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FIRST BOUNDARY VALUE PROBLEM OF
ELECTROELASTICITY FOR A TRANSVERSALLY
ISOTROPIC PLANE WITH CURVILINEAR CUTS

L. BITSADZE

Abstract. The first boundary value problem of electroelasticity for
a transversally isotropic plane with curvilinear cuts is investigated.
The solvability of a system of singular integral equations is proved
by using the potential method and the theory of singular integral
equations.

In this paper the first boundary value problem of electroelasticity is in-
vestigated for a transversally isotropic plane with curvilinear cuts. The
second boundary value problem of electroelasticity for this kind medium
was solved in [1] using the theory of analytic functions and singular integral
equations. The boundary value problems of electroelasticity for transver-
sally isotropic media were studied in [2] (Ch. VI), while the boundary value
problems of elasticity for anisotropic media with cuts were considered in [3],
[4]. The uniqueness theorems for boundary value problems of electroelastic-
ity are given in [5], [6]. Here we shall be concerned with the plane problem
of electroelasticity (it is assumed that the second component of the three-
dimensional displacement vector is equal to zero, while the components u1,
u3 and the electrostatic potential u4 depend only on the variables x1 and
x3 [2]).

Let an electroelastic transversally isotropic plane be weakened by curvi-
linear cuts lj = ajbj , j = 1, . . . , p. Assume that lj , j = 1, . . . , p, are simple
nonintersecting open Lyapunov arcs. The direction from aj to bj is taken as
the positive one on lj . The normal to lj will be drawn to the right relative
to motion in the positive direction. Denote by D− the infinite plane with

curvilinear cuts lj , j = 1, . . . , p, l =
p
∪

j=1
lj . Suppose that D− if filled with

some material.
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We introduce the notation z = x1 + ix3, ζk = y1 + αky3, τk = t1 + αkt3,
zk = x1 + αkx3, τ = t1 + it3 and σk = zk − ζk.

The basic homogeneous equations of the plane theory of electroelasticity
have the form [2]

C(∂x)U = 0, (1)

where C(∂x) = ‖Cij‖3×3,

C11 = c11
∂2

∂x2
1

+ c44
∂2

∂x2
3
, C12 = (c13 + c44)

∂2

∂x1∂x3
,

C13 = (e13+e15)
∂2

∂x1∂x3
, C22 = c44

∂2

∂x2
1

+ c33
∂2

∂x2
3
,

C23 = e15
∂2

∂x2
1

+ e33
∂2

∂x2
3
, C33 = −ε11

∂2

∂x2
1
− ε33

∂2

∂x2
3
,

U = U(u1, u3, u4),

u1, u3 are the components of the displacement vector, u4 is the electrostatic
potential, c11, c44, . . . are the constants characterizing the medium under
consideration.

The first boundary value problem is formulated as follows: let the bound-
ary values of the displacement vector and electrostatic potential be given
on both edges of the arc lj . Further, assume that at infinity we have the
principal vector of external forces acting on l, stress, the electrostatic po-
tential and the induction vector. It is required to define the deformed state
of the plane.

If we denote by u+ (u−) the limit of u on l from the left (right), then the
boundary conditions of the problem will take the form

u+ = f+, u− = f−, (2)

where f+ and f− are the known vector-functions on l of the Hölder class
H which have derivatives in the class H∗ (for the definitions of the classes
H and H∗ see [7]) and satisfying, at the ends aj and bj of lj , the conditions

f+(aj) = f−(aj), f+(bj) = f−(bj).

It is obvious that displacement vector discontinuities along the cut lj
generate a singular stress field in the medium. Hence it is of interest for us
to study the solution behavior in the neighborhood of the cuts.

We seek for a solution of the problem in the form a double-layer potential
[8], [9]

U(z) =
1
π

Im
3

∑

k=1

E(k)

∫

l

∂ ln σk

∂s
[g(s) + ih(s)]ds +
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+
p

∑

j=1

Vj(z) + A∞Re z + B∞ Im z + Mp+1, (3)

where s is the arc coordinate,

E(k) = −‖A(k)
pq ‖3×3 ‖hpq‖3×3

ib3

A1h11

and Im
3
∑

k=1
E(k)

