OSCILLATION AND NONOSCILLATION IN DELAY OR ADVANCED DIFFERENTIAL EQUATIONS AND IN INTEGRODIFFERENTIAL EQUATIONS

I.-G. E. KORDONIS AND CH. G. PHILOS

Abstract

Some new oscillation and nonoscillation criteria are given for linear delay or advanced differential equations with variable coefficients and not (necessarily) constant delays or advanced arguments. Moreover, some new results on the existence and the nonexistence of positive solutions for linear integrodifferential equations are obtained.

1. Introduction and Preliminaries

With the past two decades, the oscillatory behavior of solutions of differential equations with deviating arguments has been studied by many authors. The problem of the oscillations caused by the deviating arguments (delays or advanced arguments) has been the subject of intensive investigations. Among numerous papers dealing with the study of this problem we choose to refer to the papers by Arino, Györi and Jawhari [1], Györi [2], Hunt and Yorke [3], Jaroš and Stavroulakis [4], Koplatadze and Chanturija [5], Kwong [6], Ladas [7], Ladas, Sficas and Stavroulakis [8, 9], Ladas and Stavroulakis [10], Li [11, 12], Nadareishvili [13], Philos [14, 15, 16], Philos and Sficas [17], Tramov [18], and Yan [19] and to the references cited therein; see also the monographs by Erbe, Kong and Zhang [20], Györi and Ladas [21], and Ladde, Lakshmikantham and Zhang [22] and the references therein. In particular, we mention the sharp oscillation results by Ladas [7] and Koplatadze and Chanturija [5] (see also Kwong [6]); for some very recent related results we refer to Jaroš and Stavroulakis [4], Li [11, 12], and Philos and Sficas [17] (see also the references cited therein). In the special case of an autonomous delay or advanced differential equation it is known that a necessary and sufficient condition for the oscillation of all solutions is that its characteristic equation have no real roots; such a result was proved

[^0]by Arino, Györi and Jawhari [1], Ladas, Sficas and Stavroulakis [8, 9], and Tramov [18] (see also Arino and Györi [23] for the general case of neutral differential systems and Philos, Purnaras and Sficas [24] and Philos and Sficas [25] for some general forms of neutral differential equations). Also, for a class of delay differential equations with periodic coefficients, a necessary and sufficient condition for the oscillation of all solutions is given by Philos [15] (in this case a characteristic equation is also considered). For the existence of positive solutions of delay differential equations we refer to the paper by Philos [26]. The reader is referred to the books by Driver [27], Hale [28], and Hale and Vertuyn Lunel [29] for the basic theory of delay differential equations.

The literature is scarce concerning the oscillation and nonoscillation of solutions of integrodifferential equations. We mention the papers by Gopalsamy [30, 31, 32], Györi and Ladas [33], Kiventidis [34], Ladas, Philos and Sficas [35], Philos [36, 37, 38], and Philos and Sficas [39] dealing with the problem of the existence and the nonexistence of positive solutions of integrodifferential equations or of systems of such equations. Integrodifferential equations belong to the class of differential equations with unbounded delays; for a survey on equations with unbounded delays see the paper by Corduneanu and Lakshmikantham [40]. For the basic theory of integrodifferential equations (and, more generally, of integral equations) we refer to the books by Burton [41] and Corduneanu [42].

In this paper we deal with the oscillation and nonoscillation problem for first order linear delay or advanced differential equations as well as for first order linear integrodifferential equations. The discrete analogs of the results of this paper have recently been obtained by the authors [43] and the second author [44].

Consider the delay differential equation

$$
\begin{equation*}
x^{\prime}(t)+\sum_{j \in J} p_{j}(t) x\left(t-\tau_{j}(t)\right)=0 \tag{1}
\end{equation*}
$$

and the advanced differential equation

$$
\begin{equation*}
x^{\prime}(t)-\sum_{j \in J} p_{j}(t) x\left(t+\tau_{j}(t)\right)=0 \tag{2}
\end{equation*}
$$

where J is an (nonempty) initial segment of natural numbers and for $j \in J$ p_{j} and τ_{j} are nonnegative continuous real-valued functions on the interval $[0, \infty)$. For the delay equation $\left(\mathrm{E}_{1}\right)$ it will be supposed that the set J is necessarily finite and that the delays τ_{j} for $j \in J$ satisfy

$$
\lim _{t \rightarrow \infty}\left[t-\tau_{j}(t)\right]=\infty \quad \text { for } \quad j \in J
$$

with respect to the advanced equation $\left(\mathrm{E}_{2}\right)$ the set J may be infinite.

Let $t_{0} \geq 0$. By a solution on $\left[t_{0}, \infty\right)$ of the delay differential equation $\left(\mathrm{E}_{1}\right)$ we mean a continuous real-valued function x defined on the interval $\left[t_{-1}, \infty\right)$, where

$$
t_{-1}=\min _{j \in J} \min _{t \geq t_{0}}\left[t-\tau_{j}(t)\right]
$$

which is continuously differentiable on $\left[t_{0}, \infty\right)$ and satisfies $\left(\mathrm{E}_{1}\right)$ for all $t \geq t_{0}$. (Note that $t_{-1} \leq t_{0}$ and that t_{-1} depends on the delays τ_{j} for $j \in J$ and the initial point t_{0}.) A solution on $\left[t_{0}, \infty\right)$ of the advanced differential equation $\left(\mathrm{E}_{2}\right)$ is a continuously differentiable function x on the interval $\left[t_{0}, \infty\right)$, which satisfies $\left(\mathrm{E}_{2}\right)$ for all $t \geq t_{0}$.

As usual, a solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{2}\right)$ is said to be oscillatory if it has arbitrarily large zeros, and otherwise the solution is called nonoscillatory.

Consider also the integrodifferential equations

$$
\begin{equation*}
x^{\prime}(t)+q(t) \int_{0}^{t} K(t-s) x(s) d s=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}(t)+r(t) \int_{-\infty}^{t} K(t-s) x(s) d s=0 \tag{4}
\end{equation*}
$$

as well as the integrodifferential inequalities

$$
\begin{equation*}
y^{\prime}(t)+q(t) \int_{0}^{t} K(t-s) y(s) d s \leq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime}(t)+r(t) \int_{-\infty}^{t} K(t-s) y(s) d s \leq 0 \tag{2}
\end{equation*}
$$

where the kernel K is a nonnegative continuous real-valued function on the interval $[0, \infty)$, and the coefficients q and r are nonnegative continuous realvalued functions on the interval $[0, \infty)$ and the real line \mathbb{R}, respectively.

If $t_{0} \geq 0$, by a solution on $\left[t_{0}, \infty\right)$ of the integrodifferential equation $\left(\mathrm{E}_{3}\right)$ (resp. of the integrodifferential inequality $\left(\mathrm{I}_{1}\right)$) we mean a continuous real-valued function x [resp. $y]$ defined on the interval $[0, \infty)$, which is continuously differentiable on $\left[t_{0}, \infty\right)$ and satisfies $\left(\mathrm{E}_{3}\right)$ [resp. (I_{1})] for all $t \geq t_{0}$. In particular, a solution on $[0, \infty)$ of $\left(\mathrm{I}_{1}\right)$ is a continuously differentiable real-valued function y on the interval $[0, \infty)$ satisfying (I_{1}) for every $t \geq 0$. Moreover, if $t_{0} \in \mathbb{R}$, then a solution on $\left[t_{0}, \infty\right)$ of the integrodifferential equation $\left(\mathrm{E}_{4}\right)$ [resp. of the integrodifferential inequality $\left(\mathrm{I}_{2}\right)$] is a continuous real-valued function x [resp. y] defined on the real line \mathbb{R}, which is continuously differentiable on $\left[t_{0}, \infty\right)$ and satisfies (E_{4}) [resp. (I_{2})] for all $t \geq t_{0}$. Also, a continuously differentiable real-valued function y on the real line \mathbb{R}, which satisfies $\left(\mathrm{I}_{2}\right)$ for every $t \in \mathbb{R}$, is called a solution on \mathbb{R} of $\left(\mathrm{I}_{2}\right)$.

