∣

∣

∣

∫ s

0
(an(s, du)ζn(du)− a0(s, du)ζ0(u))dws

∣

∣

∣

∣

2

≤

≤ 4E
∫ t

0

∣

∣

∣

∣

∫ s

0
(an(s, du)ζn(du)− a0(s, du)ζ0(u))

∣

∣

∣

∣

2

ds,

i.e.,

E sup
τ≤t

|ζn(τ)− ζ0(τ)|2 ≤ 3E sup
τ≤t

|cn(t)− c0(t)|2 +

+ 12E
∫ t

0

∣

∣

∣

∣

∫ s

0
(an(s, du)ζn(u)− a0(s, du)ζ0(u))

∣

∣

∣

∣

2

ds +
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+ 3tE
∫ t

0

∣

∣

∣

∣

∫ s

0
(bn(s, du)ζn(u)− b0(s, du)ζ0(u))

∣

∣

∣

∣

2

ds ≤

≤ 3E sup
τ≤t

|cn(τ)− c0(τ)|2 +

+ 24E
∫ t

0

∣

∣

∣

∣

∫ s

0
[(an(s, du)− a0(s, du)]ζ0(u))

∣

∣

∣

∣

2

ds +

+ 6tE
∫ t

0

∣

∣

∣

∣

∫ s

0
[bn(s, du)− b0(s, du)]ζ0(u))

∣

∣

∣

∣

2

ds +

+ 24E
∫ t

0

∣

∣

∣

∣

∫ s

0
an(s, du)[ζn(u)− ζ0(u)]

∣

∣

∣

∣

2

ds +

+ 6tE
∫ t

0

∣

∣

∣

∣

∫ s

0
bn(s, du)(ζn(u)− ζ0(u))

∣

∣

∣

∣

2

ds ≤

≤ 3E sup
τ≤t

|cn(τ)− c0(τ)|2 +

+ 24E
∫ t

0

∣

∣

∣

∣

∫ s

0
an(s, du)[ζn(u)− ζ0(u)]

∣

∣

∣

∣

2

ds +

+ 6tE
∫ t

0

∣

∣

∣

∣

∫ s

0
bn(s, du)(ζn(u)− ζ0(u))

∣

∣

∣

∣

2

ds ≤

≤ δn(t) + 6K2t
∫ t

0
E sup

τ≤s
|ζn(u)− ζ0(u)|2ds +

+ 24K2
∫ t

0
E sup

τ≤s
|ζn(u)− ζ0(u)|2ds,

where

δn(t) = 3E sup
s≤t

|cn(s)− c0(s)|+

+ 24E sup
s≤t

|ζ0(s)|2E
∫ t

0
‖an(s, ·)− a0(s, ·)‖2ds +

+ 6tE sup
s≤t

|ζ0(s)|2E
∫ t

0
‖bn(s, ·)− b0(s, ·)‖2ds.

Evidently, δn(t) → 0, t ≥ 0. By Gronwall’s lemma

E|ζn(s)− ζ0(s)|2 ≤ sup
s≤t

|δn(s)|2eHt,

where H = 24K2 + 6K2t.

Theorem 3.3. Let a, b ∈ CB0,2(R+×W ). Then the solution of equation
(3.1) is Frechet differeniable w.r.t. ψ for each t, s. Moreover, Y (s, u) =
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∂
∂ju

ξt,ψ
s satisfies the equation

dsY (s, u) = (∇a(s, ξ), Y (·, u))dws + (∇b(s, ξ), Y (·, u))ds, s ≥ u,

Y (u, u) = 1, (3.3)

Y (s, u) = 0, s < u.

Proof. Let t, ψ be fixed. Denote ζϕ,ε
s = 1

ε [ζt,ψ+εϕ
s − ζt,ψ

s ] for any direction
ϕ. Then

ζϕ,ε
s =ψs + jt

∫ s

t

1
ε
[a(u, ξt,ψ+εϕ)− a(u, ξt,ψ)]dwu +

+ jt

∫ s

t

1
ε
[b(u, ξt,ψ+εϕ)− b(u, ξt,ψ)]du.