∂
∂s ln σk denotes a special fundamental matrix that reduces

the first boundary value problem to a Fredholm integral equation of sec-

ond order. It is assumed here that Γ = Im
3
∑

k=1
‖A(k)

pq ‖3×3 ln σk is the basic

fundamental matrix for equation (1), Γ is the symmetric matrix whose all
elements are one-valued functions on the entire plane and possess a loga-
rithmic singularity. It is easy to show that every element of the matrix Γ is
a solution of equation (1) at any x 6= y. For the expression of the matrix Γ
see [8]. The elements of the real symmetric matrix h are defined as follows:

h11 = c11c44
1

√
a1a2a3

, αk = i
√

ak, k = 1, 2, 3,

h22 = c11c44C − αB + c44c33A,

−h33 = c11ε11C + B[c11ε33 + c44ε11 + (e13 + e15)2] + c44ε33A,

h23 = c11e15C −B[e13(c13 + c44) + c13e15 − c11e33] + c44e33A,

α = c2
13 − c11c33 + 2c13c44, A1 =

b0

c11
C + α0B +

b3

c44
A,

b0 = c11(c44ε11 + e2
15), b3 = c44(c33ε33 + e2

33), h12 = h13 = 0

(the values of A, B, C are given in [8]).
A∞ and B∞ are the preassigned column vectors whose components are:

A∞1 = a11τ∞11 + a13τ∞33 + a14τ∞43 ,

A∞3 =
1
2
(b11τ∞13 + (b33 − a14)τ∞41 ) + ε∞,

A∞4 = (b33 − a14)τ∞13 − b44τ∞41 ,

B∞
1 = A∞3 − 2ε∞, B∞

3 = a13τ∞11 + a33τ∞33 + a34τ∞43 ,

B∞
4 = a14τ∞11 + a34τ∞33 − a44τ∞43 .
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Here τ11, τ33, . . . , τ43 denote the components of the electromechanical stress
tensor (see [8]); a11, . . . , a44 are the real constant values which are the com-
binations of the known piezoelastic, elastic and dielectric constants

a11 =
b3

c44∆
, a44 =

c11c33 − c2
13

∆
, a34 =

c11e33 − c13e13

∆
,

a33 =
c11ε33 + e2

13

∆
, a13 = −ε33c13 + e33e13

∆
, a14 =

c33e13 − e33c13

∆
,

∆ =
c11c33 − c2

13

c33c44
b3 +

1
c33

(c33e13 − e33c13)2,

b11 =
c11ε11

b0
, b44 =

c11c44

b0
, b33 − a14 =

c11e15

b0
;

αk, k = 1, . . . , 6, are the roots of the characteristic equation

b3α6 + b2α4 + b1α2 + b0 = 0,

b1 = c11α0 − ε11(c13 + c44)2 + c44(e13 + e15)2 −

− 2e15(e13 + e15)(c13 + c44) + c44
b0

c11
,

b2 = c11
b3

c44
+ c44α0 − ε33(c13 + c44)2 + c33(e13 + e15)2 −

− 2e33(c13 + c44)(e13 + e15).

M (j), j = 1, . . . , p + 1, are the unknown real constant vectors to be defined
later on; g and h are the unknown real vectors from the Hölder class that
have derivatives in the class H∗.

We write

Vj(z)=
1
π

Im
3

∑

k=1

A(k)
(zk − b(k)

j ) ln(zk − b(k)
j )−(zk − a(k)

j ) ln(zk − a(k)
j )

b(k)
j − a(k)

j

M j ,

a(k)
j = Re aj + αk Im aj , b(k)

j = Re bj + αk Im bj .

The vector Vj(z) satisfies the following conditions:
1. Vj has the logarithmic singularity at infinity

Vj =
1
π

Im
3

∑

k=1

A(k)(− ln zk + 1)M j + O(z−1
k ).

2. By Vj is meant a branch which is uniquely defined on the plane cut
along lj .

3. Vj is continuously extendable on lj from the left and the right, the
end points aj and bj inclusive, i.e., we have the equalities

V +
j (aj) = V −

j (aj), V +
j (bj) = V −

j (bj),
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V +
j − V −

j = 2 Re
3

∑

k=1

A(k)
τk − a(k)

j

b(k)
j − a(k)

j

M j , j = 1, . . . , p.

To define the unknown density, we obtain, by virtue of (3)–(2), a system
of singular integral equations of the normal type

±g(τ) +
1
π

Im
3

∑

k=1

E(k)
∫

l

∂ ln(τk − ζk)
∂s

(g + ih) ds +

+
p

∑

j=1

V ±
j + A∞Re τ + B∞ Im τ + Mp+1 = f±.