The results of the paper will be presented in Sections 2, 3, 4 and 5. Section 2 contains some results which provide sufficient conditions for the
oscillation of all solutions of the delay differential equation $\left(E_{1}\right)$ or of the advanced differential equation $\left(\mathrm{E}_{2}\right)$. Conditions which guarantee the existence of a positive solution of the delay equation $\left(E_{1}\right)$ or of the advanced equation $\left(\mathrm{E}_{2}\right)$ will be given in Section 3. Section 4 deals with the nonexistence of positive solutions of the integrodifferential inequalities (I_{1}) and $\left(\mathrm{I}_{2}\right)$ (and, in particular, of the integrodifferential equations $\left(\mathrm{E}_{3}\right)$ and $\left(\mathrm{E}_{4}\right)$). More precisely, in Section 4 necessary conditions are given for $\left(\mathrm{E}_{3}\right)$ or, more generally, for $\left(\mathrm{I}_{1}\right)$ to have solutions on $\left[t_{0}, \infty\right)$, where $t_{0} \geq 0$, which are positive on $[0, \infty)$; analogously, necessary conditions are derived for $\left(\mathrm{E}_{4}\right)$ or, more generally, for $\left(\mathrm{I}_{2}\right)$ to have solutions on $\left[t_{0}, \infty\right)$, where $t_{0} \in \mathbb{R}$, which are positive on \mathbb{R}. In Section 5, sufficient conditions are obtained for the equation (E_{3}) to have a solution on $\left[t_{0}, \infty\right)$, where $t_{0}>0$, which is positive on $[0, \infty)$ and tends to zero at ∞; similarly, sufficient conditions are given for the existence of a solution on $\left[t_{0}, \infty\right)$, where $t_{0} \in \mathbb{R}$, of the equation $\left(\mathrm{E}_{4}\right)$ which is positive on \mathbb{R} and tends to zero at ∞.

2. Sufficient Conditions for the Oscillation of Delay or Advanced Differential Equations

In this section, we will give conditions which guarantee the oscillation of all solutions of the delay differential equation $\left(\mathrm{E}_{1}\right)$ (Theorem 2.1) or of the advanced differential equation (E_{2}) (Theorem 2.2).

To state Theorem 2.1, it is needed to consider the points $T_{i}(i=0,1, \ldots)$ defined as

$$
T_{0}=0
$$

and for $i=1,2, \ldots$

$$
T_{i}=\min \left\{s \geq 0: \min _{j \in J} \min _{t \geq s}\left[t-\tau_{j}(t)\right] \geq T_{i-1}\right\}
$$

(It is clear that $0 \equiv T_{0} \leq T_{1} \leq T_{2} \leq \ldots$.)
Theorem 2.1. Assume that

$$
p \equiv \inf _{t \geq 0} \sum_{j \in J_{0}} p_{j}(t)>0 \quad \text { and } \quad \tau \equiv \min _{j \in J_{0}} \inf _{t \geq 0} \tau_{j}(t)>0
$$

for a nonempty set $J_{0} \subseteq J$. Moreover, suppose that there exists a nonnegative integer m such that

$$
\int_{t^{\star}-\tau}^{t^{\star}} P_{m}(s) d s>\log \frac{4}{(p \tau)^{2}} \quad \text { for a sufficiently large } \quad t^{\star} \geq T_{m}+\tau
$$

where

$$
P_{0}(t)=\sum_{j \in J} p_{j}(t) \quad \text { for } t \geq 0 \equiv T_{0}
$$

and, when $m>0$, for $i=0,1, \ldots, m-1$

$$
P_{i+1}(t)=\sum_{j \in J} p_{j}(t) \exp \left[\int_{t-\tau_{j}(t)}^{t} P_{i}(s) d s\right] \quad \text { for } t \geq T_{i+1}
$$

Then all solutions of the delay differential equation $\left(\mathrm{E}_{1}\right)$ are oscillatory.
Proof. Let x be a nonoscillatory solution on an interval $\left[t_{0}, \infty\right), t_{0} \geq 0$, of the delay differential equation $\left(\mathrm{E}_{1}\right)$. Without restriction of generality one can assume that $x(t)>0, t \in[0, \infty)$. Furthermore, there is no loss of generallity to suppose that x is positive on the whole interval $\left[t_{-1}, \infty\right)$, where

$$
t_{-1}=\min _{j \in J} \min _{t \geq t_{0}}\left[t-\tau_{j}(t)\right]
$$

(Clearly, $-\infty<t_{-1} \leq t_{0}$.) Then it follows from $\left(\mathrm{E}_{1}\right)$ that $x^{\prime}(t) \leq 0$ for all $t \geq t_{0}$ and so x is decreasing on the interval $\left[t_{0}, \infty\right)$.

Now we define

$$
S_{0}=\min \left\{s \geq 0: \min _{j \in J} \min _{t \geq s}\left[t-\tau_{j}(t)\right] \geq t_{0}\right\}
$$

and, provided that $m>0$,

$$
S_{i}=\min \left\{s \geq 0: \min _{j \in J} \min _{t \geq s}\left[t-\tau_{j}(t)\right] \geq S_{i-1}\right\} \quad(i=0,1, \ldots, m)
$$

It is obvious that $t_{0} \leq S_{0} \leq S_{1} \leq \ldots \leq S_{m}$. Moreover, we can immediately see that $T_{i} \leq S_{i} \quad(i=0,1, \ldots, m)$.

We will show that

$$
\begin{equation*}
x^{\prime}(t)+P_{m}(t) x(t) \leq 0 \quad \text { for every } t \geq S_{m} \tag{2.1}
\end{equation*}
$$

By the decreasing nature of x on $\left[t_{0}, \infty\right)$ it follows from $\left(\mathrm{E}_{1}\right)$ that for $t \geq S_{0}$

$$
0=x^{\prime}(t)+\sum_{j \in J} p_{j}(t) x\left(t-\tau_{j}(t)\right) \geq x^{\prime}(t)+\left[\sum_{j \in J} p_{j}(t)\right] x(t)
$$

i.e.,

$$
\begin{equation*}
x^{\prime}(t)+P_{0}(t) x(t) \leq 0 \quad \text { for every } t \geq S_{0} \tag{2.2}
\end{equation*}
$$

Hence (2.1) is satisfied if $m=0$. Let us assume that $m>0$. Then by (2.2) we obtain for $j \in J$ and $t \geq S_{1}$

$$
\log \frac{x\left(t-\tau_{j}(t)\right)}{x(t)}=-\int_{t-\tau_{j}(t)}^{t} \frac{x^{\prime}(s)}{x(s)} d s \geq \int_{t-\tau_{j}(t)}^{t} P_{0}(s) d s
$$

So we have

$$
x\left(t-\tau_{j}(t)\right) \geq x(t) \exp \left[\int_{t-\tau_{j}(t)}^{t} P_{0}(s) d s\right] \quad \text { for } j \in J \text { and } t \geq S_{1}
$$

Thus (E_{1}) gives for $t \geq S_{1}$
$0=x^{\prime}(t)+\sum_{j \in J} p_{j}(t) x\left(t-\tau_{j}(t)\right) \geq x^{\prime}(t)+\left\{\sum_{j \in J} p_{j}(t) \exp \left[\int_{t-\tau_{j}(t)}^{t} P_{0}(s) d s\right]\right\} x(t)$,
i.e.,

$$
\begin{equation*}
x^{\prime}(t)+P_{1}(t) x(t) \leq 0 \quad \text { for every } t \geq S_{1} \tag{2.3}
\end{equation*}
$$

This means that (2.1) is fulfilled when $m=1$. Let us consider the case where $m>1$. Then it follows from (2.3) that

$$
x\left(t-\tau_{j}(t)\right) \geq x(t) \exp \left[\int_{t-\tau_{j}(t)}^{t} P_{1}(s) d s\right] \quad \text { for } j \in J \text { and } t \geq S_{2}
$$

and so $\left(\mathrm{E}_{1}\right)$ yields

$$
\begin{equation*}
x^{\prime}(t)+P_{2}(t) x(t) \leq 0 \quad \text { for every } t \geq S_{2} \tag{2.4}
\end{equation*}
$$

Thus (2.1) holds if $m=2$. If $m>2$, we can use (2.4) and $\left(\mathrm{E}_{1}\right)$ to obtain an inequality similar to (2.4) with P_{3} in place of P_{2} and S_{3} in place of S_{2}. Following the same procedure in the case where $m>3$, we can finally arrive at (2.1).