Using the mean value theorem we obtain

ζψ,ε
s =ψs + jt

∫ s

t
(∇a(u, ξt,ψ + εθζϕ,ε), ζϕ,ε)dwu +

+ jt

∫ s

t
(∇b(u, ξt,ψ + εθζϕ,ε), ζϕ,ε)du

for some θ, 0 ≤ θ ≤ 1. Introduce the notation an = ∇a(u, ξt,ψ + εnζϕ,εn),
bn = ∇b(u, ξt,ψ + εnζϕ,εn), where εn → 0. By Lemma 3.3 it follows that
ζϕ,εn→ ∂

∂ϕξt,ψ and consequently sups≤t[εnζϕ,εn
s ]→0. Thus an→∇a(u, ξt,ψ),

bn → ∇b(u, ξt,ψ) as n →∞. Evidently ( ∂
∂ϕξt,ψ)(s) = ϕ(s), s < t. It remains

to take ϕ = ju. The existence of second derivatives at ψ is proved in a
similar way [9].

Theorem 3.4. Let the conditions of Theorem 3.3 hold and η ∈ C2(W ).
Then u(t, ψ) = Eη(ξt,ψ) belongs to C1,2(R+ ×W ) and satisfies

( ∂
∂t

+A(t)
)

u(t, ψ) = 0, lim
t→∞

u(t, ψ) = η(ψ).

Proof. The differentiability of the functions u(t, ψ) w.r.t. ψ follows from
Theorem 3.2. We have

u(t, ψ) = Eη(ξt,ψ)=Eη(ξs,ψ◦sξt,ψ
)=E[η(ξs,ψ◦sy)|y=ξt,ψ ] = Eu(s, ψ ◦s ξt,ψ),

y ∈ W , i.e., u(t, ψ) = Eu(s, θt,ψ
s ). Let s = t + h. By Itô’s formula

u(t + h, θt,ψ
t+h)− u(t + h, ψ) =

=
∫ t+h

t

[

b(s, θt,ψ
s )

∂
∂js

+
1
2
a(s, θt,ψ

s )2
∂2

∂j2
s

]

u(t + h, θt,ψ
s )ds +

+
∫ t+h

t
a(s, θt,ψ

s )
∂

∂js
u(t + h, θt,ψ

s )dws.
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Consequently,

u(t, ψ)− u(t + h, ψ) = Eu(t + h, θt,ψ
t+h)− u(t + h, ψ) =

+E[b(s′, θt,ψ
s′ )

∂
∂js

u(t + h, θt,ψ
s′ ) +

1
2
a(s′, θt,ψ

s′ )2
∂2

∂j2
s
u(t + h, θt,ψ

s′ )]h,

for some s′, t ≤ s′ ≤ t + h, i.e.,

1
h

(u(t, ψ)− u(t + h, ψ)) → A(t)u(t, ψ), h → 0,

and ( ∂
∂t +A(t))u(t, ψ) = 0. Evidently, ξt,ψ → ψ when t tends to infinity.

Remark 5. Applying a similar reasoning, one can prove the solvability of
the Cauchy problem

( ∂
∂t

+A(t)− r(t, ϕ)
)

u(t, ϕ) = 0, lim
t→∞

u(t, ϕ) = η(ϕ),

where r ∈ C0,2(R+ ×W ).

4. Applications

The obtained results allow us to derive a representation formula for func-
tionals of a diffusion type process (Clark’s formula) [1]. However our condi-
tions will be stronger than those in [1] and more general than those in the
recent work [2].

Theorem 4.1. Let a(t, ψ), b(t, ψ), η(ψ) be the functions with bounded
continuous Frechet derivatives of first and second order w.r.t. ψ ∈ W [0, 1].
Suppose (ξt)t∈[0,1] is a solution of (1.2). Then

E[η(ξ)|Ft] = E[η(ξ)] +
∫ t

0
E

[ ∫ 1

u
∇η(ξ, ds)Y (s, u)|Fu

]

a(u, ξ)dwu, (4.1)

where Y satisfies (3.3).