This formula implies

2g(τ) = f+ − f− − Re
p

∑

j=1

3
∑

k=1

A(k)
τk − a(k)

j

bk
j − a(k)

j

M j , (4)

1
π

∫

l

h(ζ)ds
ζ − τ

+
1
π

∫

l

K(τ, ζ)h(ζ) ds = Ω(τ), (5)

where

K(τ, ζ) = −i
∂Θ
∂s

E + Re
3

∑

k=1

E(k)
∂
∂s

ln
(

1 + λk
τ − ζ
τ − ζ

)

,

λk =
1 + iαk

1− iαk
, Θ = arg(τ − ζ), Ω(τ) =

1
2

(f+ + f−)−

−1
2

p
∑

j=1

(V +
j + V −

j )−A∞Re τ −B∞ Im τ −Mp+1 −

− 1
π

Im
3

∑

k=1

E(k)
∫

l

∂
∂s

ln(τk − ζk)g(ζ) ds.

Thus we have defined the vector g on l. It is not difficult to verify that
g ∈ H, g′ ∈ H∗, g(aj) = g(bj) = 0, Ω ∈ H, Ω′ ∈ H∗. Formula (5) is a
system of singular integral equations of the normal type with respect to the
vector h. The points aj and bj are nonsingular, while the total index of the
class h2p is equal to −3p (for the definition of the class h2p see [7]).

A solution of system (5), if it exists, will be expressed by a vector of the
Hölder class that vanishes at the end points aj , bj , and has derivatives in
the class H∗.

Next we shall prove that the homogeneous system of equations corre-
sponding to (5) admits on a trivial solution in the class h2p. Let the con-
trary be true. Assume h(0) to be a nontrivial solution of the homogeneous
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system corresponding to (5) in the class h2p and construct the potential

U0(z) =
1
π

Re
3

∑

k=1

E(k)

∫

l

∂
∂s

ln(zk − ζk) h0(ζ)ds.

Clearly, U+
0 = U−

0 = 0 and by the uniqueness theorem we have U0(z) = 0,
z ∈ D−. Then TU0 = 0, z ∈ D− and

(TU0)+ − (TU0)− = 2‖hij‖
b3

A1h11

∂h(0)

∂s
= 0.

Therefore, since h0(aj) = 0, we obtain h0 = 0, which completes the proof.
Thus the homogeneous system adjoint to (5) will have 3p linearly indepen-
dent solutions σj , j = 1, . . . , 3p, in the adjoint class and the condition for
system (5) to be solvable will be written as

∫

l

Ωσj ds = 0, j = 1, . . . , 3p. (6)

Taking into account the latter condition and that
∫

l

[

(TU)+ − (TU)−
]

ds = −2
p

∑

j=1

M j , (7)

we obtain a system of 3p + 3 algebraic equations with the same number of
unknowns with respect to the components of the unknown vector M j .

We shall show that system (6)–(7) is solvable. Assume that the ho-
mogeneous system obtained from (6)–(7) has a nontrivial solution M0

j =
(M0

1j , M
0
3j ,M

0
4j), j = 1, . . . , p + 1, and construct the potential

U0 =
1
π

Im
3

∑

k=1

E(k)

∫

l

∂
∂s

ln(zk − ζk) (g0 + ih0) ds +
p

∑

j=1

V 0
j + M0

P+1,

where

g0 = −Re
3

∑

k=1

A(k)
τk − a(k)

p

b(k)
p − a(k)

p

M (0)
p , τ ∈ lp,

V (0)
j =

1
π

Im
3

∑

k=1

A(k)
(zk − b(k)

j ) ln(zk − b(k)
j )− (zk − a(k)

j ln(zk − a(k)
j )

b(k)
j − a(k)

j

M (0)
j .

It is obvious that U+
0 = U−

0 = 0. Applying the formulas
P
∑

j=1
M0

j = 0 and
∫

lj

((TU0)+ − (TU0)−)ds = −2M0
j = 0, j = 1, . . . , p, U0(∞) = Mp+1

0 = 0,
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we obtain M0
j = 0, which contradicts the assumption. Therefore system

(6)–(7) has a unique solution.
For M (j)

0 system (5) is solvable in the class h2p. The solution of the
problem posed is given by potential (3) constructed using the solution h of
system (5) and the vector g.

Let us consider a particular case with a rectilinear cut on the segment
ab of the real axis. Assuming that the principal vector of external forces,
displacement, electrostatic potential and induction vector vanish at infinity,
we obtain

U(z) =
1
2π

Im
3

∑

k=1

E(k)

b
∫

a

u+(t)− u−(t)
t− zk

dt +

+
1
2π

Im
3

∑

k=1

E(k)X(zk)

b
∫

a

u+(t)− u−(t)
X+(t)(t− zk)

dt,

where X(zk) =
√

(zk − a)(b− zk).
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