Next, it follows from (2.1) that for $t \geq S_{m}+\tau$

$$
\log \frac{x(t-\tau)}{x(t)}=-\int_{t-\tau}^{t} \frac{x^{\prime}(s)}{x(s)} d s \geq \int_{t-\tau}^{t} P_{m}(s) d s
$$

and so we have

$$
\begin{equation*}
x(t-\tau) \geq x(t) \exp \left[\int_{t-\tau}^{t} P_{m}(s) d s\right] \quad \text { for all } t \geq S_{m}+\tau \tag{2.5}
\end{equation*}
$$

On the other hand, by the decreasing character of x on $\left[t_{0}, \infty\right)$, from (E_{1}) we obtain for $t \geq S_{0}$

$$
\begin{aligned}
0 & =x^{\prime}(t)+\sum_{j \in J} p_{j}(t) x\left(t-\tau_{j}(t)\right) \geq x^{\prime}(t)+\sum_{j \in J_{0}} p_{j}(t) x\left(t-\tau_{j}(t)\right) \geq \\
& \geq x^{\prime}(t)+\left[\sum_{j \in J_{0}} p_{j}(t)\right] x(t-\tau) \geq x^{\prime}(t)+p x(t-\tau)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
x^{\prime}(t)+p x(t-\tau) \leq 0 \quad \text { for every } t \geq S_{0} \tag{2.6}
\end{equation*}
$$

Following the same arguments used in the proof of Lemma in [8] (see also Lemma 1.6.1 in [21]), from (2.6) it follows that

$$
\begin{equation*}
x(t-\tau) \leq \frac{4}{(p \tau)^{2}} x(t) \quad \text { for all } t \geq S_{0}+\tau / 2 \tag{2.7}
\end{equation*}
$$

Combining (2.5) and (2.7), we get

$$
\exp \left[\int_{t-\tau}^{t} P_{m}(s) d s\right] \leq \frac{4}{(p \tau)^{2}} \quad \text { for all } t \geq S_{m}+\tau
$$

or, equivalently,

$$
\int_{t-\tau}^{t} P_{m}(s) d s \leq \log \frac{4}{(p \tau)^{2}} \quad \text { for every } t \geq S_{m}+\tau .
$$

This is a contradiction, since t^{\star} is sufficiently large and so it can be supposed that $t^{\star} \geq S_{m}+\tau$.

Theorem 2.2. Let J_{0} be a nonempty subset of J and assume that $p>0$ and $\tau>0$, where p and τ are defined as in Theorem 2.1. Moreover, suppose that there exists a nonnegative integer m such that

$$
\int_{t^{\star}}^{t^{\star}+\tau} P_{m}(s) d s>\log \frac{4}{(p \tau)^{2}} \text { for a sufficiently large } t^{\star} \geq 0
$$

where

$$
P_{0}(t)=\sum_{j \in J} p_{j}(t) \quad \text { for } t \geq 0
$$

and, when $m>0$, for $i=0,1, \ldots, m-1$

$$
P_{i+1}(t)=\sum_{j \in J} p_{j}(t) \exp \left[\int_{t}^{t+\tau_{j}(t)} P_{i}(s) d s\right] \quad \text { for } t \geq 0
$$

Then all solutions of the advanced differential equation $\left(\mathrm{E}_{2}\right)$ are oscillatory.

Proof. Assume, for the sake of contradiction, that the advanced differential equation (E_{2}) has a nonoscillatory solution x on an interval $\left[t_{0}, \infty\right)$, where $t_{0} \geq 0$. Without loss of generality, we can suppose that x is eventually positive. Furthermore, we may (and do) assume that x is positive on the whole interval $\left[t_{0}, \infty\right)$. Then $\left(\mathrm{E}_{2}\right)$ gives $x^{\prime}(t) \geq 0$ for every $t \geq t_{0}$ and so the solution x is increasing on the interval $\left[t_{0}, \infty\right)$.

We will prove that

$$
\begin{equation*}
x^{\prime}(t)-P_{m}(t) x(t) \geq 0 \quad \text { for every } t \geq t_{0} . \tag{2.8}
\end{equation*}
$$

By taking into account the fact that x is increasing on $\left[t_{0}, \infty\right)$, from $\left(\mathrm{E}_{2}\right)$ we obtain for $t \geq t_{0}$

$$
0=x^{\prime}(t)-\sum_{j \in J} p_{j}(t) x\left(t+\tau_{j}(t)\right) \leq x^{\prime}(t)-\left[\sum_{j \in J} p_{j}(t)\right] x(t)
$$

and consequently

$$
\begin{equation*}
x^{\prime}(t)-P_{0}(t) x(t) \geq 0 \quad \text { for every } t \geq t_{0} . \tag{2.9}
\end{equation*}
$$

Thus, (2.8) holds when $m=0$. Let us consider the case where $m>0$. Then we can use (2.9) to derive for $j \in J$ and $t \geq t_{0}$

$$
\log \frac{x\left(t+\tau_{j}(t)\right)}{x(t)}=\int_{t}^{t+\tau_{j}(t)} \frac{x^{\prime}(s)}{x(s)} d s \geq \int_{t}^{t+\tau_{j}(t)} P_{0}(s) d s
$$

This gives

$$
x\left(t+\tau_{j}(t)\right) \geq x(t) \exp \left[\int_{t}^{t+\tau_{j}(t)} P_{0}(s) d s\right] \text { for } j \in J \text { and } t \geq t_{0}
$$

Hence from $\left(\mathrm{E}_{2}\right)$ it follows that for $t \geq t_{0}$

$$
0=x^{\prime}(t)-\sum_{j \in J} p_{j}(t) x\left(t+\tau_{j}(t)\right) \leq x^{\prime}(t)-\left\{\sum_{j \in J} p_{j}(t) \exp \left[\int_{t}^{t+\tau_{j}(t)} P_{0}(s) d s\right]\right\} x(t)
$$

i.e.,

$$
\begin{equation*}
x^{\prime}(t)-P_{1}(t) x(t) \geq 0 \quad \text { for every } t \geq t_{0} . \tag{2.10}
\end{equation*}
$$

So (2.8) is satisfied if $m=1$. Let us suppose that $m>1$. Then, using the same arguments as above with (2.10) in place of (2.9), we can obtain

$$
x^{\prime}(t)-P_{2}(t) x(t) \geq 0 \quad \text { for every } t \geq t_{0} .
$$

Thus (2.8) is fulfilled when $m=2$. Repeating the above procedure if $m>2$, we can finally arrive at (2.8).

Now from (2.8) we get for $t \geq t_{0}$

$$
\log \frac{x(t+\tau)}{x(t)}=\int_{t}^{t+\tau} \frac{x^{\prime}(s)}{x(s)} d s \geq \int_{t}^{t+\tau} P_{m}(s) d s
$$

and consequently

$$
\begin{equation*}
x(t+\tau) \geq x(t) \exp \left[\int_{t}^{t+\tau} P_{m}(s) d s\right] \quad \text { for all } t \geq t_{0} . \tag{2.11}
\end{equation*}
$$

Next, taking into account the fact that x is increasing on $\left[t_{0}, \infty\right)$, from $\left(\mathrm{E}_{2}\right)$ we derive for $t \geq t_{0}$

$$
\begin{aligned}
0 & =x^{\prime}(t)-\sum_{j \in J} p_{j}(t) x\left(t+\tau_{j}(t)\right) \leq x^{\prime}(t)-\sum_{j \in J_{0}} p_{j}(t) x\left(t+\tau_{j}(t)\right) \leq \\
& \leq x^{\prime}(t)-\left[\sum_{j \in J_{0}} p_{j}(t)\right] x(t+\tau) \leq x^{\prime}(t)-p x(t+\tau)
\end{aligned}
$$

and so

$$
\begin{equation*}
x^{\prime}(t)-p x(t+\tau) \geq 0 \quad \text { for all } t \geq t_{0} . \tag{2.12}
\end{equation*}
$$

As in the proof of Lemma 1.6.1 in [21], (2.12) gives

$$
\begin{equation*}
x(t+\tau) \leq \frac{4}{(p \tau)^{2}} x(t) \quad \text { for every } t \geq t_{0} \tag{2.13}
\end{equation*}
$$

A combination of (2.11) and (2.13) yields

$$
\int_{t}^{t+\tau} P_{m}(s) d s \leq \log \frac{4}{(p \tau)^{2}} \quad \text { for all } t \geq t_{0}
$$

The point t^{\star} is sufficiently large and so we can assume that $t^{\star} \geq t_{0}$. We have thus arrived at a contradiction. This contradiction completes the proof of the theorem.