Proof. By the Markov property we have E[η(ξ)|Ft] = V (t, Ctξ), where
V (t, ψ) = Eη(ξt,ψ). By Theorem 3.4 and Itô’s formula for V (t, Ctξ) we
have

V (t, Ctξ) = V (0, ξ0) +
∫ t

0

∂
∂ju

V (u,Cuξ)a(u, ξ)dwu.

By Theorem 3.3

∂
∂ju

V (u, ψ) = E(∇η(ξ), Y (·, u)) = E
∫ 1

u
∇η(ξ, ds)Y (s, u).
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Using Corollary 2 of Theorem 2.2 we can write

∂
∂ju

V (u, Cuξ) = E
[ ∫ 1

u
∇η(ξ, ds)Y (s, u)|Fu

]

.

Thus relation (4.1) is valid.

The other application refers to financial mathematics. Suppose that the
stock price process St satisfies

dSt = µ(t, S)dt + σ(t, S)dwt

and the bond price process satisfies

dBt = r(t, S)Btdt.

Also suppose that g(S) is a contingent claim under the stock St with delivery
time 1.

The portfolio process (α(t, S), β(t, S)), where α denotes the number of
stocks and β the number of bonds, is called a self-financing if the wealth
process h(t, S) = α(t, S)St + β(t, S)Bt can be represented as

h(t, S) = h(0, S0) +
∫ t

0
α(s, S)dSs +

∫ t

0
β(s, S)dBs.

The process (α(t, S), β(t, S)), is called a replicating portfolio for the contin-
gent claim g(S), if, additionaly, h(1, S) = g(S) [10].

Theorem 4.2. Suppose that σ(t,ψ), r(t,ψ) belongs to C0,2([0,1]×W [0,1])
and g(ψ) belongs to BC2(W [0, 1]). Then there exists a replicating portfolio
process (αt, βt) whose wealth process is a solution of the Cauchy problem

∂
∂t

h(t, ψ) + ψtr(t, ψ)
∂

∂jt
h(t, ψ) +

+
1
2
σ(t, ψ)2

∂2

∂j2
t
h(t, ψ)− r(t, ψ)h(t, ψ) = 0,

h(1, ψ) = g(ψ).

(4.2)

Moreover, α(t, ψ) = ∂
∂jt

h(t, ψ).

Proof. Let h(t, ψ) be a solution of problem (4.2) existing by virtue of The-
orem 3.4. Define the portfolio process by

α(t, S) =
∂

∂jt
h(t, S), β(t, S) =

1
Bt

(

h(t, S)− St
∂

∂jt
h(t, S)

)

.
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This strategy replicates the contingent claim, since h(1, S) = g(S). To
verify the self-financing property we perform the transformation

∫ t

0
αudSu +

∫ t

0
βudBu =

=
∫ t

0

∂
∂ju

h(u, ψ)σ(u, S)dwu +
∫ t

0
µ(u, S)

∂
∂ju

h(u, ψ)du +

+
∫ t

0
(h(u, S)− Su

∂
∂ju

h(u, ψ))r(u, S)du =

=
∫ t

0
σ(u, S)

∂
∂ju

h(u, ψ)dwu,
∫ t

0
[h(u, S)r(u, S) + (µ(u, S)− Sur(u, S))

∂
∂ju

h(u, ψ)]du =

=
∫ t

0
σ(u, S)

∂
∂ju

h(u, ψ)dwu +

+
∫ t

0
[h(u, S)r(u, S) + (Aµ(u)−Ar(u))h(u, S)]du =

=
∫ t

0
σ(u, S)

∂
∂ju

h(u, ψ)dwu +
∫ t

0
Aµ(u)h(u, S)du =

= h(t, S)− h(0, S0),

where we use the notation

Aµ(s) = µ(u, S)
∂

∂ju
+

1
2
σ(u, S)2

∂2

∂j2
u
,

Ar(s) = r(u, S)Su
∂

∂ju
+

1
2
σ(u, S)2

∂2

∂j2
u
.

The equality is valid by Itô’s formula.
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