3. Existence of Positive Solutions of Delay or Advanced Differential Equations

Our results in this section are Theorems 3.1 and 3.2 below. Theorem 3.1 provides conditions under which the delay differential equation $\left(E_{1}\right)$ has a positive solution; analogously, the conditions which ensure the existence of a positive solution of the advanced differential equation $\left(\mathrm{E}_{2}\right)$ are established by Theorem 3.2.

Let us consider the delay differential inequality

$$
\begin{equation*}
y^{\prime}(t)+\sum_{j \in J} p_{j}(t) y\left(t-\tau_{j}(t)\right) \leq 0 \tag{1}
\end{equation*}
$$

and the advanced differential inequality

$$
\begin{equation*}
y^{\prime}(t)-\sum_{j \in J} p_{j}(t) y\left(t+\tau_{j}(t)\right) \geq 0 \tag{2}
\end{equation*}
$$

which are associated with the delay differential equation $\left(\mathrm{E}_{1}\right)$ and the advanced differential equation $\left(\mathrm{E}_{2}\right)$, respectively. For the delay inequality $\left(\mathrm{H}_{1}\right)$ it will be assumed that J is finite and that $\lim _{t \rightarrow \infty}\left[t-\tau_{j}(t)\right]=\infty$ for $j \in J$, while for the advanced inequality $\left(\mathrm{H}_{2}\right)$ the set J may be infinite.

Let $t_{0} \geq 0$ and define $t_{-1}=\min _{j \in J} \min _{t \geq t_{0}}\left[t-\tau_{j}(t)\right]$. (Clearly, $-\infty<$ $t_{-1} \leq t_{0}$.) By a solution on $\left[t_{0}, \infty\right)$ of the delay differential inequality $\left(\mathrm{H}_{1}\right)$ we mean a continuous real valued function y defined on the interval $\left[t_{-1}, \infty\right)$, which is continuously differentiable on $\left[t_{0}, \infty\right)$ and satisfies $\left(\mathrm{H}_{1}\right)$ for all $t \geq t_{0}$. A solution on $\left[t_{0}, \infty\right)$ of the delay inequality $\left(\mathrm{H}_{1}\right)$ or, in particular, of the delay equation $\left(\mathrm{E}_{1}\right)$ will be called positive if it is positive on the whole interval $\left[t_{-1}, \infty\right)$.

Let again $t_{0} \geq 0$. A solution on $\left[t_{0}, \infty\right)$ of the advanced differential inequality $\left(\mathrm{H}_{2}\right)$ is a continuously differentiable function y on the interval $\left[t_{0}, \infty\right)$, which satisfies $\left(\mathrm{H}_{2}\right)$ for all $t \geq t_{0}$. A solution on $\left[t_{0}, \infty\right)$ of the advanced inequality $\left(\mathrm{H}_{2}\right)$ or, in particular, of the advanced equation $\left(\mathrm{E}_{2}\right)$ is said to be positive if all its values for $t \geq t_{0}$ are positive numbers.

In order to prove Theorems 3.1 and 3.2 we need Lemmas 3.1 and 3.2 below, respectively. These lemmas guarantee that if there exists a positive solution of the delay inequality $\left(\mathrm{H}_{1}\right)$ or of the advanced inequality $\left(\mathrm{H}_{2}\right)$, then the delay equation $\left(\mathrm{E}_{1}\right)$ or the advanced equation $\left(\mathrm{E}_{2}\right)$, respectively, also has a positive solution.

Lemma 3.1 below is similar to Lemma in [16] concerning the particular case of constant delays. The method of proving Lemma 3.1 is similar to that of Lemma in [16] (see also the proof of the Lemma in [14] and the proof of Theorem 1 in [26].

Lemma 3.1. Let $t_{0} \geq 0$ and let y be a positive solution on $\left[t_{0}, \infty\right)$ of the delay differential inequality $\left(\mathrm{H}_{1}\right)$. Set

$$
t_{1}=\min \left\{s \geq 0: \min _{j \in J} \min _{t \geq s}\left[t-\tau_{j}(t)\right] \geq t_{0}\right\}
$$

and assume that $t_{1}>t_{0}$. (Clearly, we have $\left.\min _{j \in J} \min _{t \geq t_{1}}\left[t-\tau_{j}(t)\right]=t_{0}.\right)$ Moreover, suppose that there exists a nonempty subset J_{0} of J such that the functions τ_{j} for $j \in J_{0}$, and $\sum_{j \in J_{0}} p_{j}$ are positive on $\left[t_{1}, \infty\right)$.

Then there exists a positive solution x on $\left[t_{1}, \infty\right)$ of the delay differential equation $\left(\mathrm{E}_{1}\right)$ with $\lim _{t \rightarrow \infty} x(t)=0$ and such that $x(t) \leq y(t)$ for all $t \geq t_{0}$.
Proof. It follows from the inequality $\left(\mathrm{H}_{1}\right)$ that for $\tilde{t} \geq t \geq t_{0}$

$$
y(t) \geq y(\widetilde{t})+\int_{t}^{\widetilde{t}} \sum_{j \in J} p_{j}(s) y\left(s-\tau_{j}(s)\right) d s>\int_{t}^{\widetilde{t}} \sum_{j \in J} p_{j}(s) y\left(s-\tau_{j}(s)\right) d s
$$

Thus, as $\widetilde{t} \rightarrow \infty$, we obtain

$$
\begin{equation*}
y(t) \geq \int_{t}^{\infty} \sum_{j \in J} p_{j}(s) y\left(s-\tau_{j}(s)\right) d s \quad \text { for every } t \geq t_{0} \tag{3.1}
\end{equation*}
$$

Let \mathcal{X} be the space of all nonnegative continuous real-valued functions x on the interval $\left[t_{0}, \infty\right)$ with $x(t) \leq y(t)$ for every $t \geq t_{0}$. Then using (3.1) we can easily show that the formulae

$$
(L x)(t)=\int_{t}^{\infty} \sum_{j \in J} p_{j}(s) x\left(s-\tau_{j}(s)\right) d s, \quad \text { if } t \geq t_{1}
$$

and

$$
\begin{aligned}
(L x)(t) & =\int_{t_{1}}^{\infty} \sum_{j \in J} p_{j}(s) x\left(s-\tau_{j}(s)\right) d s+ \\
& +\int_{t}^{t_{1}} \sum_{j \in J} p_{j}(s) y\left(s-\tau_{j}(s)\right) d s, \quad \text { if } t_{0} \leq t<t_{1}
\end{aligned}
$$

are meaningful for any function $x \in \mathcal{X}$ and that, by these formulae, an operator $L: \mathcal{X} \rightarrow \mathcal{X}$ is defined. Furthermore, we see that, for any pair of functions x_{1} and x_{2} in \mathcal{X} such that $x_{1}(t) \leq x_{2}(t)$ for $t \geq t_{0}$, we have $\left(L x_{1}\right)(t) \leq\left(L x_{2}\right)(t)$ for $t \geq t_{0}$. This means that the operator L is monotone. Next, we set

$$
x_{0}=y \mid\left[t_{0}, \infty\right) \quad \text { and } \quad x_{\nu}=L x_{\nu-1} \quad(\nu=1,2, \ldots)
$$

Clearly, $\left(x_{\nu}\right)_{\nu \geq 0}$ is a decreasing sequence of functions in \mathcal{X}. (Note that the decreasing character of this sequence is considered with the usual pointwise ordering in \mathcal{X}.) Define

$$
x=\lim _{\nu \rightarrow \infty} x_{\nu} \quad \text { pointwise on }\left[t_{0}, \infty\right)
$$

By the Lebesgue dominated convergence theorem, we obtain $x=L x$, i.e.,

$$
\begin{equation*}
x(t)=\int_{t}^{\infty} \sum_{j \in J} p_{j}(s) x\left(s-\tau_{j}(s)\right) d s, \quad \text { if } t \geq t_{1} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{align*}
x(t) & =\int_{t_{1}}^{\infty} \sum_{j \in J} p_{j}(s) x\left(s-\tau_{j}(s)\right) d s+ \\
& +\int_{t}^{t_{1}} \sum_{j \in J} p_{j}(s) y\left(s-\tau_{j}(s)\right) d s, \quad \text { if } t_{0} \leq t<t_{1} . \tag{3.3}
\end{align*}
$$

Equation (3.2) gives

$$
x^{\prime}(t)=-\sum_{j \in J} p_{j}(t) x\left(t-\tau_{j}(t)\right) \quad \text { for all } t \geq t_{1}
$$

which means that the function x is a solution on $\left[t_{1}, \infty\right)$ of the delay equation $\left(\mathrm{E}_{1}\right)$. Clearly, we have $0 \leq x(t) \leq y(t)$ for every $t \geq t_{0}$. Moreover, from (3.2) it follows that x tends to zero at ∞. Hence it remains to show that x is positive on the whole interval $\left[t_{0}, \infty\right)$. From (3.3) we obtain for any $t \in\left[t_{0}, t_{1}\right)$

$$
\begin{aligned}
x(t) & \geq \int_{t}^{t_{1}} \sum_{j \in J} p_{j}(s) y\left(s-\tau_{j}(s)\right) d s \geq \\
& \geq\left[\min _{j \in J} \min _{t_{0} \leq s \leq t_{1}} y\left(s-\tau_{j}(s)\right)\right] \int_{t}^{t_{1}} \sum_{j \in J} p_{j}(s) d s .
\end{aligned}
$$

Thus, by taking into account the facts that y is positive on the interval $\left[t_{-1}, t_{1}\right]$, where $t_{-1}=\min _{j \in J} \min _{t \geq t_{0}}\left[t-\tau_{j}(t)\right]$ (clearly, $-\infty<t_{-1} \leq t_{0}$), and that $\sum_{j \in J} p_{j}\left(t_{1}\right) \geq \sum_{j \in J_{0}} p_{j}\left(t_{1}\right)>0$, we conclude that x is positive on the interval $\left[t_{0}, t_{1}\right)$. We claim that x is also positive on the interval $\left[t_{1}, \infty\right)$.

Otherwise, there exists a point $T \geq t_{1}$ such that $x(T)=0$, and $x(t)>0$ for $t \in\left[t_{0}, T\right)$. Then (3.2) gives

$$
0=x(T)=\int_{T}^{\infty} \sum_{j \in J} p_{j}(s) x\left(s-\tau_{j}(s)\right) d s
$$

and so

$$
\sum_{j \in J} p_{j}(s) x\left(s-\tau_{j}(s)\right)=0 \quad \text { for all } s \geq T
$$

Taking into account the fact that x is positive on $\left[t_{0}, T\right)$ as well as the fact that $\tau_{j}(T)>0$ for $j \in J_{0}$ and that $\sum_{j \in J_{0}} p_{j}(T)>0$, we have

$$
\begin{aligned}
0 & =\sum_{j \in J} p_{j}(T) x\left(T-\tau_{j}(T)\right) \geq \sum_{j \in J_{0}} p_{j}(T) x\left(T-\tau_{j}(T)\right) \geq \\
& \geq\left[\min _{j \in J_{0}} x\left(T-\tau_{j}(T)\right)\right] \sum_{j \in J_{0}} p_{j}(T)>0
\end{aligned}
$$

But, this is a contradiction and so our claim is proved.
Theorem 3.1. Set

$$
t_{0}=\min \left\{s \geq 0: \min _{j \in J} \min _{t \geq s}\left[t-\tau_{j}(t)\right] \geq 0\right\}
$$

(Clearly, $t_{-1} \equiv \min _{j \in J} \min _{t \geq t_{0}}\left[t-\tau_{j}(t)\right]=0$). Suppose that there exist positive real numbers γ_{j} for $j \in J$ such that

$$
\exp \left[\sum_{i \in J} \gamma_{i} \int_{t-\tau_{j}(t)}^{t} p_{i}(s) d s\right] \leq \gamma_{j} \quad \text { for all } t \geq t_{0} \text { and } j \in J
$$

Also, define

$$
t_{1}=\min \left\{s \geq 0: \min _{j \in J} \min _{t \geq s}\left[t-\tau_{j}(t)\right] \geq t_{0}\right\}
$$

and assume that $t_{1}>t_{0}$. (Obviously, $\min _{j \in J} \min _{t \geq t_{1}}\left[t-\tau_{j}(t)\right]=t_{0}$. .) Moreover, suppose that there exists a nonempty subset J_{0} of J such that the functions τ_{j} for $j \in J_{0}$, and $\sum_{j \in J_{0}} p_{j}$ are positive on $\left[t_{1}, \infty\right)$.

Then there exists a positive solution on $\left[t_{1}, \infty\right)$ of the delay differential equation $\left(\mathrm{E}_{1}\right)$, which tends to zero at ∞.

Proof. Define

$$
y(t)=\exp \left[-\sum_{i \in J} \gamma_{i} \int_{0}^{t} p_{i}(s) d s\right] \quad \text { for } t \geq 0
$$

and observe that y is positive on the interval $[0, \infty)$. By Lemma 3.1 it suffices to show that y is a solution on $\left[t_{0}, \infty\right)$ of the delay differential inequality $\left(\mathrm{H}_{1}\right)$. To this end we have for every $t \geq t_{0}$

$$
\begin{aligned}
& y^{\prime}(t)+\sum_{j \in J} p_{j}(t) y\left(t-\tau_{j}(t)\right)= \\
= & -\left[\sum_{i \in J} \gamma_{i} p_{i}(t)\right] y(t)+\left\{\sum_{j \in J} p_{j}(t) \exp \left[\sum_{i \in J} \gamma_{i} \int_{t-\tau_{j}(t)}^{t} p_{i}(s) d s\right]\right\} y(t)= \\
= & \left(\sum_{j \in J} p_{j}(t)\left\{-\gamma_{j}+\exp \left[\sum_{i \in J} \gamma_{i} \int_{t-\tau_{j}(t)}^{t} p_{i}(s) d s\right]\right\}\right) y(t) \leq 0 .
\end{aligned}
$$

Lemma 3.2. Let $t_{0} \geq 0$ and let y be a positive solution on $\left[t_{0}, \infty\right)$ of the advanced differential inequality $\left(\mathrm{H}_{2}\right)$.

Then there exists a positive solution x on $\left[t_{0}, \infty\right)$ of the advanced differential equation $\left(\mathrm{E}_{2}\right)$ such that $x(t) \leq y(t)$ for all $t \geq t_{0}$.

Proof. It follows from $\left(\mathrm{H}_{2}\right)$ that

$$
\begin{equation*}
y(t) \geq y\left(t_{0}\right)+\int_{t_{0}}^{t} \sum_{j \in J} p_{j}(s) y\left(s+\tau_{j}(s)\right) d s \quad \text { for all } t \geq t_{0} \tag{3.4}
\end{equation*}
$$

Consider the set \mathcal{X} of all continuous real-valued functions x on the interval $\left[t_{0}, \infty\right)$ such that $0<x(t) \leq y(t)$ for every $t \geq t_{0}$. Then by (3.4) we can see that the formula

$$
(L x)(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} \sum_{j \in J} p_{j}(s) x\left(s+\tau_{j}(s)\right) d s \quad \text { for } t \geq t_{0}
$$

is meaningful for any function x in \mathcal{X} and that this formula defines an operator L of \mathcal{X} into itself. This operator is monotone in the sense that, if x_{1} and x_{2} are two functions in \mathcal{X} with $x_{1}(t) \leq x_{2}(t)$ for $t \geq t_{0}$, then we also have $\left(L x_{1}\right)(t) \leq\left(L x_{2}\right)(t)$ for $t \geq t_{0}$. Next, we define $x_{0}=y$ and $x_{\nu}=L x_{\nu-1}(\nu=1,2, \ldots)$. Clearly, $x_{0}(t) \geq x_{1}(t) \geq x_{2}(t) \geq \cdots$ holds for every $t \geq t_{0}$ and so we can define $x(t)=\lim _{\nu \rightarrow \infty} x_{\nu}(t)$ for $t \geq t_{0}$. Then applying the Lebesgue dominated convergence theorem, we have $x=L x$, i.e.,

$$
x(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} \sum_{j \in J} p_{j}(s) x\left(s+\tau_{j}(s)\right) d s \quad \text { for every } t \geq t_{0}
$$

This ensures that x is a solution on $\left[t_{0}, \infty\right)$ of the advanced equation $\left(\mathrm{E}_{2}\right)$, which is positive (on $\left[t_{0}, \infty\right)$) and such that $x(t) \leq y(t)$ for $t \geq t_{0}$.

Theorem 3.2. Suppose that there exist positive real numbers δ_{j} for $j \in J$ such that

$$
\exp \left[\sum_{i \in J} \delta_{i} \int_{t}^{t+\tau_{j}(t)} p_{i}(s) d s\right] \leq \delta_{j} \quad \text { for all } t \geq 0 \text { and } j \in J
$$

and, when J is infinite,

$$
\sum_{i \in J} \delta_{i} \int_{0}^{t} p_{i}(s) d s<\infty \quad \text { for every } t \geq 0
$$

Then there exists a positive solution on $[0, \infty)$ of the advanced differential equation $\left(\mathrm{E}_{2}\right)$.

Proof. The function y defined by

$$
y(t)=\exp \left[\sum_{i \in J} \delta_{i} \int_{0}^{t} p_{i}(s) d s\right] \quad \text { for } t \geq 0
$$

is clearly positive on the interval $[0, \infty)$. Moreover, for every $t \geq 0$ we obtain

$$
\begin{aligned}
& y^{\prime}(t)-\sum_{j \in J} p_{j}(t) y\left(t+\tau_{j}(t)\right)= \\
= & {\left[\sum_{i \in J} \delta_{i} p_{i}(t)\right] y(t)-\left\{\sum_{j \in J} p_{j}(t) \exp \left[\sum_{i \in J} \delta_{i} \int_{t}^{t+\tau_{j}(t)} p_{i}(s) d s\right]\right\} y(t)=} \\
= & \left(\sum_{j \in J} p_{j}(t)\left\{\delta_{j}-\exp \left[\sum_{i \in J} \delta_{i} \int_{t}^{t+\tau_{j}(t)} p_{i}(s) d s\right]\right\}\right) y(t) \geq 0
\end{aligned}
$$

and hence y is a solution on $[0, \infty)$ of the advanced inequality $\left(\mathrm{H}_{2}\right)$. So, the proof can be completed by applying Lemma 3.2.

4. Necessary Conditions for the Existence of Positive

Solutions of Integrodifferential Equations and Inequalities
In this section the problem of the nonexistence of positive solutions of the integrodifferential equations $\left(\mathrm{E}_{3}\right)$ and $\left(\mathrm{E}_{4}\right)$ (or, more generally, of the integrodifferential inequalities $\left(\mathrm{I}_{1}\right)$ and $\left(\mathrm{I}_{2}\right)$) will be treated. The main results here are Theorems 4.1 and 4.2 below.

Theorem 4.1. Let $t_{0} \geq 0$. Assume that

$$
A \equiv \inf _{t \geq t_{0}+\tau_{1}}\left[q(t) \int_{\tau_{0}}^{t-t_{0}} K(s) d s\right]>0
$$

for two points τ_{0} and τ_{1} with $0<\tau_{0}<\tau_{1}$. Moreover, suppose that there exists a nonnegative integer m such that

$$
\int_{t^{\star}-\tau_{0}}^{t^{\star}} U_{m}(s) d s>\log \frac{4}{\left(A \tau_{0}\right)^{2}} \quad \text { for some } t^{\star} \geq t_{0}+\tau_{1}+\tau_{0} / 2
$$

where

$$
U_{0}(t)=q(t) \int_{0}^{t-t_{0}} K(s) d s \quad \text { for } t \geq t_{0}
$$

and, when $m>0$, for $i=0,1, \ldots, m-1$

$$
U_{i+1}(t)=q(t) \int_{0}^{t-t_{0}} K(s) \exp \left[\int_{t-s}^{t} U_{i}(\xi) d \xi\right] d s \quad \text { for } t \geq t_{0}
$$

Then there is no solution on $\left[t_{0}, \infty\right)$ of the integrodifferential inequality $\left(\mathrm{I}_{1}\right)$ (and, in particular, of the integrodifferential equation $\left(\mathrm{E}_{3}\right)$), which is positive on $[0, \infty)$.

Proof. Assume, for the sake of contradiction, that the integrodifferential inequality $\left(\mathrm{I}_{1}\right)$ admits a solution y on $\left[t_{0}, \infty\right)$, which is positive on $[0, \infty)$. Then $\left(\mathrm{I}_{1}\right)$ guarantees that $y^{\prime}(t) \leq 0$ for every $t \geq t_{0}$ and so the solution y is decreasing on the interval $\left[t_{0}, \infty\right)$.

We first prove that

$$
\begin{equation*}
y^{\prime}(t)+U_{m}(t) y(t) \leq 0 \quad \text { for all } t \geq t_{0} \tag{4.1}
\end{equation*}
$$

To this end, using the decreasing character of y on $\left[t_{0}, \infty\right)$, from (I_{1}) we obtain for any $t \geq t_{0}$

$$
\begin{aligned}
0 & \geq y^{\prime}(t)+q(t) \int_{0}^{t} K(t-s) y(s) d s=y^{\prime}(t)+q(t) \int_{0}^{t} K(s) y(t-s) d s \geq \\
& \geq y^{\prime}(t)+q(t) \int_{0}^{t-t_{0}} K(s) y(t-s) d s \geq y^{\prime}(t)+q(t)\left[\int_{0}^{t-t_{0}} K(s) d s\right] y(t)
\end{aligned}
$$

and so we have

$$
\begin{equation*}
y^{\prime}(t)+U_{0}(t) y(t) \leq 0 \quad \text { for all } t \geq t_{0} \tag{4.2}
\end{equation*}
$$

Thus (4.1) is satisfied when $m=0$. Let us assume that $m>0$. Then it follows from (4.2) that for $t \geq t_{0}$ and $0 \leq s \leq t-t_{0}$

$$
\log \frac{y(t-s)}{y(t)}=-\int_{t-s}^{t} \frac{y^{\prime}(\xi)}{y(\xi)} d \xi \geq \int_{t-s}^{t} U_{0}(\xi) d \xi
$$

and consequently

$$
\begin{equation*}
y(t-s) \geq y(t) \exp \left[\int_{t-s}^{t} U_{0}(\xi) d \xi\right] \quad \text { for } t \geq t_{0} \text { and } 0 \leq s \leq t-t_{0} \tag{4.3}
\end{equation*}
$$

Furthermore, in view of (4.3), inequality $\left(\mathrm{I}_{1}\right)$ yields for $t \geq t_{0}$

$$
\begin{aligned}
0 & \geq y^{\prime}(t)+q(t) \int_{0}^{t} K(t-s) y(s) d s=y^{\prime}(t)+q(t) \int_{0}^{t} K(s) y(t-s) d s \geq \\
& \geq y^{\prime}(t)+q(t) \int_{0}^{t-t_{0}} K(s) y(t-s) d s \geq \\
& \geq y^{\prime}(t)+q(t)\left\{\int_{0}^{t-t_{0}} K(s) \exp \left[\int_{t-s}^{t} U_{0}(\xi) d \xi\right] d s\right\} y(t)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
y^{\prime}(t)+U_{1}(t) y(t) \leq 0 \quad \text { for all } t \geq t_{0} \tag{4.4}
\end{equation*}
$$

Hence (4.1) is proved when $m=1$. In the case where $m>1$, we can repeat the above procedure with (4.4) in place of (4.2) to conclude that (4.1) is finally satisfied.

Now from (4.1) we obtain for $t \geq t_{0}+\tau_{0}$

$$
\log \frac{y\left(t-\tau_{0}\right)}{y(t)}=-\int_{t-\tau_{0}}^{t} \frac{y^{\prime}(s)}{y(s)} d s \geq \int_{t-\tau_{0}}^{t} U_{m}(s) d s
$$

and hence

$$
\begin{equation*}
y\left(t-\tau_{0}\right) \geq y(t) \exp \left[\int_{t-\tau_{0}}^{t} U_{m}(s) d s\right] \quad \text { for every } t \geq t_{0}+\tau_{0} \tag{4.5}
\end{equation*}
$$

Next, taking into account the fact that y is decreasing on $\left[t_{0}, \infty\right)$, from $\left(\mathrm{I}_{1}\right)$ we derive for $t \geq t_{0}+\tau_{1}$

$$
\begin{aligned}
0 & \geq y^{\prime}(t)+q(t) \int_{0}^{t} K(s) y(t-s) d s \geq y^{\prime}(t)+q(t) \int_{\tau_{0}}^{t-t_{0}} K(s) y(t-s) d s \geq \\
& \geq y^{\prime}(t)+\left[q(t) \int_{\tau_{0}}^{t-t_{0}} K(s) d s\right] y\left(t-\tau_{0}\right) \geq y^{\prime}(t)+A y\left(t-\tau_{0}\right)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
y^{\prime}(t)+A y\left(t-\tau_{0}\right) \leq 0 \quad \text { for all } t \geq t_{0}+\tau_{1} \tag{4.6}
\end{equation*}
$$

As in the proof of the Lemma in [8] (see also Lemma 1.6.1 in [21]), it follows from (4.6) that

$$
\begin{equation*}
y\left(t-\tau_{0}\right) \leq \frac{4}{\left(A \tau_{0}\right)^{2}} y(t) \quad \text { for every } t \geq t_{0}+\tau_{1}+\tau_{0} / 2 \tag{4.7}
\end{equation*}
$$

A combination of (4.5) and (4.7) leads to

$$
\int_{t-\tau_{0}}^{t} U_{m}(s) d s \leq \log \frac{4}{\left(A \tau_{0}\right)^{2}} \quad \text { for all } t \geq t_{0}+\tau_{1}+\tau_{0} / 2
$$

which is a contradiction.

Theorem 4.2. Let $\widehat{t}_{0} \in \mathbb{R}$ and set $t_{0}=\max \left\{0, \widehat{t}_{0}\right\}$. Moreover, let the assumptions of Theorem 4.1 be satisfied with r in place of q.

Then there is no solution on $\left[\widehat{t_{0}}, \infty\right)$ of the integrodifferential inequality $\left(\mathrm{I}_{2}\right)$ (and, in particular, of the integrodifferential equation $\left(\mathrm{E}_{4}\right)$), which is positive on \mathbb{R}.

Proof. Obviously, $t_{0} \geq 0$. Assume that there exists a solution y on $\left.\widehat{t_{0}}, \infty\right)$ of the integrodifferential inequality $\left(\mathrm{I}_{2}\right)$, which is positive on \mathbb{R}. Then, for every $t \geq t_{0}$, we have

$$
\begin{aligned}
0 & \geq y^{\prime}(t)+r(t) \int_{-\infty}^{t} K(t-s) y(s) d s=y^{\prime}(t)+r(t) \int_{-\infty}^{0} K(t-s) y(s) d s+ \\
& +r(t) \int_{0}^{t} K(t-s) y(s) d s \geq y^{\prime}(t)+r(t) \int_{0}^{t} K(t-s) y(s) d s
\end{aligned}
$$

This means that the function $y \mid[0, \infty)$ is a solution on $\left[t_{0}, \infty\right)$ of the integrodifferential inequality

$$
y^{\prime}(t)+r(t) \int_{0}^{t} K(t-s) y(s) d s \leq 0
$$

which is positive on $[0, \infty)$. By Theorem 4.1, this is a contradiction and hence our proof is complete.

5. Sufficient Conditions for the Existence of Positive Solutions of Integrodifferential Equations

Theorems 5.1 and 5.2 below are the main results in this last section. Theorem 5.1 establishes conditions which guarantee the existence of positive solutions of the integrodifferential equation $\left(\mathrm{E}_{3}\right)$; similarly, Theorem 5.2 provides sufficient conditions for the existence of positive solutions of the integrodifferential equation $\left(\mathrm{E}_{4}\right)$.

To prove Theorems 5.1 and 5.2 we will apply Theorems A and B, respectively, which are known.

Theorem A (Philos [38]). Let y be a positive solution on $[0, \infty)$ of the integrodifferential inequality $\left(\mathrm{I}_{1}\right)$. Moreover, let $t_{0}>0$ and suppose that K is not identically zero on $\left[0, t_{0}\right]$ and q is positive on $\left[t_{0}, \infty\right)$.

Then there exists a solution x on $\left[t_{0}, \infty\right)$ of the integrodifferential equation $\left(\mathrm{E}_{3}\right)$, which is positive on $[0, \infty)$ and such that

$$
x(t) \leq y(t) \quad \text { for every } t \geq t_{0}, \quad \lim _{t \rightarrow \infty} x(t)=0
$$

and

$$
x^{\prime}(t)+q(t) \int_{0}^{t} K(t-s) x(s) d s \leq 0 \quad \text { for } 0 \leq t<t_{0}
$$

Theorem B (Philos [38]). Assume that K is not identically zero on $[0, \infty)$. Let y be a positive solution on \mathbb{R} of the integrodifferential inequality $\left(\mathrm{I}_{2}\right)$. Moreover, let $t_{0} \in \mathbb{R}$ and suppose that r is positive on $\left[t_{0}, \infty\right)$.

Then there exists a solution x on $\left[t_{0}, \infty\right)$ of the integrodifferential equation $\left(\mathrm{E}_{4}\right)$, which is positive on \mathbb{R} and such that

$$
x(t) \leq y(t) \quad \text { for every } t \in \mathbb{R}, \quad \lim _{t \rightarrow \infty} x(t)=0
$$

and

$$
x^{\prime}(t)+r(t) \int_{-\infty}^{t} K(t-s) x(s) d s \leq 0 \quad \text { for } t<t_{0}
$$

We will now state and prove Theorems 5.1 and 5.2.
Theorem 5.1. Let λ be a positive continuous real-valued function on the interval $[0, \infty)$ such that
$\exp \left\{\int_{t-s}^{t} q(\xi)\left[\int_{0}^{\xi} \lambda(\sigma) K(\sigma) d \sigma\right] d \xi\right\} \leq \lambda(s) \quad$ for all $t \geq 0$ and $0 \leq s \leq t$.
Moreover, let $t_{0}>0$ and suppose that K is not identically zero on $\left[0, t_{0}\right]$ and q is positive on $\left[t_{0}, \infty\right)$.

Then there exists a solution on $\left[t_{0}, \infty\right)$ of the integrodifferential equation $\left(\mathrm{E}_{3}\right)$, which is positive on $[0, \infty)$ and tends to zero at ∞.

Proof. Define

$$
y(t)=\exp \left\{-\int_{0}^{t} q(\xi)\left[\int_{0}^{\xi} \lambda(\sigma) K(\sigma) d \sigma\right] d \xi\right\} \quad \text { for } t \geq 0
$$

Clearly, y is positive on the interval $[0, \infty)$. By Theorem A it is enough to verify that y is a solution on $[0, \infty)$ of the integrodifferential inequality $\left(\mathrm{I}_{1}\right)$. For this purpose we have, for every $t \geq 0$,

$$
\begin{aligned}
y^{\prime}(t)+ & q(t) \int_{0}^{t} K(t-s) y(s) d s=y^{\prime}(t)+q(t) \int_{0}^{t} K(s) y(t-s) d s= \\
= & -q(t)\left[\int_{0}^{t} \lambda(\sigma) K(\sigma) d \sigma\right] y(t)+ \\
& +q(t)\left[\int_{0}^{t} K(s) \exp \left\{\int_{t-s}^{t} q(\xi)\left[\int_{0}^{\xi} \lambda(\sigma) K(\sigma) d \sigma\right] d \xi\right\} d s\right] y(t)= \\
= & q(t)\left[-\int_{0}^{t} \lambda(s) K(s) d s+\right. \\
& \left.+\int_{0}^{t} K(s) \exp \left\{\int_{t-s}^{t} q(\xi)\left[\int_{0}^{\xi} \lambda(\sigma) K(\sigma) d \sigma\right] d \xi\right\} d s\right] y(t)=
\end{aligned}
$$

$$
\begin{aligned}
& =q(t)\left(\int_{0}^{t} K(s)\left[-\lambda(s)+\exp \left\{\int_{t-s}^{t} q(\xi)\left[\int_{0}^{\xi} \lambda(\sigma) K(\sigma) d \sigma\right] d \xi\right\}\right] d s\right) y(t) \leq \\
& \leq 0 .
\end{aligned}
$$

Theorem 5.2. Assume that K is not identically zero on $[0, \infty)$. Assume also that

$$
\int_{-\infty}^{0} r(\xi) d \xi<\infty
$$

and let μ be a positive continuous real-valued function on the interval $[0, \infty)$ such that

$$
\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma<\infty
$$

and

$$
\exp \left\{\left[\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma\right] \int_{t-s}^{t} r(\xi) d \xi\right\} \leq \mu(s) \quad \text { for all } t \in \mathbb{R} \text { and } s \geq 0
$$

Moreover, let $t_{0} \in \mathbb{R}$ and suppose that r is positive on $\left[t_{0}, \infty\right)$.
Then there exists a solution on $\left[t_{0}, \infty\right)$ of the integrodifferential equation $\left(\mathrm{E}_{4}\right)$, which is positive on \mathbb{R} and tends to zero at ∞.

Proof. Set

$$
y(t)=\exp \left\{-\left[\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma\right] \int_{-\infty}^{t} r(\xi) d \xi\right\} \quad \text { for } t \in \mathbb{R}
$$

We observe that y is positive on the real line \mathbb{R}. So by Theorem B it suffices to show that y is a solution on \mathbb{R} of the integrodifferential inequality $\left(\mathrm{I}_{2}\right)$. To this end we obtain, for every $t \in \mathbb{R}$,

$$
\begin{aligned}
& y^{\prime}(t)+r(t) \int_{-\infty}^{t} K(t-s) y(s) d s=y^{\prime}(t)+r(t) \int_{0}^{\infty} K(s) y(t-s) d s= \\
= & -r(t)\left[\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma\right] y(t)+ \\
& +r(t)\left[\int_{0}^{\infty} K(s) \exp \left\{\left[\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma\right] \int_{t-s}^{t} r(\xi) d \xi\right\} d s\right] y(t)= \\
= & r(t)\left[-\int_{0}^{\infty} \mu(s) K(s) d s+\right. \\
& \left.+\int_{0}^{\infty} K(s) \exp \left\{\left[\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma\right] \int_{t-s}^{t} r(\xi) d \xi\right\} d s\right] y(t)= \\
= & r(t)\left(\int_{0}^{\infty} K(s)\left[-\mu(s)+\exp \left\{\left[\int_{0}^{\infty} \mu(\sigma) K(\sigma) d \sigma\right] \int_{t-s}^{t} r(\xi) d \xi\right\}\right] d s\right) y(t) \leq \\
\leq & 0 . \quad \square
\end{aligned}
$$

REFERENCES

1. O. Arino, I. Györi, and A. Jawhari, Oscillation criteria in delay equations. J. Differential Equations 53(1984), 115-123.
2. I. Györi, Oscillation conditions in scalar linear delay differential equations. Bull. Austral. Math. Soc. 34(1986), 1-9.
3. B. R. Hunt and J. A. Yorke, When all solutions of $x^{\prime}=\sum q_{i}(t) x(t-$ $\left.T_{i}(t)\right)$ oscillate. J. Differential Equations 53(1984), 139-145.
4. J. Jaroš and I. P. Stavroulakis, Oscillations tests for delay equations. Rocky Mountain J. Math. (in press).
5. R. G. Koplatadze and T. A. Chanturia, On the oscillatory and monotone solutions of first order differential equations with deviating arguments. (Russian) Differentsial'nye Uravneniya 18(1982), 1463-1465.
6. M. K. Kwong, Oscillation of first-order delay equations. J. Math. Anal. Appl. 156(1991), 274-286.
7. G. Ladas, Sharp conditions for oscillations caused by delays. Appl. Anal. 9(1979), 93-98.
8. G. Ladas, Y. G. Sficas, and I. P. Stavroulakis, Necessary and sufficient conditions for oscillations. Amer. Math. Monthly 90(1983), 637-640.
9. G. Ladas, Y. G. Sficas, and I. P. Stavroulakis, Necessary and sufficient conditions for oscillations of higher order delay differential equations. Trans. Amer. Math. Soc. 285(1984), 81-90.
10. G. Ladas and I. P. Stavroulakis, Oscillations caused by several retarded and advanced arguments. J. Differential Equations 44(1982), 134152.
11. B. Li, Oscillations of delay differential equations with variable coefficients. J. Math. Anal. Appl. 192(1995), 312-321.
12. B. Li, Oscillation of first order delay differential equations. Proc. Amer. Math. Soc. 124(1996), 3729-3737.
13. V. A. Nadareishvili, Oscillation and nonoscillation of solutions of first-order linear differential equations with deviating arguments. (Russian) Differentsial'nye Uravneniya 25(1989), 611-616.
14. Ch. G. Philos, Oscillations of first order linear retarded differential equations. J. Math. Anal. Appl. 157(1991), 17-33.
15. Ch. G. Philos, On the oscillation of differential equations with periodic coefficients. Proc. Amer. Math. Soc. 111(1991), 433-440.
16. Ch. G. Philos, Oscillation for first order linear delay differential equations with variable coefficients. Funkcial. Ekvac. 35(1992), 307-319.
17. Ch. G. Philos and Y. G. Sficas, An oscillation criterion for first order linear delay differential equations. Canad. Math. Bull. 41(1998), 207-213.
18. M. I. Tramov, Conditions for oscillatory solutions of first order differential equations with a delayed argument. Izv. Vysš. Učebn. Zaved., Matematika 19(1975), 92-96.
19. J. Yan, Oscillation of solutions of first order delay differential equations. Nonlinear Anal. 11(1987), 1279-1287.
20. L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation theory for functional differential equations. Marcel Dekker, New York, 1995.
21. I. Györi and G. Ladas, Oscillation theory of delay differential equations with applications. Clarendon Press, Oxford, 1991.
22. G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation theory of differential equations with deviating arguments. Marcel Dekker, New York, 1987.
23. O. Arino and I. Györi, Necessary and sufficient condition for oscillation of a neutral differential system with several delays. J. Differential Equations 81(1989), 98-105.
24. Ch. G. Philos, I. K. Purnaras, and Y. G. Sficas, Oscillations in higher-order neutral differential equations. Canad. J. Math. 45(1993), 132-158.
25. Ch. G. Philos and Y. G. Sficas, On the oscillation of neutral differential equations. J. Math. Anal. Appl. 170(1992), 299-321.
26. Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 36(1980), 168-178.
27. R. D. Driver, Ordinary and delay differential equations. SpringerVerlag, New York, 1977.
28. J. Hale, Theory of functional differential equations. Springer-Verlag, New York, 1977.
29. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993.
30. K. Gopalsamy, Stability, instability, oscillation and nonoscillation in scalar integrodifferential systems. Bull. Austral. Math. Soc. 28(1983), 233-246.
31. K. Gopalsamy, Oscillations in systems of integrodifferential equations. J. Math. Anal. Appl. 113(1986), 78-87.
32. K. Gopalsamy, Oscillations in integrodifferential equations of arbitrary order. J. Math. Anal. Appl. 126(1987), 100-109.
33. I. Györi and G. Ladas, Positive solutions of integro-differential equations with unbounded delay. J. Integral Equations Appl. 4(1992), 377-390.
34. Th. Kiventidis, Positive solutions of integrodifferential and difference equations with unbounded delay. Glasgow Math. J. 35(1993), 105-113.
35. G. Ladas, Ch. G. Philos, and Y. G. Sficas, Oscillations of integrodifferential equations. Differential Integral Equations 4(1991), 1113-1120.
36. Ch. G. Philos, Oscillatory behavior of systems of integrodifferential equations. Bull. Soc. Math. Gréce (N.S) 29(1988), 131-141.
37. Ch. G. Philos, Oscillation and nonoscillation in integrodifferential equations. Libertas Math. 12(1992), 121-138.
38. Ch. G. Philos, Positive solutions of integrodifferential equations. J. Appl. Math. Stochastic Anal. 6(1993), 55-68.
39. Ch. G. Philos and Y. G. Sficas, On the existence of positive solutions of integrodifferential equations. Appl. Anal. 36(1990), 189-210.
40. C. Corduneanu and V. Lakshmikantham, Equations with unbounded delay: A survey. Nonlinear Anal. 4(1980), 831-877.
41. T. A. Burton, Volterra integral and differential equations. Academic Press, New York, 1983.
42. C. Corduneanu, Integral equations and applications. Cambridge University Press, Cambridge, 1991.
43. I.-G. E. Kordonis and Ch. G. Philos, Oscillation and nonoscillation in linear delay or advanced difference equations. Math. Comput. Modelling 27(1998), 11-21.
44. Ch. G. Philos, On the existence of positive solutions for certain difference equations and inequalities. J. Inequalities Appl. 2(1998), 57-69.
(Received 29.05.1997)
Authors' address:
Department of Mathematics
University of Ioannina
P.O. Box 1186

45110 Ioannina
Greece

[^0]: 1991 Mathematics Subject Classification. 34K15, 34C10.
 Key words and phrases. Oscillation, nonoscillation, positive solution, delay differential equation, advanced differential equation, integrodifferential equation.

